
factor prices in general equilibrium

1 Introduction
At first glance, the Walrasian general equilibrium model
does not offer a theory of factor prices. Factors are goods
supplied by agents to firms who then use them to produce
outputs. In the general equilibrium model, there is no
such class of goods: one and the same good can simul-
taneously be used as an input by some firms, produced as
an output by other firms, sold by some consumers, and
purchased and consumed by other consumers. Indeed, the
general equilibrium model’s abstraction from the minu-
tiae of how particular goods are used is one of the theory’s
great advantages. For many of the classical concerns of the
Walrasian tradition – the existence of equilibrium, opti-
mality – these details are irrelevant.

Even if there is a category of factors that consumers sell
and firms buy, it is hard to see any distinctive properties
of these goods. While factor supply functions can exhibit
perverse responses to price changes, so can output
demand functions. The responses of firms to price
changes are better behaved, and firm factor demands may
seem to be governed by a distinctive principle: a firm’s
demand for a factor diminishes in its own price while a
firm’s supply of an output increases in its own price.
While correct, these two fundamental rules of producer
comparative statics are really reflections of a single law,
as Samuelson (1947) showed long ago. Suppose in an
‘-good economy that a profit-maximizing firm with
production set Y � R‘ chooses y ¼ ðy1; . . . ; y‘Þ 2 Y
when facing prices p ¼ ðp1; . . . ; p‘Þ and ŷ 2 Y when fac-
ing p̂. Since each decision is profit-maximizing, p � y �
p � ŷ and p̂ � ŷ � p̂ � y and hence ðp̂� pÞ � ðŷ � yÞ � 0. If
only one price differs at p compared to p̂, say the first,
then ðp̂1 � p1Þ ðŷ1 � y1Þ � 0. So if p̂14p1 then ŷ1 � y1.
Both of the comparative statics rules now follow from the
appropriate sign restrictions on y1 and ŷ1: when both are
positive we conclude that the output of good 1 supplied
by the firm must be weakly increasing in its price, while if
both are negative we conclude that the factor demand for
good 1 must be weakly decreasing in its price (since ŷ1 �
y1 and ðŷ1; y1Þ � 0 imply jŷ1j � jy1j). It is tempting to
conclude that there is no special general equilibrium
principle of factor demands, just a specific application
that follows when the sign convention for factors is
inserted.

2 Factor-price indeterminacy
The demand for and supply of factors can nevertheless
exhibit distinctive properties, although they are consist-
ent with the generalities pointed out in the previous
section. These properties do not matter for the most of
the classical results of general equilibrium theory, but
they can undermine one result, the generic determinacy
(local uniqueness) of equilibria.

The first distinguishing trait of factors is that some-
times they do not provide any direct utility and are useful
only as inputs in production. Consumers will supply to
the market their entire endowment of such ‘pure’ factors
and hence supply will be inelastic with respect to price
changes. As we will see, what matters is local unrespon-
siveness to prices. Perhaps when a factor such as iron ore
is sufficiently cheap in terms of consumption goods con-
sumers will find some direct use for it and hence have an
excess demand that locally varies as a function of prices.
But above some minimum price, consumers will not
consume any iron ore and in this range consumers’
excess demand will be inelastic. Second, technology can
restrict the number of ways in which factors can be pro-
ductively combined. The extreme case occurs with fixed
coefficients – the Leontiev production function – where
to produce one unit of a good just one combination of
factors will do. More flexible is the linear activities model
where finitely many constant-return-to-scale techniques
are available to produce one or more goods. Factors then
may be combined in various configurations but some
factor proportions cannot be used productively (that is,
without disposing of some of the factors). Nonlinear
activities are qualitatively similar but do not require
constant returns to scale. In all these cases, production
sets have a kinked rather than smooth (differentiable)
surface. Consequently factor prices can be adjusted at
least slightly from one equilibrium configuration without
changing the quantity of factors that profit-maximizing
producers will demand when producing a given quantity
of output (or vector of outputs). In the Leontiev case,
picture the multiple price lines that can support the
model’s L-shaped isoquants. Of course, production sets
do not have to exhibit kinks; for example, they will be
smooth when each output is a differentiable function of
factor inputs. Any change in relative factor prices will
then lead to a change in factor demand.

