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Abstract

The crawler is a new efficient, strategyproof, and individually ra-

tional mechanism for house matching markets with single-peaked pref-

erences. In a house matching market each agent is endowed with ex-

actly one house. These houses are ordered - by their size for example

- and all agents preferences are singlepeaked with respect to that or-

der. The crawler screens agents in order of their houses’ sizes, starting

with the smallest. The first agent who does not want to move to a

larger house is matched with his most preferred house. Agents who

currently occupy houses sized between this agent’s original and chosen

houses “crawl” to the next largest unmatched house. This process is

repeated until all agents are matched. The crawler is easier to under-

stand than Gale’s top trading cycles and can be extended to allow for

indifferences. A variant of the crawler can be used in environments

where countably many agents gradually enter and exit the market.

1 Introduction

Consider a house matching problem in which each agent i in a set {1, . . . , n}
is endowed with a house, also called i. Suppose there is some objective linear
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order on all houses. House could be ordered by their location, so that i < j

means that house i lies to the South of house j. Alternatively houses could be

ordered by their sizes, their energy efficiency, etc. All agents preferences are

single-peaked with respect to the objective order on houses. If preferences

are single-peaked with respect to the north-south ordering then agents hope

to live as close as possible to their preferred latitude. If size is the relevant

objective order, then each agent has an ideal house size. Such an agent prefers

a house that is a bit smaller (larger) than his ideal house to any other house

that is yet smaller (larger). For ease of presentation I assume throughout

that preferences are single-peaked with respect to house sizes.

A mechanism maps each profile of all agents’ preferences to a matching. A

matching, in turn, is a one-to-one function between agents and houses. The

crawler, a new matching mechanism for the single-peaked domain, determines

matchings by screening all houses in order of their size, starting with the

smallest. Once a house whose current owner i wants to either stay put or

move to a smaller house is found, the crawler matches this agent i with his

most preferred house. If i’s most preferred house differs from the house he

owned at the beginning of this step, then each current occupant of a house

sized between these two “crawls” to the next biggest house. This process is

repeated until all agents are matched.

Theorem 1 shows that the crawler is efficient, strategy proof, and indi-

vidually rational. A mechanism is strategyproof if no agent can ever benefit

from misrepresenting his preferences. It is efficient if it maps each profile

of preferences to a matching for which there does not exist an alternative

matching weakly preferred by all and strictly by some. It is individually

rational if no agent is ever matched with a house he deems worse than the

one he was endowed with.

Without the assumption of single peakedness, exactly one mechanism

satisfies these three criteria: when all linear orders are permitted as prefer-

ences, then Gale’s top trading cycles is the unique efficient, strategy proof,

and individually rational matching mechanism. In Gale’s top trading cycles

each agent points to the owner of his most preferred house. Any agent in

a pointing cycle is matched with the house he points to. The procedure is

repeated with all unmatched agents and the restriction of their preferences
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to the unmatched houses and the algorithm terminates once a matching is

reached.

Shapley and Scarf’s [15] and Roth’s [12] proofs that Gale’s top trading

cycles is efficient, strategy proof, and individually rational apply directly

to the domain of single-peaked preferences. However, Ma’s [10] proof, that

Gale’s top trading cycles is the only such mechanism, does not transfer.

Theorem 2 shows that Ma’s [10] uniqueness result holds if each agent can be

picky about any house, in the sense that this house is the only house he prefers

to his endowment. Since many picky preferences are not single-peaked, Ma’s

[10] uniqueness result does not apply to the single-peaked domain. Indeed,

when there are at least 3 agents, the crawler differs from Gale’s top trading

cycles (Proposition 1).

On the domain of single-peaked preferences the crawler has two advan-

tages over Gale’s top trading cycles. It has an extensive form implementation

that is - in a well-defined sense - easier to understand than any extensive form

implementation of Gale’s top trading cycles. The crawler can, moreover,

also be applied to ongoing matching problems where some agents have to be

matched before the full extent of all agents’ preferences becomes known.

To define mechanisms that are more or less easy to understand, consider

a strategy for some agent i in an extensive form mechanism. Arbitrarily fix

a history where agent i moves and that can be reached if the agent plays

the given strategy. This strategy is obviously dominant following Li [9] if i

(weakly) prefers the worst outcome associated with the continuation of his

strategy to the best outcome following a deviation at the current history

(and all later histories). To calculate the relevant worst (best) payoff the

agent considers the most harmful (favorable) choices by all other agents in

all histories following the current one. Li [9] argues that even cognitively

impaired agents or agents who suspect the designer of fraud never see a reason

to deviate from an obviously dominant strategy. Theorem 3 shows that the

crawler can be implemented in obviously dominant strategies. Conversely I

show that even on the restricted domain of single-peaked preferences Gale’s

top trading cycles cannot be implemented in obviously dominant strategies.1

1Li [9] already showed that Gale’s top trading cycles cannot be implemented in obvi-

ously dominant strategies on the domain of all linear preferences.
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In Section 6 I define a variant of the crawler that can be used on a

larger domain of single-peaked preferences where agents may be indifferent

between some houses. Theorem 4 shows that this variant inherits the three

crucial properties of the crawler: it is efficient, individually rational and

implementable obviously dominant strategies.

Section 7 concerns matching problems where some agents need to be

matched before the full extent of the problem becomes known. Bade [5] mo-

tivates such problems as shift exchanges, where the reassignment of some

shifts typically has to occur before the preferences of all future workers be-

come known. In line with this motivation I assume here that agents’ pref-

erences are single-peaked with respect to time. The agents, as well as the

shifts they are endowed with, are represented as the set of natural numbers

N. There is some fixed number T ∈ N such that agents never find any shift

further than T periods from their initial endowment acceptable. Theorem

5 defines an efficient, strategy-proof and individually rational variant of the

crawler for shift exchange problems. I show that there exists a number K

such that it suffices to know the first i+K preferences to match any agent i.

Bade [5] in contrast shows that no efficient and individually rational match-

ing mechanism satisfies this criterion of decision-making in finite time, if any

agent i may rank all shifts during his “lifespan” {i − T, . . . , i + T} in any

order.

2 Definitions

There is a set of agents N : = {1, . . . , n}. Each agent i ∈ N is initially

endowed with house i, so the set of houses is also N . Each agent i has

a transitive and complete preference %i over all houses. A profile of all

agents’ preferences is denoted %. A house j is %i-acceptable if j %i i.
The preference %[j]

i is picky about j if no house other than i and j is %[j]
i -

acceptable. If j %i j′ holds for some j ∈ N and all j′ in some set N ′ ⊂ N I

write j %i N ′

The names of all houses reflect an objective linear order on all houses.

