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Abstract

Consider a matching problem where agents and objects arrive over

time. Assume matchmaking has to start before all agents’ preferences

become known: the decision on who works which shift in the current

month cannot be based on the preferences of agents who are set to

work next year. To capture this ongoing nature I model the sets of

agents and shifts as countably infinite. Each each agent must work

within a finite time window around the shift he was endowed with.

Shift exchange problems are ongoing versions of housing markets as

defined by Shapley and Scarf [9] and much of the theory for hous-

ing markets transfers. However any Pareto optimal, strategy proof

and individually rational mechanism must elicit infinitely many pref-

erences to match any finite subset of agents. To overcome this flaw I

suggest two alternative individually rational mechanisms with reason-

ably weakened welfare and incentive properties.

1 Introduction

A shift exchange problem starts with a schedule that sets each agent to

work exactly one shift. These initial endowments may be inconvenient for
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the workers and there may be room for Pareto improving rearrangements of

work schedules. To reassign shifts in the immediate future we cannot wait

to learn the preferences of agents who are set to work in the distant future.

The decision which shift an agent works may only depend on the preferences

that are known at the time of this decision.

For a typical shift exchange problem, think of the Park Slope Food Coop

in Brooklyn. The Park Slope Food Coop is a large supermarket run by its

more than 16,500 members each of whom works once every four weeks in

exchange for a 20− 40% savings on groceries. Often a member is assigned a

shift that is inconvenient - or even impossible - to work for that member. Such

members may swap shifts.1 Exchange problems with unlimited sets of agents

and objects abound: Flight attendants and bus drivers are given schedules

that may not always suit them. MRI appointments and time slots to use large

scale telescopes may require rearrangements. The kidney matching problem

is another case in point: The pool of patients with willing and incompatible

donors is constantly changing.

Shift exchange problems are similar to housing markets as defined by

Shapley and Scarf [9]: In both types of problems each agent is endowed with

exactly one object. Any agent’s preference over matchings only depends on

the object he is matched with. The crucial difference is that it is not possible

to simultaneously elicit all agents preferences in a shift exchange problem.

To capture the ongoing nature of shift exchange problems I model the set of

agents and their shifts as the set of natural numbers N. Initially each agent

i ∈ N is endowed with shift i, which must be worked on date i. There is

a fixed number T , so that any agent i has to work during the time window

{i− T, . . . , i, . . . i+ T}.
How should we organize shift exchanges? A good mechanism should be

Pareto optimal so that it never maps any profile of preferences to an outcome

for which there exists an alternative matching µ strictly preferred by some

agents and weakly by all. It should be individually rational in the sense

1In practice the Parks Slope Food Coop until recently used a black-board for members

to organize shifts swaps on an ad hoc basis. I thank Guillaume Haeringer - a matching

theorist and Park Slope Food Coop member - for introducing me to the shift swapping

problem of the Park Slope Food Coop.
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that no agent strictly prefers his endowment to his match. Finally no agent

should have an incentive to misrepresent his preference.

Exactly one mechanism satisfies these three criteria on the domain of

housing problems: Shapley and Scarf [9], Roth [8], and Ma [7] showed that

a mechanism is Pareto optimal, strategy proof, and individually rational if

and only if it is Gale’s top trading cycles mechanism. In Gale’s top trading

cycles each agent points to the owner of his most preferred house. All agents

in cycles are matched with the house they point to. The pointing is then

repeated with all remaining agents and houses. The process terminates once

a matching is found.

Since shift exchange problems embed housing markets, any result on

Pareto optimal, strategyproof and individually rational mechanisms for shift

exchange problems must extend the above result for housing markets. This

extension is, however, not straightforward as the application of Gale’s trad-

ing cycles process to shift exchange problems does not define a mechanism.

To see this consider a profile where each each agent prefers to work later than

the shift he was originally assigned to. There is not a single trading cycle

and no agent is matched via Gale’s trading process.

Theorem 1 shows that Gale’s top trading cycles process is also on the

domain of shift exchange problems strongly linked with Pareto optimality,

strategy proofness, and individual rationality. Any mechanism M that uses

Gale’s trading process whenever possible satisfies some intermediate welfare

and incentive properties: if for some profile of preferences the outcome of

such a mechanism M is Pareto dominated, then the dominating matching

and the outcome of M must coincide for all agents matched via Gale’s trading

process. If an agent in a shift exchange problem is matched via Gale’s trad-

ing process, then he cannot improve his shift by misstating his preferences.