Factors of production thus are distinctive in that both
demand and supply can be unresponsive to certain types
of price changes. Factor demand and supply do not have
to display this unresponsiveness, but under plausible cir-
cumstances permitted by the general equilibrium model
they will. Inelastic factor demand and supply in turn can
lead to an indeterminacy of factor prices. For a simple
example, suppose an economy has one consumption
good, produced by a single linear activity that requires a1

units of one factor and a2 units of a second factor to yield
one unit of output. Set the price of consumption equal to
1, let w1 and w2 be the two factor prices, let the endow-
ments of the two inelastically supplied factors be e1 � 0
and e2 � 0, and let y be the sole activity usage level. An
equilibrium ðw1;w2; yÞ � 0 where the consumption good
is produced and has a positive price must satisfy three
conditions: (i) a1w1+a2w2=1 (the activity breaks even),
(ii) aiy � ei for i=1, 2 (market-clearing for factors), and
(iii) aiyoei ) wi ¼ 0 for i=1, 2 (factors in excess supply
have a 0 price). On the assumption that the demand for
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output equals factor income, which is a form of Walras’
law, (i)–(iii) imply that the market for output clears.
Evidently equilibrium must satisfy y ¼ min½e1=a1; e2=a2�.
By (iii), the two factors will both have a strictly positive
price only if

e1

a1
¼ e2

a2
, (1)

in which case any w ¼ ðw1;w2Þ � 0 that satisfies (i) will
be an equilibrium w: indeterminacy therefore obtains
when (1) holds. We defer for a little while the question of
whether this knife-edge condition is likely to be satisfied.

Fixed coefficients and inelastic factor supply do not
always lead to indeterminate factor prices. Prior to the
invention of the differentiable production function and
for awhile thereafter, the standard cure for factor-price
indeterminacy was to argue that, even if each industry uses
factors in fixed proportions, those proportions will differ
across industries; variations in factor prices will then lead
to changes in relative output prices, and thus to changes in
output demand that feedback to changes in factor demand
(Cassel, 1924; Wieser, 1927). Substitution in consumption
can thereby play the same equilibrating role as the tech-
nological substitution of inputs in production. For the
simplest example, suppose we supplement the above
single-sector economy with a new sector that uses b1 units
of the first factor and b2 units of the second factor to
produce one unit of a second consumption good. If we
keep the price of the first consumption good equal to 1,
and let pb be the price of the second consumption good,
then when both activities break even the equalities

a1w1 þ a2w2 ¼ 1; b1w1 þ b2w2 ¼ pb

must be satisfied. As long as a1=a2ab1=b2, it will not be
possible to adjust w without also changing the relative
price of the consumption goods pb. When w1=w2

increases, the consumption good that uses factor 1 more
intensively will rise in price, presumably diminishing
demand for that good and thus diminishing the demand
for factor 1. Even if demand for consumption is a perverse
function of prices, this two output–two factor model will
still typically have determinate prices as long as both
activities break even.

A general linear activity analysis model will clarify
when the determinate and indeterminate cases arise. The
linearity of the activities serves only to simplify the
model’s equilibrium conditions. There will be two types
of goods: factors, which give no utility and are inelas-
tically supplied, and consumption goods, which do give
utility. Despite their name, consumption goods can be
used as inputs and nonproducible but they must provide
utility to some agents. We now adopt the standard sign
convention and define an activity to be a vector, with as
many coordinates as there are commodities, whose pos-
itive coordinates give the quantities of goods produced
and negative coordinates give the quantities of goods