Houses are ordered by their sizes and i < j means that i is smaller than

j. The preference %i is single-peaked (with respect to the order < on all
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houses) if there exists a i∗ ∈ N such that j %i k holds if either k < j ≤ i∗ or

k > j ≥ i∗. A preference is a linear order if it is antisymmetric. Arbitrary

domains of agent i’s preferences and of preference profiles are denoted Ωi

and Ω: = Ω1× . . . ,×Ωn. The domains of all linear preferences, of all single-

peaked preferences and of all linear, single-peaked preferences respectively

are Ωl, Ω̂, and Ω̂l = Ωl ∩ Ω̂.2

A submatching for N ′ is a bijection ν : N ′ → ν(N ′) with ν(N ′) ⊂ N .

Under ν agent i ∈ N ′ is matched with house ν(i). The submatching that

matches no one is called ∅. A submatching ρ : N ′ → N ′ is a cycle if for each

i, j ∈ N ′ there exists some m ∈ N such that j = ρm(i). Any submatching

ν : N ′ → ν(N ′) entails an indexation with respect to a submatching ν

for the set N ′, so that agents with lower index own smaller houses: ν(it) <

ν(it+1) for all 1 ≤ t <| N ′ |. If are indexed with respect to ν and if t < t′,

then agent it occupies a smaller house than it′ given ν.

A submatching µ that matches all agents is a matching. If ν(i) =

µ(i) for all i matched by ν then I write ν ⊂ µ. The sets of all matchings

and submatchings respectively are M and M. The initial endowment is

represented by the matching id : N → N where id(i) = i for all i ∈ N .

Agents only care about their own houses, so agent i prefers matching µ to

matching µ′ if and only if µ(i) %i µ′(i). A matching µ is efficient at % if

any matching µ′ that is strictly better than µ for some agent is strictly worse

than µ for a different agent. The same µ is individually rational at % if

µ(i) is %i-acceptable for each i.

A social choice function scf : Ω→Mmaps each profile% in the arbitrary

domain Ω to a matching in M. Any social choice function can be viewed

as a direct revelation mechanism with the understanding that each agent i

declares a preference %i to the designer, who in turn chooses the matching

scf(%) given that % is the profile of stated preferences. The mechanism scf

is efficient (individually rational) if scf(%) is efficient (individually rational)

at % for each %∈ Ω. It is strategy proof if no agent has an incentive to

misrepresent his preferences, so scf(%)(i) %i scf(%′i,%−i)(i) holds for all

2The preference represented by ui(j) = − | j−i | is in Ω̂ but not in Ω̂l since i indifferent

between i+ 1 and i− 1. Since any %∈ Ω̂ may have multiple most preferred houses, such

preferences are sometimes called single-plateaued.
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i,%′i and %.

3 The Crawler

The crawler C : Ω̂l → M is defined via a trading process that screens all

houses in order of their size. The smallest house whose current occupant,

say agent i, wants to either stay or move to a yet smaller house, leaves

the mechanism with his most preferred house as his match. All agents who

currently occupy houses that are at least as big as agent i’s choice and smaller

than the house vacated by agent i “crawl” to the next largest house. This

process is repeated until all agents are matched. To calculate C(%) for any

%∈ Ω̂l go to Step 1, initialized with N1 : = N , ν1 = id and let t = it for all

t ∈ N .

Step k:

Screening: If νk(it) �it νk(it+1) holds for some t, let t∗ be the minimal

such t. If not, let t∗ : =| Nk |. Let it∗ : = ik.

Matching: Let C(%)(ik) = νk(ir) be the %ik-best house among all re-

maining houses.

Crawling: For each agent it with r ≤ t < t∗ let νk+1(it) : = νk(it+1).

Updating: Let Nk+1 be the set of all unmatched agents. If Nk+1 = ∅
terminate. If not let νk+1(i) = νk(i) for each i ∈ Nk+1 for whom νk+1(i) is

not yet defined. Index all agents in Nk+1 with respect to νk+1, and go to

Step k + 1.

Exactly one agent, the agent it∗ = ik identified in Screening, is matched

at each step. The superscript k keeps track of the step k at which agent

ik is matched. While subscripts change with the current occupancy of the

unmatched houses at every step, any superscript remains fixed after it has

been assigned.

If agent ik gets matched with the house he currently occupies no agent

crawls from νk to νk+1. If not then all occupants of houses at least as large

as the match of agent ik and smaller than the house occupied by ik at the
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beginning of Step k crawl to the next largest unmatched house. Any crawling

agent i prefers his new house νk+1(i) to νk(i) the house he occupied at the

beginning of this step. Any temporary submatching νk respects the ordering

of houses in the sense that νk(i) < νk(j) holds for two unmatched agents i

and j if i < j. A combination of some (or even all) sub-steps would render

the definition of the crawler more concise. However, the detailed definition

can more easily be amended to cover infinitely many agents, indifferences

and obvious dominance. To see the crawler at work consider the following

example.

Example 1 Define a profile of preferences % with 6 %4 N , 3 %6 N , 5 %7 N ,

%2=%
[3]
2 so that agent agent 2 only prefers house 3 to his own, and where

all other agents want to move to the largest possible house, so 7 %i N for

i = 1, 3, 5. Figure 1 illustrates the crawling process. Each line represents

the 7 houses. The top labels denote the houses, the bottom labels denote

the current occupants. The boxes represent finalized matches.

In the first line each house is occupied by its initial owner. Screening all

houses starting with the smallest, Step 1 finds that agent 6 is the first owner

who wants to move to a smaller house. The solid arrow in the first line shows

that agent 6 would like to move to house 3. Agent 6 is boxed with house 3

in the next line, as they no longer participate in the crawling process. The

dashed arrows show how agents 3, 4, and 5 crawl to the next largest house.

Since agent 2 is picky about house 3 he becomes matched in Step 2, as shown

in line three. In Step 3 agent 7 is the first agent who would like to move

to a smaller house and the solid arrow represents the fact that agent 7 most

likes house 5. In line 5 agent 7 is boxed with house 5. The dashed arrows

represent agents 4 and 5’s, respective crawls to the next largest house. Since

none of the agents remaining unmatched after Step 3 would like to move to

a house smaller than the one they currently occupy the temporary matching

achieved in Step 3 is also the final matching.

Theorem 1 The crawler C : Ω̂l → M is a well-defined, efficient, strate-

gyproof, and individually rational mechanism.