Conversely, any good mechanism for a shift exchange problem must sequen-

tially match top trading cycles whenever possible. Theorem 2 uses Theorem

1 to characterize all good mechanisms, for the case that agents never find it

acceptable to anticipate or postpone their shift by more than a day.

There is no bound on the set of preferences that must be elicited for a

good mechanism to start matching agents. Theorem 3 shows that for any

number K and any good mechanism there is a profile of preferences, such

3



that more than K preferences have to be elicited to match at least one of

the first K agents. When it is acceptable anticipate or postpone shifts by

more than a day, this problem becomes more severe. In that case there is

not even a Pareto optimal and individually rational mechanism that always

determines at least one match in finite time. To show this I construct a profile

with a unique Pareto optimal and individually rational matching µ∗, where

each odd agent works two days later, agent 2 works shift 1 and all other even

agents work two days earlier. To obtain this matching µ∗ all agents have

to engage in an infinite chain swap: if each agent points to the agent whose

shift he obtains according to µ∗, the resulting pointing chain links any two

agents. Since this chain swap fails if a single agent finds only his own shift

acceptable, the mechanism has to elicit all preferences to match even a single

agent i with µ∗(i). These results do not depend on there being countably

many shifts and agents, they also apply to house matching markets where

agents only find houses within (short) windows around their endowments

acceptable.

Given that good mechanisms cannot guarantee to make any matching

decisions in finite time, we need to find mechanisms that satisfy reasonably

weakened incentive and welfare properties. Taking Gale’s top trading pro-

cess as my starting point Section 7 proposes the closed and open intervals

mechanism as two such compromises. Either mechanism partitions all agents

into intervals of equal length. The closed intervals mechanism then applies

Gale’s top trading cycles to each of these “closed” intervals. This mechanism

is - just like Gale’s top trading cycles - strategyproof and individually ratio-

nal. It may, however, fail to reach the Pareto frontier: If we only allow shift

exchanges within the same calendar month of the Park Slope Food Coop’s

problem, we rule out some potentially Pareto improving swaps. Two mem-

bers who are set of work on January 30th and February 2nd and most like

each other’s shifts cannot trade.

The open intervals mechanism does not rule out any potentially individ-

ually rational swaps. The open intervals mechanism starts out like the closed

intervals mechanism: In a first round it applies Gale’s trading process to the

first interval of agents (and their shifts) to obtain preliminary matches. While

the closed intervals mechanism immediately finalizes all these matches, the
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open one only finalizes matches of the agents or shifts whose trading window

does not reach into the next interval. The agents whose matches are not yet

finalized move on to the next round with their preliminary matches as their

new endowments. The next round (and any following round) applies Gale’s

top trading cycles to the agents in the next interval and to the agents whose

matches where not finalized in the preceding round.

Proposition 1 shows that the open intervals mechanism outperforms the

the closed one in terms of efficiency. Theorem 4 shows that the open intervals

mechanism finds Pareto optima in a restricted class of possible matchings

and that truhtelling is a dominant strategy for a large portion of all agents.

Corollary 1 shows that the open intervals mechanism is Pareto optimal in a

very strong sense when each agent’s trading window is very short. Assuming

that an agent only misrepresents his preferences if he strictly benefits from

such a misrepresentation, the open intervals mechanism maps any profile

of announced preferences to a matching that is Pareto optimal at the true

underlying preferences. An Appendix contains all proofs that do not appear

in the main text.

Shift exchange problems fit into a growing literature on dynamic match-

ing problems with infinite streams of agents that cannot wait infinitely long

to get matched. Similarly to the matching markets studied in Unver [11],

Akbarpour, Li, and Oveis Gharan [1], Anderson, Ashlagi, Gamarnik, and

Kanoria [2] shift exchange problems are unilateral matching problems where

each agent is initially endowed with exactly one object. The cited papers

make two assumptions on preferences that sharply differ from the present

assumptions: Unver [11], Akbarpour, Li, and Oveis Gharan [1], Anderson,

Ashlagi, Gamarnik, and Kanoria [2] all assume dichotomous preferences that

are objectively certifiable. The models of Unver [11], Akbarpour, Li, and

Oveis Gharan [1], Anderson, Ashlagi, Gamarnik, and Kanoria [2] are all mo-

tivated by the kidney exchange problem where we can reasonably assume

that agents are indifferent between all compatible kidneys and that compat-

ibility is objective. Conversely it would be a stretch to assume that agents

are indifferent between all shifts they prefer to their endowment. Preferences

over shifts are moreover subjective.