used when the activity is operated at the unit level. In
equilibrium the excess demand for each good must be
non-positive, each good in excess supply must have a 0
price, each activity must earn non-positive profits, and
each activity in use must earn 0 profits. Since deter-
minacy and indeterminacy are purely local events, a
search for equilibrium prices and activity near a reference
equilibrium can ignore the ‘slack’ equilibrium condi-
tions, the market-clearing condition for any good in
excess supply and the no-positive-profits condition for
any activity that either makes strictly negative profits
or utilizes and produces only goods in excess supply:
for small adjustments of prices and activity levels, the
excluded goods will remain in excess supply and the
excluded activities will continue to make negative profits
or continue to use and produce only goods in excess
supply (and hence continue to break even). Call any good
not in excess supply and any activity that breaks even and
that uses or produces at least one good not in excess
supply ‘operative’. Given some reference equilibrium with
‘ operative consumption goods, m operative factors, and
n operative activities, let A be the ð‘þmÞ � n activity
analysis matrix whose rows and columns correspond to
the operative goods and activities, let y be the n-vector of
operative activity levels, let p be the ‘-vector of prices for
the operative consumption goods, let w be the m-vector
of prices for the operative factors, let z(p, w) be the excess
demand function for the operative consumption goods,
which we assume is homogeneous of degree 0 in (p, w),
and finally let e be the m-vector of inelastic supplies of
the operative factors. Walras’ law then states that
p � zðp;wÞ ¼ w � e. Equilibria ðp;w; yÞ � 0 are locally
characterized by the equalities

ðzðp;wÞ;�eÞ ¼ Ay; ðp;wÞ0A ¼ 0. (2)

(All vectors are column vectors and 0 denotes transpo-
sition.) Bear in mind that the market-clearing and no-
positive-profit inequalities excluded from (2) vary by
equilibrium; the activities and goods operative in one
equilibrium need not be operative in another. We assume
henceforth that, at any equilibirum, each of the operative
activities is used at a strictly positive level and that each
operative good has a strictly positive price, ðp;w; yÞ 	 0.
As usual, the homogeneity of demand allows us to set
one of the positively priced goods to be the numéraire
and Walras’ law implies that one of market-clearing con-
ditions is redundant. So we set the price of the first con-
sumption good not in excess supply to equal 1 and put
aside the market-clearing condition for this good. Letting
z̄ðp;wÞ denote z (p, w) without the first coordinate, Ā
denote A without the first row, and p̄ denote p with the
first coordinate set equal to 1, (2) can be written

ðz̄ðp̄;wÞ;�eÞ ¼ Āy (3)

ðp̄;wÞ0A ¼ 0. (4)
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Any small change in ðp̄;w; yÞ that satisfies (3)–(4) will
then continue be an equilibrium: the variables ðp̄;w; yÞ
will remain positive, all excluded goods will remain in
excess supply, and all excluded activities will continue to
make negative profits or continue to use and produce
only goods in excess supply.

The most conspicuous case of factor-price indetermi-
nacy occurs when m4n, that is, when there are more
operative factors than operative activities. If, beginning at
some reference equilibrium, we fix y at its equilibrium
value, then as ðp̄;wÞ varies the market-clearing condi-
tions for factors in (3) will continue to be satisfied. But
the remaining equilibrium conditions – (4) and the
market-clearing conditions for consumption goods in (3)
– comprise nþ ‘� 1 equations in the ‘� 1þm varia-
bles ðp̄;wÞ. Hence, if m4n and as long these remaining
equilibrium conditions satisfy a rank condition, which
allows the implicit function theorem to be applied, inde-
terminacy will occur. The economy considered earlier
where two factors are used by one activity qualifies as an
example of the m4n type of indeterminacy, while the
economy where two factors are used to produce two
goods does not.

A slight variation of this argument applies to a subset
of factors. Suppose that m̂ of the m operative factors are
used by only n̂ of the n operative activities, and that
m̂4n̂. Thus the remaining n� n̂ operative activities have
0 entries in the rows of A that correspond to these m̂
factors. If we fix the n̂ coordinates of y for the activities
that do use these m̂ factors, then, as the remaining
endogenous variables (the other n� n̂ activity levels, p̄,
and w) change, the market-clearing conditions for the m̂
factors will continue to be satisfied. Moreover, the
number of remaining endogenous variables is n� n̂þ
‘� 1þm while the number of remaining equilibrium
conditions is ‘� 1þm� m̂þ n. The difference between
the number of remaining variables and remaining equi-
librium conditions is therefore m̂� n̂ and so there are
more variables than equilibrium conditions. Indetermi-
nacy therefore obtains (again, given a rank condition).