Proof Fix a profile %∈ Ω̂l.
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Figure 1: The crawling process

At any Step k, Screening finds an agent it∗ : = ik. Since this agent ik is

the only agent matched at Step k and since ik is matched with an as of yet

unmatched house C(%) is a matching and the crawler is well-defined.

To see that C is efficient note that i1, the agent matched in Step 1, prefers

C(%)(i1) to all houses. Conditioning on the match between i1 and C(%)(i1)

the second matched agent i2 obtains his most preferred house out of the
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remainder. Proceeding inductively we see that ik prefers his match C(%)(ik)

to all houses that remain after all agents {i1, . . . , ik−1} have been matched,

and C is efficient.

To see that C is individually rational consider an arbitrary agent i. If i

stays unmatched at Step k we have νk+1(i) %i νk(i), if i does get matched at

Step k we have C(%)(i) %i νk(i). Using transitivity and ν1(i) = i we obtain

C(%)(i) %i i and C is individually rational.

Finally C is strategy proof since it can be implemented in obviously dom-

inant strategies as will be shown in Theorem 3. �

4 Gale’s top trading cycles

When there are at least 3 agents and 3 houses then the Crawler differs from

Gale’s top trading cycles. Gale’s top trading cycles G : Ω → M is defined

for any arbitrary domain Ω of linear preferences. The following algorithm

finds G(%) for any profile %∈ Ω. Initialize with N1 : = N and ν0 = ∅.

Step k:

Let each agent in Nk point to his most preferred house in Nk and let each

house point to its owner. At least one cycle forms. Match each agent in a

cycle with the house he is pointing to. Let νk+1 summarize all matches made

so far. If νk+1 is a matching let k = K and terminate with G(%) = νK . If

not let Nk+1 be the set of unmatched agents and go to Step k + 1.

Shapley and Scarf [15] and Roth [12] show that G is efficient, strate-

gyproof, and individually rational on any domain Ω of linear preferences.

Ma [10] shows that G is the unique such mechanism on Ωl the domain of

all linear preferences. To put the case of single-peaked preferences into relief

I slightly strengthen Ma’s [10] result to Theorem 2, which shows that the

uniqueness result applies to any domain Ω that allows for all picky prefer-

ences.
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Theorem 2 Fix an efficient, strategy proof, and individually rational mech-

anism M : Ω→M for a domain of linear preferences Ω. If j %i i for some

%i∈ Ωi and i, j implies %[j]
i ∈ Ωi, then M is Gale’s top trading cycles.

Ma’s [10] proof uses exactly one feature of the domain Ωl: if an agent

finds a house acceptable according to some preference, then he may be picky

about this house. Theorem 2 is consequently covered by Ma’s [10] proof. For

convenience I also state a proof here. Over the years Svensson [16], Anno

[1] and Sethuraman [14] gave substantially more concise uniqueness proofs.

My proof combines some of their simplifying ideas: Following Svensson [16]

I use induction over the set of cycles that form in trading process. Following

Sethuraman [14] I directly work with efficient, strategyproof and individually

rational mechanisms which allows me to avoid the detour to relate such

mechanisms to the core.

Proof Fix a profile %∗∈ Ω. Since Gale’s trading process starts with ν0 = ∅
and ends with G(%∗) = νK , the claim holds if νk−1 ⊂ M(%∗) implies νk ⊂
M(%∗) for all 0 < k ≤ K. So assume νk−1 ⊂ M(%∗) for some k ≤ K. Say

ρ : N ′ → N ′ is a cycle at Step k of G(%∗). For each i ∈ N ′ let %′i : =%[ρ(i)]
i , so

%′i is picky about ρ(i). Considering all D ⊂ N ′, use induction over | D \N ′ |
to see ρ ⊂M(%′D,%

∗
−D) for all D ⊂ N ′, in particular ρ ⊂M(%∗) for D = ∅.

At | D \ N ′ |= 0 (so D = N ′) the efficiency and individual rationality

of M implies ρ ⊂ M(%′D,%
∗
−D). Now assume ρ ⊂ M(%′D,%

∗
−D) for any

| N ′ \D |≤ m with D ⊂ N ′. Fix D ⊂ N ′ with | N ′ \D |= m + 1. For any

i ∈ N ′ \D, the inductive hypothesis and the definition of Gale’s top trading

cycles respectively imply ρ ⊂ M(%′D∪{i},%
∗
−(D∪{i})) and ρ(i) %i Nk−1. Since

M is strategyproof M(%′D,%
∗
−D)(i) must for any such i equal ρ(i). Since ρ is

a cycle and since M is individually rational, the definition of %′, then implies

M(%′D,%
∗
−D)(i) = ρ(i) for each i ∈ D and we have ρ ⊂M(%′D,%

∗
−D). �

As most picky preferences are excluded from the linear domain of single-

peaked preferences Ω̂l, there may be multiple efficient, strategy proof and

individually rational mechanisms M : Ω̂l →M. The next proposition shows

that this is indeed the case: the crawler differs from Gale’s top trading cycles.
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Proposition 1 If N ≥ 3 then the crawler C : Ω̂l →M differs from Gale’s

top trading cycles G : Ω̂l →M.

Proof Define %∈ Ω̂l such that the ideal houses of agents 1, 2, and 3 re-

spectively are 3, 1, and 1. If there are any agents i > 3 these agents are

endowed with their ideal house. To calculate C(%) note that Step 1 matches

agent 2 with house 1, whereas G(%)(1) = 3. �

The alignment of interests implied by restriction to single-peaked pref-

erences allows for a larger set of efficient, strategy proof and individually

rational mechanisms. Clearly the crawler and Gale’s top trading cycles are

not the only such mechanisms: The crawler has a dual mechanism that starts

screening with the largest house and then moves to the smaller ones. Mutatis

mutandis all of the arguments in the present paper also apply to this dual

mechanism.

5 Obvious Dominance

Some implementations of strategy proof mechanisms are easier to understand

than others. To make this intuitive idea precise, Li [9] defines “obvious dom-

inance” to distinguish strategies that are merely dominant from strategies

that can easily be recognized as such. Fix a strategy for an agent in some

extensive form game. This strategy is obviously dominant if, whenever the

agent gets to choose at a history that can be reached if the agent follows

the given strategy, the agent’s minimal payoff if he continues the strategy

given any possible follow-up choices of all other agents is at least as high

as the agent’s maximal payoff given any collective deviation starting at the

present history. Obvious dominance distinguishes between different exten-

sive forms that implement the same strategyproof social choice function.3 Li

[9] provides experimental evidence that agents indeed find obviously dom-

inant implementations of strategy proof mechanisms easier to understand

than alternative implementations that do not satisfy this criterion.