Factor-price indeterminacy, whether for an economy
as a whole or for a subset of an economy’s factors,
depends critically on production sets that exhibit kinks.
By fixing a set of activity levels, the above indeterminacy
argument fixes a vector of factor demands and finds a
multiplicity of prices at which firms will demand exactly
those quantities. If the aggregate production set were
smooth, a fixed vector of firm factor demands would be
supported by only one vector of relative factor prices.

Factor-price indeterminacy brings dramatic behavi-
oral consequences: agents have a strong incentive to
manipulate factor prices and hence markets cannot
function competitively. In the two factor-one activity
example, where the endowments satisfy (1), the tiniest
withdrawal of either factor i = 1 or i = 2 from the market
will lead the other factor to be in excess supply and have
price 0 and hence cause factor i’s price to jump to 1=ai.

No matter how small an owner of factor i is as a pro-
portion of the market, it will be in his or her interest to
remove a small amount of i from the market. Agents
therefore will not behave like price-takers. When more
activities are present, the jump in factor prices need not
be as large, but a jump will still occur for an arbitrarily
small withdrawal of a factor, and hence the incentive to
manipulate will remain. The distinctive mathematical
feature of factor-price indeterminacy that drives this
conclusion is that the equilibrium correspondence fails
to be lower hemicontinuous. (The equilibrium corre-
spondence is the correspondence from the parameters of
the model, such as the endowments e, to the endog-
enous variables ðp̄;w; yÞ.) When the endowments of
factors lead to an indeterminate equilibrium, it will
usually be impossible at nearby endowment levels to
find equilibrium prices near to the prices of the inde-
terminate equilibrium. Other varieties of indeterminacy
in the general equilibrium model, such as the indeter-
minacy of the overlapping generations model, do not
suffer from such a failure of lower hemicontinuity
and therefore do not invite market manipulation (see
Mandler, 2002).

3 The emergence of factor-price indeterminacy
through time
We saw in the two factor-one activity example that
indeterminacy occurs only if a knife-edge condition on
endowments is satisfied. This observation applies to the
broader species of factor-price indeterminacy as well.
Suppose again that at some reference equilibrium m̂
operative factors are used by n̂om̂ operative activities,
let ê be the endowments of these m̂ factors, let ŷ be the
activity levels for the n̂ activities, and let Â be the m̂� n̂
submatrix of A formed by the rows for the m̂ factors and
the columns for the n̂ activities. Then Âŷ ¼ ê. But since
Â has more rows than columns, for almost every value
of ê, Âŷ ¼ ê will have no solution. Hence, for most levels
of an economy’s endowments, there will be no equilib-
rium at which m̂ operative factors are used by fewer
than m̂ operative activities. While the failure in these so-
called generic cases of the indeterminacy arguments we
have given does not show that equilibria are generically
locally unique, the literature on regular economies (see in
particular Mas-Colell, 1975; 1985; and Kehoe 1980;
1982) has shown that, for generic endowments and
preferences, general equilibrium models with linear or
nonlinear production activities do have locally unique
equilibria.

The determinacy question, however, does not end
here. An economy’s endowments of produced inputs –
capital goods – are in any long-term view endogenous
variables not parameters. Consequently, even though
factor-price indeterminacy does not arise for generic
endowments, it is conceivable that those special endow-
ments that lead to indeterminacy will systematically arise

factor prices in general equilibrium 2041



as the equilibrium activity of an economy unfolds
through time. To see that this can indeed happen, we
partition an intertemporal economy’s dates into two peri-
ods, a first period where goods are either consumed or
invested in the production of factors and a second period
where the factors produced by first-period activities and
natural endowments are used to create consumption
goods (possibly also with the aid of intermediate inputs
produced within the second period). To test whether the
nongeneric factor endowments that lead to indeterminacy
are likely to appear, we consider intertemporal economies
where the endogenous equilibrium production of second-
period factors leads the total stock of these factors to
assume the nongeneric values where indeterminacy arises.
If this endogenous second-period indeterminacy obtains
for a robust family of equilibria (the equilibria of a non-
empty open set of economies), then sequential indetermi-
nacy occurs (Mandler, 1995).

In the Arrow–Debreu view of an intertemporal econ-
omy, agents trade just once at the beginning of economic
time; after these initial contracts are signed, no further
trade occurs, goods are just delivered. To allow for trade
at multiple dates, and thus give indeterminacy in later
time periods a chance to appear, we assume instead that
agents transfer wealth between periods by borrowing or
lending assets. Agents then will typically trade every
period, and the economies that appear in later periods
will have endowments that are endogenously determined
by trade in the initial periods. Moreover any indeter-
minacy of prices in later periods will change the quan-
tities of goods exchanged and hence change agents’
utilities. In our setting, with just two periods, we can let
the activities that produce second-period factors serve as
assets: agents in the first period will buy or sell rights to
the outputs of the activities that produce the second-
period factors and then in the second period receive or
deliver the second-period factors they contracted for in
the first period and use their income to trade for con-
sumption. The allocation achieved by a two-period
Arrow–Debreu intertemporal equilibrium will occur in
an equilibrium with two sequential periods of trade if
(a) agents in the first period unanimously anticipate a
second-period price vector, (b) given those expectations,
goods and asset markets in the first period clear, and (c)
given asset deliveries, second-period markets clear at the
anticipated prices. We omit the routine details of how to
decompose an intertemporal equilibrium into a sequen-
tial-trading equilibrium (see Radner, 1972) and will just
write one equilibrium condition explicitly, the market-
clearing equality for second-period factors.

As usual, we consider some reference equilibrium and
ignore those goods in excess supply and those activities
that make strictly negative profits or that use and pro-
duce only goods in excess supply. If there are k operative
goods in period 1, and ‘ operative consumption goods
and m operative factors in period 2, the activity analysis
matrix for the operative goods and activities takes the

form

A ¼
A1 0

0 Ac2

Af 1 Af 2

0
B@

1
CA

k

‘

m

where the subscript c or f indicates whether the rows
are for consumption goods or factors and the subscript
1 or 2 indicates the time activities begin operation. Since
presumably the second-period factors are the outputs of
time 1 activities and the inputs of time 2 activities, it
makes sense to suppose Af 1 � 0 and Af 2 � 0. If we let yi

denote the activity levels for operative activities that
begin in period i and e the endowment of operative sec-
ond-period factors, the market-clearing equality for
operative second-period factors is

Af 1y1 þ Af 2y2 þ e ¼ 0. (5)

In the background lie the remaining equilibrium condi-
tions: market-clearing conditions for excess-supply fac-
tors and for all consumption goods, and nonpositive
profit conditions for activities.

Consider the restrictions that (5) places on the
number of operative factors. If the number of operative
activities in the two periods that produce or use the m
operative second-period factors is less than m, then, for
almost every e, (5) will have no solution y ¼ ðy1; y2Þ � 0.
Similarly if there is a subset of m̂ operative second-period
factors where the number of operative activities in the
two periods that produce or use these factors is less than
m̂, then again (5) will usually have no solution. We may
therefore dismiss these cases as unlikely, in line with the
literature on regular economies. In the remaining cases,
where for each subset of m̂ operative second-period fac-
tors the number of operative activities in the two periods
that produce or use these factors is greater than or equal
to m̂, then (5) can have a solution y � 0 for a robust
(open) choice of endowment levels e. But in these latter
cases it could well be that some subset of operative
second-period factors – say the entire set of all m of these
factors – is used by fewer than m operative second-period
activities. For an example, let m = 2, suppose that the first
factor has no endowment but is produced by an activity
with factor output coefficient c1 while the second factor
has a positive endowment in the second period and is not
produced. In the second period, both factors are used by
one activity with factor usage coefficients a1 and a2. Then
(5) consists of the two equalities

c1y1 þ a1y2 ¼ 0;

a2y2 þ e2 ¼ 0:
(6)

Evidently if a1o0, a2o0, c140, and e240, then a sol-
ution y 	 0 to (6) exists and is robust: for a small var-
iation in the production coefficients or the endowment, a
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solution y 	 0 will continue to exist. In this equilibrium,
factor 2 is produced in just the quantity necessary to
ensure that neither factor 1 nor factor 2 is in excess sup-
ply. For a second example, suppose that factor 2 is pro-
duced as well and also has no endowment, and let y1i

denote the usage level of the activity that produces
factor i. Then (6) is replaced by c1y11 + a1y2 = 0 and
c2y12 + a2y2 = 0. Now efficiency and hence equilibrium
will usually require that the two factors are produced in
quantities that leave neither in excess supply in period 2;
if, say, factor 1 were in excess supply and if y11 could be
lowered, thereby increasing the output of some first-
period consumption good, an inefficiency would exist,
which is impossible in equilibrium.