3Li’s [9] lead example to motivate obvious dominance shows that ascending clock auc-

tions implement second price auction in obviously dominant strategies whereas the corre-

sponding direct revelation mechanism does not.
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Li [9] shows that Gale’s top trading cycles with at least 3 agents cannot

be implemented in obviously dominant strategies. The crawler is simpler

to understand: there is an extensive form mechanism that implements the

crawler in obviously dominant strategies.

An extensive form mechanism M is an extensive game form where a

rooted tree represents the a set of histories H. A history is terminal if it

is not a subhistory of any other history. The set of all terminal histories is

Z. The set of possible actions after the nonterminal history h is A(h) : =

{a | (h, a) ∈ H}. The set of players is N . The player function P maps any

nonterminal history h ∈ H \ Z to a player P (h) ∈ N who gets to choose

from all actions A(h) at h.4 Each terminal history h ∈ Z is associated with a

matchingM. A behavior Bi for player i is a vector of actions that specifies

a choice a ∈ A(h) for each history h with P (h) = i. The path Path(B) or

a behavior profile B : = B1 × · · · × Bn is the set of all histories that are

reached if all agents follow B. So ∅ ∈ Path(B) and (h, a) ∈ Path(B) if

h ∈ Path(B) and BP (h)(h) = a. The outcome M(B) is associated with the

unique terminal history h ∈ Path(B). A strategy Si for player i maps each

%i∈ Ωi to a behavior Si(%i). A strategy profile S = S1 × · · · × Sn consists

in strategies for all agents.

A strategy Si is obviously dominant (Li [9]) for agent i if for every %i∈
Ωi, behavior profiles B and B′, and history h, with h ∈ Path(Si(%i), B−i),
h ∈ Path(B′), P (h) = i, Si(%i)(h) 6= B′i(h) we have

M(Si(%i), B−i)(i) %i M(B′)(i).

A social choice function (or direct revelation mechanism) scf : Ω → M is

implementable in obviously dominant strategies if there exists an extensive

form mechanism M and a profile of obviously dominant strategies S such

that M(S(%)) = scf(%) for all %∈ Ω.

Theorem 3 The crawler C : Ω̂l → M can be implemented in obviously

dominant strategies.

4Bade and Gonczarowski [6] show that simultaneous moves can be ignored without loss

of generality when considering extensive form mechanisms that implement an outcome in

obviously dominant strategies.
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Proof Define an extensive form mechanism where each history is labeled

(k, t) for some k, t. All histories (k, t) for a fixed k subdivide Step k of C

into separate choices for all agents it whose choices matter at this Step. At

the history (k, t) agent it chooses from the choice set A(k, t) : = {c, 1, · · · , t}
if t <| Nk | and A(k, | Nk |) : = {1, . . . , | Nk |}. If agent it chooses c go to

(k, t+1), if it chooses a number r ∈ {1, . . . , t}, let t = t∗ and follow Matching

(letting C(%)(it∗) = νk(ir)), Crawling, and Updating as in the definition of

C. At the end of Updating go to the history labeled (k + 1, 1) (as opposed

to so Step k + 1).

Consider the strategy profile S where agent it chooses c if νk(it+1) �it
νk(it) and chooses r ∈ {1, . . . , t} if νk(ir) is his most preferred unmatched

house at Step k. As long as νk(it+1) �it νk(it) holds agents choose c (for

continue) and we move from (k, t) to (k, t+ 1) and stay within Step k. Once

νk(it+1) �it νk(it) is not satisfied the other sub-steps of Step k are triggered

and agent it∗ is matched to his most preferred remaining house. Since agents

are asked in order of their index with respect to νk, each Step k finds the

smallest house whose owner does not want to move to a larger house and

the behavior S(%) in the histories (k, t) for a fixed k induces the choices

prescribed by Step k. In sum we obtain M(S(%)) = C(%) for each %∈ Ω̂l.

To see that S is obviously dominant fix an arbitrary (k, t). Say that j is

the %it-best house that remains unmatched at Step k. If j ≤ νk(it) then it
is matched with j if he follows Sit(%i). Since j is the %it-best unmatched

house agent it cannot be made strictly better off by any collective deviation

at (k, t) and the following histories. If j > νk(it) and if agent it follows

Sit(%i) then he obtains a house he weakly prefers to νk(it) - no matter the

behavior of all agents in the subsequent steps. However, if he deviates, he gets

immediately matched with a house j′ ≤ νk(it) which is by the assumption

on it’s preference no better than νk(it). Since (k, t) was chosen arbitrarily, S

is obviously dominant. �

The test whether a social choice function can be implemented in obviously

dominant strategies is tougher than the test whether it is strategy proof.

Theorem 3 therefore implies that the crawler C : Ω̂l →M is strategy proof,

completing the proof of Theorem 3.
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Li [9] has shown that Gale’s top trading cycle with at least 3 agents is not

implementable in obviously dominant strategies. Given Ma’s [10] uniqueness

result (Theorem 2) no efficient and individually rational mechanism for house

matching problems with more than 2 agents can be implemented in obviously

dominant strategies. Bade and Gonczarowski [6] study obvious dominance

in a variety of settings and come to the conclusion that only very few Pareto

optimal social choice functions can be implemented in obviously dominant

strategies. They show in particular that median voting with single-peaked

preferences is not implementable in obviously dominant strategies. Arribil-

laga, Masso and Neme [3] come to a similar conclusion on the dearth of

obviously strategyproof voting mechanisms.

Theorem 3 then simultaneously applies the domain restrictions of the im-

possibility results by Li [9] (housing market) and Bade and Gonczarowski

[6] as well as Arribillaga, Masso and Neme [3] (single peakedness) to obtain

a possibility result for the single-peaked housing markets. The crawler is

efficient and individually rational and can be implemented in obviously dom-

inant strategies. This possibility result differs in two dimensions from the

preceding impossibility results. It concerns a novel mechanism (the crawler)

as well as a novel domain of preferences (the single-peaked matching domain).

So one may now wonder whether the restriction on the domain is sufficient

for Gale’s top trading cycles to be implementable obviously dominant strate-

gies. In the appendix I give a negative answer. I show that G : Ω̂l → M
cannot be implemented in obviously dominant strategies if there are at least

4 agents.