Once agents arrive at period 2, they trade again but
now the factor outputs produced by the activities that
began in period 1 are exogenously given. So in the
example given by (6) the endowment of factor 1 in
period 2 equals c1y1 and one may readily check that this
quantity along with e2 of factor 2 satisfy the knife-edge
condition (1). Thus, despite seeming to be unlikely at a
given point in time, the endowments that lead to inde-
terminacy can endogenously arise.

Intertemporal general equilibrium economies there-
fore can be sequentially indeterminate. Moreover, factor-
price indeterminacy is typically the only source of
endogenous indeterminacy. Let us call the equilibria that
occur in the later periods of operation of a sequential-
trading equilibrium and that confirm the expectations
formed in the initial period ‘continuation equilibria’.
A continuation equilibrium is indeterminate if it sits
amid a continuum of other (usually non-continuation)
equilibria.

Sequential indeterminacy theorem (Mandler, 1995). For
a generic set of intertemporal economies with linear acti-
vities, a continuation equilibrium is indeterminate at
some date t if and only if there is a set of m̂ operative
factors appearing at t or later that are used or produced
by fewer than m̂ operative activities that begin at t or
later.

In contrast, when production sets are smooth, endog-
enous endowments do not lead to indeterminacy; typically
continuation equilibria are locally unique (Mandler, 1997).

4 Factor price indeterminacy and the hold-up
problem
The endogenous factor-price indeterminacy of the previ-
ous section is not an indeterminacy of the equilibria of the
entire intertemporal economy or of the corresponding
sequential-trading equilibria. As long as the non-
produced endowments of every period of an intertem-
poral economy avoid certain nongeneric values, and
barring flukes in preference or technology coefficients,
only a finite number of intertemporal equilibria will exist.

It follows that in a two-period model that displays
sequential indeterminacy, almost all of the infinite mul-
tiplicity of equilibria of the second-period economy could
not form part of a two-period sequential-trading equi-
librium: if the prices of almost any of the second-period
equilibria were anticipated in period 1, they would be
inconsistent with market clearing. Specifically, if antici-
pated second-period prices were to vary slightly from the
values that hold in a sequential-trading equilibrium, then
either assets would no longer share the same rate of return
or the common rate of return on assets would change,
and hence typically markets would not clear. But bygones
are bygones: once period 1 is past, even the second-period
equilibria that violate the requirements of an intertem-
poral equilibrium are equilibria nonetheless when the
economy arrives at its second period.

Moreover second-period indeterminacy will prevent
sequential-trading equilibria from proceeding smoothly
through time: they will be virtually certain to unravel.
Since factor prices are indeterminate in the second
period, rational agents will predict that an investment in
an activity producing a second-period factor will not
except by chance earn the rate of return anticipated in the
first period of a sequential-trading equilibrium. Invest-
ments will therefore differ from their Walrasian levels.
The predictions of the general equilibrium model thus
become untenable when agents trade repeatedly through
time and factor-price indeterminacy is present, even
though all the classical presuppositions of the model –
price-taking agents, no distortions, and so on – obtain.