6 Indifferences

While Gale’s top trading cycles mechanism is the unique efficient, strategy

proof, and individually rational mechanism for the linear domain Ωl, there

exist a plethora of different such mechanisms on the grand domain Ω that

permits indifferences. Jaramillo and Manjunath [8], Alcalde-Unzu and Molis

[2], Saban and Sethuraman, Aziz and De Keijzer [4], as well as Plaxton [11]

all describe and study such mechanisms.

With single-peaked preferences there are - of course - even more such

14



mechanisms, given that Ma’s [10] uniqueness result does not apply. The

circle crawler C∼ : Ω̂ → M adapts the crawler to the case of indifferences

and can be implemented in obviously dominant strategies.5

To define the circle crawler C∼(%) for each %∈ Ω̂ modify the crawling

process in the definition of C by starting each step with a new Matching∼

sub-step and by a slight modification of the original Matching sub-step to

Circling∼ keeping all else equal. The new Circling∼ sub-step shares with the

original Matching sub-step that agent it∗ moves to a weakly smaller house.

In Matching agent it∗ moves to his most preferred house. The Circling∼

sub-step addresses the problem that an agent may have multiple most pre-

ferred houses by letting it∗ move to the smallest among all his most preferred

houses. The second difference between Matching and Circling∼ is that agent

it∗ permanently moves to νk(ir) in Matching while this move is temporary

in Circling∼. Since the downward move of it∗ does not determine agent it∗ ’s

match a different rule is needed to govern matches in C∼. Agents are pe-

riodically matched using the first sub-step Matching∼. For convenience the

following definition repeats the sub-steps that are identical to the sub-steps

of step k in the crawler C.

Step k:

Matching∼: If νk = νk
′

for some k < k′ then let C∼(%)(ik
′′
) : = νk(ik

′′
)

for each each agent ik
′′

with k′ ≤ k′′ < k and go to Updating. If not go to

Screening.

Screening: If νk(it) �it νk(it+1) holds for some t, let t∗ be the minimal

such t. If not, let t∗ : =| Nk |. Let it∗ : = ik.

Circling∼: Let νk+1(ik) : = νk(ir) be the smallest %ik-best house among

all remaining houses.

Crawling: For each agent it with r ≤ t < t∗ let νk+1(it) : = νk(it+1).

5Ehlers’ [7] proof that there exists no efficient, group-strategyproof and individually

rational matching mechanism for the grand domain of all preferences directly transfers

to the case of the single-peaked domain Ω̂. However the question whether there exists

a non-bossy efficient, strategy proof and individually rational mechanism for Ω̂ remains

open.
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Updating: Let Nk+1 be the set of all unmatched agents. If Nk+1 = ∅
terminate. If not let νk+1(i) = νk(i) for each i ∈ Nk+1 for whom νk+1(i) is

not yet defined. Index all agents in Nk+1 with respect to νk+1, and go to

Step k + 1.

Matching∼ only calls for any matches to be made once agents come full

circle. If the new temporary endowment νk at some Step k coincides with a

preceding temporary endowment νk
′

at some Step k′ < k, then Matching∼

matches each agent who assumed the role of it∗ at one of the intermediate

steps, so each ik
′′

with k′ ≤ k′′ < k, with the house ν ′(ik
′′
) he currently

occupies. Example 2 illustrates how delaying the matching of some agents

with multiple most preferred houses facilitates Pareto improvements.

Example 2 Let N = {1, 2, 3} and let %1, %2, and %3 respectively top rank

the sets {1, 2, 3}, {1, 2}, and {1}. In the unique Pareto optimum at %, agents

1 and 3 swap houses, while 2 keeps his endowment. In Step 1 of C∼(%) agent

2 : = i1 is the first agent who strictly prefers the house he currently occupies

(house 2) to the next largest remaining house (house 3). So Circling∼ and

Crawling yield ν2(1) = 2 and ν2(2) = 1. If we were to immediately match

agent 2 = i1 with house 1, we would obtain an inefficient matching. However

following the definition of C∼ no agent is matched at Step 1. At Step 2,

agent 3 is i2 and the temporary matching ν3 has ν3(3) = 1, ν3(2) = 2, and

ν3(1) = 3. At Step 3, agent 3 is once again the first agent who does not

strictly prefer the next largest house and we obtain ν4(3) = 1, ν4(2) = 2,

and ν4(1) = 1. Since ν4 = ν3 agent 3 = i3 is matched with ν4(3) = 1 at

Step 3. Agents 2 and 1 are then respectively matched with houses 2 and 3

at Steps 5 and 6.

To see that the circle crawler C∼ reduces to the standard crawler C on

the domain Ω̂l fix any %∈ Ω̂l. At the first step the first clause of Matching∼

cannot be satisfied, so the algorithm of C∼ must continue with Screening.

Since the Screening sub-step of C and C∼ is identical, the same agent i1 : =

it∗ is identified by both algorithms. While this agent under the algorithm

for C is immediately matched with his most preferred house j : = ν1(ir),

the same agent temporarily moves into this house, so we have j = ν2(i1).
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If r = t∗, then the preceding condition means that agent it∗ = i1 stays put

and we have ν1 = ν2 and agent it∗ gets matched at Step 2. If not then Step

2 again identifies the same agent i : = i2 in Screening. Since i, due to the

preceding move, now occupies his most preferred house agent i stays put in

this Step 2 and we have ν2 = ν3 so that i is matched with the same house j

in Step 3. (This is indeed how agent 3 = i3 is matched at Step 4 in Example

2.) Proceeding inductively we see that C∼(%) = C(%) holds for any %∈ Ω̂.6

Theorem 4 The circle crawler C∼ : Ω̂ → M is an efficient, strategyproof

and individually rational matching mechanism that can be implemented in

obviously dominant strategies.

Proof Fix a profile %∈ Ω̂.

Since any Step k either matches no one or bijectively matches a set of

agents with a set of houses, the modified crawling process at % yields a

submatching ν : N ′ → ν(N ′) for some subset N ′ ⊂ N . Suppose ν was not

a matching so N \ N ′ 6= ∅. Since N \ N ′ is finite, there are only finitely

many submatchings mapping N \ N ′ to N \ ν(N ′). Therefore there exists

some Steps k < k′ such that νk = νk
′
. By the definition of the crawling

process any ik
′′ ∈ N \ N ′ with k ≤ k′′ < k′ must be matched at Step k′ - a

contradiction.

The proof that C is individually rational (see Theorem 1) applies un-

changed to the case of C∼.

To see that C∼(%) is efficient it suffices to show that each agent i matched

at Step k weakly prefers his match to any unmatched house at Step k and

strictly prefers his match to any house that remains unmatched after that

step. For i to be matched at Step k, νk = νk
′

must hold for some k′ ≤ k and

i must equal ik
′′

for some k′ ≤ k′′ < k.

At Step k′′ agent ik
′′

is temporarily matched with one of his most preferred

houses out of νk(Nk) = νk
′′
(Nk′′). Since νs+1(j) %j νs(j) holds for all Steps

s and any unmatched agent j, transitivity implies C∼(%)(ik
′′
) = νk(ik

′′
) %ik′′

6It should be noted though that the superscript k of agent ik does not denote the step

at which an agent is matched by C∼(%).
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νk(j) for any j ∈ Nk. So i weakly prefers his match C∼(%)(i) to all houses

ν(Nk) remaining at Step k.

Now fix any house j ∈ νk(Nk) that agent ik
′′

ranks at the top of all houses

remaining at Step k, so j %ik′′ ν
k(Nk). Since preferences are single-peaked,

since any agent who moves to a larger house at some step moves to the next

largest house, and since νk
′
(ik
′′
) = νk(ik

′′
), there must exist some Step s with

k′ < s ≤ k with νs(ik
′′
) = j. Since j is not continuously owned by the same

agent on the path from k′ to k, the agent i′ with νk(i′) : = j moves houses on

the path from k′ to k. So i′ = ik̃ for some k′ ≤ k̃ < k and i′ is matched with

νk(i′) = j at Step k. Since j was chosen arbitrarily, agent i strictly prefers

his match to all houses that remain in the mechanism after he gets matched.

The implementation of C∼ in obviously dominant strategies closely fol-

lows the path laid out in the proof that the crawler C can be implemented

in obviously dominant strategies (Theorem 3): modify the crawling process

defining C∼ such that each Step k is further subdivided into nodes (k, t) as

defined in the proof of Theorem 3 (along with the modified conditions to start

and continue the crawling process). The strategy S prescribes the choice c

if the agent choosing at (k, t) (weakly) prefers the next largest house to his

current house and prescribes to circle to the smallest most preferred house if

not, is - by the same arguments as the ones given in the proof of Theorem 3

- also obviously dominant in this modified extensive form game. �

7 Shift Exchange Problems

Shift exchange problems as defined by Bade [5] differ only in one respect from

housing markets: the designer has to start matching agents and objects before

the full extent of the problem becomes known. There is an endless stream of

agents and objects. However these agents have finite life spans and the match

of any given agent may only depend on the preferences known during his life

span. To allow for such perpetual problems the sets of agents and objects

are both modelled as the set of natural numbers N. As a reminder of this

new assumption the objects are called shifts and time is the ordering with

respect to which all agents’ preferences are single-peaked. Each agent only
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finds shifts within a some finite time window acceptable. Each preference %i
in the domain Ω̂T

i is a linear and single-peaked order, where any shift before

i − T and after i + T is %i-unacceptable. Just as in the case of housing

markets the identity function id is the initial endowment, and each agent i is

initially endowed with shift i = id(i). A matching µ : N→ N is a one-to-one

and onto function: so each agent works a shift and each shift is taken by

someone. The definitions of mechanisms, efficiency, individual rationality,

strategyproofness, and obvious dominance transfer verbatim from Sections 2

and 5.

A mechanism M : Ω̂T → M is practicable if there exists some K ∈ N
such that for each i it suffices to know the first i + K preferences to match

agent i. In generic shift exchange problems, efficiency and individual ratio-

nality conflict with practicability: Assuming T ≥ 2, and fixing an arbitrarily

large number K, Bade [5] shows that no efficient and individual rational

mechanism M : ΩT → M - strategy proof or not - only uses the first K

preferences to match at least one agent. For any such mechanism we must at

some profile % elicit more than K preferences to match even a single agent.

The single-peaked domain differs sharply: a practicable variant of the

crawler can be applied to shift exchange problems. This variant is moreover

not just efficient and individually rational but also strategyproof. It can

even be implemented in obviously dominant strategies. The infinite crawler

C∞ : ΩT → M extends the definition of the crawler C to shift exchange

problems. The crawling process used to define C∞ is identical to the crawling

process used to define the crawler C, except that Screening in each step k is

replaced by Screening∞ as follows.

Screening∞: If νk(it) �it νk(it+1) holds for some it ≤ vk(i1) + T , let t∗ be

the minimal such t and go to Matching. If not, let t∗ : = 1, C∞(%)(i1) : =

νk(i1) and go to Updating. In either case let it∗ : = ik.

The trading process that defines the standard crawler C does not map all

shift exchange problems to matchings. If all agents want to work later, then

no agent t∗ is found via the original Screening sub-step. Screening∞, in con-

trast, only screens finitely many agents. Once it is clear that all unmatched

agents in the set {i1, . . . , νk(i1) + T} want to work later, the second clause
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of Screening∞ calls for the current owner of the earliest unmatched shift to

be matched with that shift. In this case the owner of νk(i1) as well as each

other agent i who may possibly find νk(i1) acceptable (so each i ≤ νk(i1)+T )

wants to work later and there is no individually rational matching where i1
works later than νk(i1). Recognizing this inevitability, the second clause of

Screening∞ then matches i1 with νk(i1).
7

The infinite crawler C∞, just like the original crawler, matches exactly

one agent per step: ik is the agent matched at Step k. Say that an agent j

enters the trading process with the first step where some agent j′ ≥ j gets

matched, so j enters at Step k∗ where k∗ is the minimal k with ik ≥ j. If

agent j enters at Step k, then νk
′
(i) = i holds for all k′ ≤ k, i ≥ j: no agent

i ≥ j moves shift at any Step k′ before k. Since the trading process matches

infinitely many agents, there is for each agent a unique step at which he

enters. Reconsider Example 1, assuming that the example only shows the

preferences of the first 7 agents over the first 7 shifts. Then agents 1, 2, ..., 6

all enter at Step 1 when agent 6 is the first agent who wants to work an earlier

shift. The next step matches agent 2 with shift 2. No new agent enters at this

step. All choices in the trading process up to Step k are based on preferences

of agents that entered so far. Conversely if no agent i > j entered the trading

process of C∞(%) until Step k, then C∞(%{1,...,j},%′{j+1,... }) follows the exact

same trading process up to Step k.