The inability of second-period markets to ensure that
assets earn the rate of return necessary for efficiency
amounts to a hold-up problem, but the cause of the
problem differs from the conventional diagnosis. In the
classical hold-up problem, the owners of two comple-
mentary factors Nash bargain over the revenue they
jointly earn; hence, if the owner of one of the factors
invests to improve the quality of his factor, the owner
recoups only a fraction of the increment to revenue, and
consequently investment is inefficiently low (Hart, 1995).
The problem, it would seem, is that the factor owners
form a bilateral monopoly and cannot purchase each
other’s services on a competitive market. What we have
seen, however, is that a hold-up problem can arise with
perfectly competitive markets. Even if factor owners can
purchase all complementary factors on competitive mar-
kets, factor-price indeterminacy can prevent investments
in factors from earning the rate of return required in
intertemporal equilibrium (and hence the rate necessary
for efficiency): an unguided market has no means to
select from the continuum of equilibrium factor prices
the specific prices that deliver intertemporal efficiency.
Factor markets moreover will not operate competitively
in the presence of factor-price indeterminacy, which is
another cause for the rate of return to deviate from its
competitive equilibrium value. For both reasons, the
efficient Walrasian levels of investment need not occur.
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Just as in the classical hold-up problem, long-term
contracts can mitigate the troubles that factor-price inde-
terminacy brings. If labour is among the factors in an
economy displaying factor-price indeterminacy, then a
labour contract may be able to force trading at prices that
allow intertemporal efficiency and prevent labourers or
capital goods owners from manipulating factor prices by
withdrawing their services from the market. Of course,
as in the classical hold-up problem, the incompleteness
of contracts may hamper the ability of this solution to
deliver first-best efficiency. Alternatively, when a set
of complementary factors displays factor-price indetermi-
nacy and consists solely of produced goods, then a
bundling of the complementary factors in an asset port-
folio – that is, in a ‘firm’ – can eliminate the incentive to
manipulate prices. From the vantage point of factor-price
indeterminacy, unions and labour contracts and the firm
as an institution emerge as devices to enforce competitive
equilibria, not as consequences of imperfect competition
in factor markets.

5 Conclusion: factor-price indeterminacy past and
present
Prior to the Arrow–Debreu transformation of general-
equilibrium theory, economists were well-aware that lin-
ear activities could lead to an indeterminacy of factor
prices. The problem was considered from a long-run
perspective: a change in a factor price was presumed to
persist for many periods, and, although such a change
might not lead to an instantaneous change in either the
supply or demand for the factor, arguments were
deployed for why demand and supply responses would
eventually kick in. For example, in response to a wage
increase, although existing capital equipment might have
fixed labour requirements, newly constructed capital
equipment could be built to use labour less intensively. In
addition, a wage increase would eventually lead the price
of labour-intensive consumption goods to rise, dimin-
ishing the demand for these goods and therefore ulti-
mately for labour as well. This effect does not operate
immediately since a wage increase will lead to an offset-
ting fall in the prices of existing stocks of complementary
capital inputs. But the prices of newly produced capital
inputs are constrained by break-even requirements;
hence, given enough time, the prices of labour-intensive
consumption goods will increase. (Robertson, 1931, and
Hicks, 1932, offered the most detailed long-run theories.
See Mandler, 1999, ch. 2.) Although pre-modern expla-
nations of factor prices faced the indeterminacy problem
explicitly, and marshalled a rich array of counter-
arguments for why the problem normally will not be
severe, the long-run perspective had its drawbacks: the
attention to persistent changes in factor prices masked an
inability to explain why factor prices cannot temporarily
change. The older long-run theories simply assumed that,
in the absence of demand or supply shocks, factor prices

will be maintained at their long-run equilibrium values.
This presumption amounts to a rudimentary version of
the rule that in an intertemporal equilibrium prices
should fulfill the expectations that agents formed in ear-
lier periods. As we have seen, the market mechanism will
not enforce this rule; a supplementary theory of contracts
and institutions is necessary. The Arrow–Debreu treat-
ment of factors (and other goods) at different dates as
fully distinct goods naturally raises the question of
whether prices can deviate from previously anticipated
values even in the absence of shocks, and curiously,
therefore, the Arrow–Debreu account of markets points
to the need for a theory of non-market institutions.
Unfortunately, the Arrow–Debreu tradition also took the
model of trading at a single point in time as its bench-
mark. It is only with the combination of goods rigorously
distinguished by date, sequential trading, and production
sets with kinks that factor-price indeterminacy will
appear.

MICHAEL MANDLER

See also determinacy and indeterminacy of equilibria;

general equilibrium; hold-up problem.
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fair allocation
We survey the theory of equity in concretely specified
economic environments. The literature concerns the
existence of allocation rules satisfying various require-
ments of fairness expressed in terms of resources and
opportunities understood in their physical sense (and not
in terms of abstract entities such as utilities or function-
ings). For lack of space, we often give only representative
references. Detailed treatments of the subject are Young
(1994), Brams and Taylor (1996), Moulin (1995; 2003),
and Thomson (1995b; 2006c).