The infinite crawler C∞ embeds the standard crawler C for n agents as

follows: fix any%∈ Ω̂l the set of all preference profiles of n agents over equally

many objects. Define %′∈ Ω̂n such that % is the restriction of %′ to the first

n agents and objects and such that any i > n only finds his own endowment

acceptable. Then we have C(%)(i) = C∞(%′)(i) for each i ∈ {1, . . . , n}.
Conversely if there exists some j ∈ N such that each agent i > j only finds

his own object acceptable according to %∈ Ω̂T , then C∞(%)(i) = C(%)(i)

holds for each i ≤ j where % is the restriction of % to the agents and shifts

7To obtain a more concise definition, one could disregard the condition that Nk+1 = ∅
in Updating, since it is not possible to match all agents in finitely many steps. One could

replace Updating with Updating∞: Let νk+1(i) = νk(i) for each i ∈ Nk+1 : = Nk \ Nk

for whom νk+1(i) is not yet defined. Index all agents in Nk+1 with respect to νk+1, and

go to Step k + 1.
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{1, . . . , j}

Theorem 5 The infinite crawler C∞ : Ω̂T →M is a well defined, efficient,

individually rational, and practicable mechanism that can be implemented in

obviously dominant strategies.

Proof Fix an arbitrary profile %∈ Ω̂T . To see that each agent must get

matched by the trading process suppose not and say that i∗ is the minimal

agent who does not get matched. Consider a Step k∗ at which all agents

i < i∗ have been matched. By the definition of the crawling process the

smallest unmatched agent at some step must own the earliest unmatched

shift at that step, so i∗ = i1 holds at any Step k later than k∗. For i∗ to

remain unmatched, any Step k > k∗ must (by Screening∞) match some agent

i ≤ νk(i1) + T . Since %∈ Ω̂T and since i1 only crawls at some Step k if he

prefers νk(i1) to his preceding temporary match, we have νk(i1) ≤ i1 +T . In

sum we obtain that any Step k > k∗ matches an agent i ≤ i1 + 2T = i∗+ 2T .

Since there are only finitely many agents i ≤ i∗+ 2T there must come a step

where no agent is matched - a contradiction.

The proof that C is individually rational (see Theorem 1) applies un-

changed to the case of C∞.

To see that C∞ is practicable, I fix an arbitrary i,%,%′ and show that

C∞(%)(i) = C∞(%{1,...,i+2T},%′{i+2T+1,... })(i) holds for this i,%,%′. Say that

agent i is matched at Step k of the trading process C∞(%). As long as

i remains unmatched in any trading process, an agent j can only enter the

trading process if j ≤ νk(i1)+T ≤ νk(i)+T ≤ i+2T . So no agent j > i+2T

enters the trading process of C∞(%) before i gets matched. So according to

% is identical to (%{1,...,i+2T},%′{i+2T+1,... }) the preferences of all agents who

entered by Step k are identical. Since all matches made up to Step k may

only depend on the preferences of the agents who entered so far and since i is

matched at Step k, we obtain C∞(%)(i) = C∞(%{1,...,i+2T},%′{i+2T+1,... })(i).

To see that C∞(%) is efficient note that the agent ik matched at Step k

obtains his most preferred shift conditioning on all preceding matches if ik is
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selected via the first clause of Screening∞. If not then any individually ratio-

nal matching µ that is consistent with the matches achieved in all preceding

steps has µ(ik) = νk(ik). In either case agent ik is matched with his most

preferred shift among all remaining shifts that he could be matched with in

some individually rational matching. So C∞(%) is efficient.

To see that C∞ can be implemented in obviously dominant strategies

consider the extensive form mechanism C ′ that that subdivides each Step k

of C∞ into separate choices (k, t) for all agents who move during this step.

Each history of this extensive form mechanism is labelled with a tuple (k, t)

where k corresponds to the Step k of C∞ and t is the index of the agent

it who chooses at the current the history (k, t). The choice set at (k, t) is

A(k, t) : = {c, 1, · · · , t}. If agent it chooses c and if it+1 ≤ νk(11) + T go to

(k, t+1). If agent it chooses c and if it+1 > νk(11)+T follow the second clause

of Screening∞ and go to the history labelled (k+1, 1). If it chooses a number

r ∈ {1, . . . , t}, let t = t∗ and follow Matching, Crawling, and Updating as

in the definition of C∞. At the end of Updating go to the history labelled

(k + 1, 1) (as opposed to so Step k + 1). The proof that this extensive form

mechanism indeed implements C∞ tightly follows the arguments proof of

Theorem 3 and is therefore omitted. �

Theorem 5 sharply contrasts with the non-existence result for the generic

shift exchange problems. Efficient and individually rational mechanisms for

the generic domain may not even be able to match a single agent using finitely

many preferences. The infinite crawler is, however, efficient, individually

rational and also practicable: for every single agent i it suffices to elicit

the first i + 2T preferences to match i. The infinite crawler is moreover

implementable in obviously dominant strategies.

Combing all preceding results one can prove a yet stronger claim that

applies to shift exchange problems with single-peaked preferences that allow

for indifferences. Replacing Screening with Screening∞ in the circle crawler

C∼ one obtains the infinite circle crawler which has all the desirable prop-

erties of the other crawlers defined in this paper. The infinite circle crawler

is a practicable, efficient, and individually rational matching mechanism for

shift exchange problems with single-peaked preferences (with indifferences)
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that can be implemented in obviously dominant strategies. The proof of this

result is omitted since it tightly follows the proofs for Theorems 1, 3, 4, and

7.

8 Conclusion

The crawler is a new efficient, strategyproof and individually rational match-

ing mechanism on the domain of single-peaked preferences. On this domain

it has two main advantages over Gale’s top trading cycles. It can be imple-

mented in obviously dominant strategies following Li [9]. It also can be used

for shift exchange problems following Bade [5] where some agents have to be

matched before all preferences can be elicited.

While I have shown that the crawler is implementable in obviously dom-

inant strategies, I have not provided a characterization of all efficient and

individually rational mechanisms for the domain of single-peaked preferences

Ω̂l that are implementable in obviously dominant strategies. Clearly the dual

crawler that starts the screening process with the largest house is also im-

plementable in obviously dominant strategies. When there are only 3 agents

then even Gale’s top trading cylces is implementable in obviously dominant

strategies. I conjecture that any social choice function on the matching do-

main with single-peaked preferences that is implementable in obviously dom-

inant strategies is a combination of these three mechanisms.

Many of the studies on adapting Gale’s top trading cycles to the case

of indifferences focus on computational complexity. In this vein one might

consider the set of matching problems Ω̂l as n grows large. How hard is it

to calculate the outcome C∼(%) as n grows large? Even abstracting away

from indifferences one could compare the calculation of G and C in terms of

computational complexity.