1 Concepts
We introduce concepts central to the classical problem of
fair division. These have much broader applicability, but
for other models they sometimes have to be reformu-
lated. Also, as models vary in their mathematical struc-
tures, the implications of a given concept may differ
significantly from one to the other.

In an economy, there is a social endowment of
resources to be distributed among a group of agents
who are collectively entitled to them. For what we call a
classical problem of fair division, the resources are infi-
nitely divisible private goods, and preferences are con-
tinuous, usually monotonic (sometimes strictly so), and
convex. In an economy with individual endowments, each
agent starts out with a share of society’s resources; the
issue in this case is to redistribute endowments. In a
generalized economy, some resources are initially owned
collectively and others are individual endowments
(Thomson, 1992; Dagan, 1995). A solution associates
with each economy a non-empty subset of its set of fea-
sible allocations. A rule is a single-valued solution.

An axiomatic study begins with the formulation of
requirements on solutions (or rules). Their logical rela-
tions are clarified and their implications, when imposed
in various combinations, are explored. For each combi-
nation of the requirements, do solutions exist that satisfy
all of them? If the answer is ‘yes’, can one characterize the
class of admissible solutions?

A punctual requirement applies to each economy sep-
arately. The main question then is the existence, for each
economy in the domain under consideration, of alloca-
tions satisfying the requirement. First are bounds on
welfares defined agent-by-agent, in an intra-personal
way. Some are lower bounds, offering agents welfare
guarantees. Others are upper bounds, specifying ceilings
on their welfares. An allocation satisfies no-domination

of, or by, equal division, if no agent receives a bundle that
contains at least as much as an equal share of the social
endowment of each good, and more than an equal share
of the social endowment of at least one good, or a bundle
that contains at most as much as an equal share of the
social endowment of each good, and less than an equal
share of the social endowment of at least one good
(Thomson, 1995b). It satisfies the equal-division lower
bound if each agent finds his bundle at least as desirable
as equal division (Kolm, 1972; Pazner, 1977; and many
others).

Second are requirements based on interpersonal com-
parisons of bundles, or more generally, ‘opportunities’,
involving exchanges of, or other operations performed
on, these objects. An allocation satisfies no domination
across agents if no agent receives at least as much of all
goods as, and more of at least one good than, some other
agent (Thomson, 1983a). It satisfies no-envy if each agent
finds his bundle at least as desirable as that of each other
agent (Foley, 1967; Kolm, 1973, proposes a definition
that encompasses many variants of the concept). The
final definition is quite different in spirit: an allocation is
egalitarian-equivalent if there is a reference bundle that
each agent finds indifferent to his own bundle (Pazner
and Schmeidler, 1978). Given a direction r in commodity
space, it is r-egalitarian-equivalent if it is egalitarian-
equivalent with a reference bundle proportional to r. Of
particular interest is when r is the social endowment.

A relational requirement prescribes how a rule should
respond to changes in some parameter(s) of the econ-
omy. The idea of solidarity is central: if the environment
changes, and whether or not the change is desirable, but
no one in particular is responsible for the change, that is,
no one deserves any credit or blame for it (or no one in a
particular group of agents is responsible for the change,)
the welfares of all agents (or all agents in this particular
group), should be affected in the same direction: all
‘relevant’ agents should end up at least as well off as they
were initially, or they should all end up at most as well
off. In implementing this idea, the focus is usually on
a particular parameter. When the parameter belongs to a
space that has an order structure, as is frequent, one can
speak of the parameter being given a ‘greater’ or ‘smaller’
value in that order. Then, together with efficiency, the
solidarity idea often implies a specific direction in which
welfares should be affected: when a Pareto improvement
is possible, all relevant agents should end up at least as
well off as they were initially; otherwise, all should end up
at most as well off. Thus, solidarity takes the form of a
‘monotonicity’ requirement. Examples are resource mono-
tonicity: if the social endowment increases, all agents
should end up at least as well off as they were initially
(Thomson, 1978; Roemer, 1986a; 1986b; Chun and
Thomson, 1988); technology monotonicity, a similar
requirement when technology expands (Roemer, 1986a;
Moulin and Roemer, 1989); population monotonicity: if
population expands, all agents initially present should
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