Alternatively one could investigate how the crawler fares under the as-

sumption that agents need to endogenously acquire information about the

objects to figure out which one would be best for them. Comparing the

crawler and Gale’s top trading cycles it appears at a first glance as if the

crawler requires less information about the agents preferences than Gale’s

top trading cycles. In Gale’s top trading cycles all agents have to imme-
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diately declare which is their most preferred house. Conversely the agents

occupying larger houses initially only observe how the set of available houses

dwindles. Once it is their turn to enter they only need to consider a restricted

set of options. The crawler may therefore yield better results than Gale’s top

trading cycles if agents can only devote limited resources to learning their

preferences.

Finally in the context of shift exchange problems it would be interesting to

see whether any efficient, individually rational, and strategyproof mechanism

eventually coincides with the infinite crawler C∞. It is clearly also efficient,

strategy proof and individually rational to use Gale’s top trading cycles for

a first batch of agents to then proceed with the rules for C∞. However it is

not clear how to continue an ongoing matching problem with single-peaked

preferences in a efficient, individually rational and strategy proof way that

differs from the the rules of C∞.

9 Appendix

In Section 5 I claimed that Gale’s top trading cycles is also on Ω̂l, the domain

of linear single-peaked preferences not implementable in obviously dominant

strategies.8 The upcoming proof of this claim crucially relies on Bade and

Gonczarowski’s [6] gradual revelation principle. In their Theorem 1 Bade and

Gonczarowsi [6] show that a social choice function is implementable in obvi-

ously dominant strategies if and only if it is implementable by an obviously

incentive compatible gradual revelation mechanism. A gradual revelation

mechanism is an extensive form mechanism where each action corresponds

to a set of preferences. There are no simultaneous moves, singleton choice

sets, or directly consecutive moves for the same agent. An agent’s strategy is

truthful if he, wherever possible, chooses an action that corresponds to the

set of preferences containing his true preference.

Formally, the player function maps each non-terminal history h to a

single player P (h) who chooses from A(h) with | A(h) |> 1. Moreover

P (h) 6= P (h, a) for any a ∈ A(h). Each history h is associated with a set of

8Li [9] already showed that Gale’s top trading cycles on the domain Ωl is not imple-

mentable in obviously dominant strategies.
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preferences Ωi(h) ⊂ Ωi, with Ω(h) : = Ω1(h)× · · · × Ωn(h). The mechanism

starts with Ω(∅) = Ω. If P (h) = i, then {Ωi(h, a)}a∈A(h) partitions Ωi(h), if

not then Ωi(h) = Ωi(h, a) holds for each a ∈ A(h). A strategy Si in a gradual

revelation mechanism is truthful if at each history h agent i : = P (h) with

preference %i∈ Ωi(h) chooses the action a ∈ A(h) with %i∈ Ωi(h, a).9 If all

agents follow the truthful strategy then Ω(h) describes everything that the

agents revealed about their preferences up to history h. Finally the gradual

revelation mechanism M is obviously incentive compatible if truthtelling is

obviously dominant for each agent.

Theorem 6 Let there be at least 4 agents. Then Gale’s top trading cycles

G : Ω̂l →M cannot be implemented in obviously dominant strategies.

Proof Suppose M was an obviously incentive compatible mechanism that

implements G for N = {1, . . . , 4}. Let Ω∗ be the set of all preference profiles

for which agents 1 and 2 want to move to larger houses while agents 3 and 4

want to move to smaller houses. So Ω∗i : = {%i∈ Ω̂l | j %i H implies j > i}
for i = 1, 2 and Ω∗i : = {%i∈ Ω̂l | j %i H implies j < i} for i = 3, 4.

Claim (*) For any history h with Ω∗ ⊂ Ω(h), there exists an action

a ∈ A(h) such that Ω∗ ⊂ Ω(h, a): fixing any history on the path of the

truthtelling strategy for any %∈ Ω∗, where no agent has revealed more than

the direction in which he wants to move, the agent moving at the present

history will not reveal any more than the direction in which he wants to

move.

To see claim (*) fix a history h with Ω∗ ⊂ Ω(h), say that i = P (h) ∈ {1, 2}
and let j be the other agent in {1, 2}. Suppose there existed two actions

a, a′ ∈ A(h) with%i∈ Ωi(h, a) and%′i∈ Ωi(h, a
′) for some for some%i,%′i∈ Ω∗i

with i + 1 %i {1, 2, 3, 4}. For %∈ Ω∗ with 4 %j {1, 2, 3, 4}, j %3 {1, 2, 3, 4},
and 3 %4 {1, 2, 3, 4} we haveG(%)(i) = i. On the other hand, G(%′)(i) = i+1

holds for %′∈ Ω∗ with j+ 1 %′j {1, 2, 3, 4} and 1 %′3 {1, 2, 3, 4}. Since %i∈ Ω∗i
and i ∈ {1, 2}, G(%′) = i + 1 is strictly %i-preferred to G(%)(i) = i, and

9This definition does not determine the agents choice at a history h with %i /∈ Ωi(h) and

an agent may have multiple different truthful strategies. Since such “off the path”-choices

are irrelevant for the present analysis and I speak of “the” truthful strategy.
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the action a is not an obviously dominant choice for agent i with preference

%i at h. There must be an action a ∈ A(h) with Ω∗i ⊂ Ωi(h, a). Since

Ωi′(h, a) = Ωi′(h) holds for all i′ 6= P (h) we obtain Ω∗ ⊂ Ω(h, a). Claim (*)

then holds since the same arguments apply mutatis mutandis to the case of

P (h) ∈ {3, 4}.

Now fix any %∗∈ Ω∗. Since no agent has revealed anything before the

game starts we trivially have Ω∗ ⊂ Ω̂l = Ω(∅). Since %∗∈ Ω∗ the inductive

application of claim (*) to all agents choices yields that Ω∗ ⊂ Ω(h) holds

for each history h with %∈ Ω(h). We in particular have for h∗, the unique

terminal history of on the path of the truhtelling behavior associated with

%∗ that Ω∗ ⊂ Ω(h∗), and no agent reveals more than the direction he would

like to move in. But G is not constant on Ω∗: we for example have that G(%
) 6= G(%′) holds for the two profiles %,%′∈ Ω∗ constructed in the preceding

paragraph. So the terminal history h∗ cannot be mapped to a unique outcome

- a contradiction. �
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