The assumption of objective dichotomous preferences has two main ben-
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efits: Unver [11], Akbarpour, Li, and Oveis Gharan [1], Anderson, Ashlagi,

Gamarnik, and Kanoria [2] can, on the one hand, safely ignore the incentives

for the truthful revelation of preferences. The size of the set of all agents

not matched with their endowment is, on the other hand, a straightforward

measure of welfare. Unver [11], Akbarpour, Li, and Oveis Gharan [1], An-

derson, Ashlagi, Gamarnik, and Kanoria [2] all focus the trade off between

two measures of welfare: the size of the set of matched agents and the time

agents spend waiting to get matched. To evaluate this trade-off Unver [11],

Akbarpour, Li, and Oveis Gharan [1], Anderson, Ashlagi, Gamarnik, and

Kanoria [2] assume explicit random processes that govern the arrival and/or

departure of agents and compatibilities.

Leshno [6] and Bloch and Cantala [5] both study unilateral matching mar-

kets without initial endowment, such as market for social housing. Motivated

by adoption Baccara, Lee, and Yariv [3] study a bilateral matching market in

which prospective parents and children of two possible types stochastically

enter the adoption pool. Leshno [6], Bloch and Cantala [5], and Baccara,

Lee, and Yariv [3] share the assumption of dichotomous preferences with the

papers cited above. Without endowments, though, there is the danger of

mismatches. There is a tradeoff between immediately getting an object of

the less preferred type and waiting for the more preferred type. The present

paper shares the concern with incentives with Leshno [6], Bloch and Cantala

[5], and Baccara, Lee, and Yariv [3]. However, whether or not agents have

initial endowments is crucial: the results in Leshno [6], Bloch and Cantala

[5], and Baccara, Lee, and Yariv [3] all focus on different ways to organize

waiting lists for objects.

I am aware of two papers on dynamic matching that do not model pref-

erences as dichotomous: Bloch and Cantala [5] and Schummer [10]. Both

consider unilateral matching problems without initial endowments. Since al-

lowing for all linear orders on objects greatly complicates any analysis of a

dynamic matching problem, both Bloch and Cantala [5] as well as Schummer

[10] starkly simplify other aspects of the matching problem. Bloch and Can-

tala’s [5] section on general linear orders only considers the shortest possible

waiting lists. Conversely Schummer [10] assumes that all agents have the

same preferences over objects.
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2 Definitions

There are countably many agents and shifts both modelled as N. Initially

agent i owns shift i which must be worked on day i. Agent i’s preference

�i over shifts is a linear order2 on N. Agent i finds shift j acceptable if

j %i i (implying that each agent finds his own shift acceptable). There exists

some fixed number T such that agent i never finds working more than T days

before or after his own shift acceptable, | j − i |> T implies i �i j for all

i, j ∈ N.

The notation �i: j, k, i means that j and k respectively are the �i-best

and second best shifts and that no shift j′ /∈ {i, j, k} is �i-acceptable. The

preference �i: i where agent i only finds his own shift acceptable is denoted

�e
i . The preference �i is a restriction of �i if �i is defined on some subset

S ⊂ N such that j%ik implies j %i k for all j, k ∈ S. The set S to which �i

is restricted to will always be clear from the context, the notation �i does

therefore not keep track of this set. A profile of preferences �= (�i)i∈N sums

up all agents preferences. The preferences of a subset S ⊂ N of agents are

denoted �S. The domain of agent i’s preferences is ΩT
i . The domain of all

preferences is ΩT : = ×i∈NΩT
i . An economy is defined by the profile �∈ ΩT

of all agents preferences over all shifts.

To illustrate shift exchange problems I throughout represent agents and

shifts as dots on a horizontal line. If a solid arrow points from i to j then

agent i would most like to work the shift j. Dotted arrows stand in for

second most preferred shifts. Figure 1 represents the preferences of the first

five agents in the profile � with �1: 2, 1, �2: 2, �3: 6, 2, �4: 5, 4, and �5: 2, 4.

A submatching for a set of agents S ⊂ N is a permutation ν : S →
S, and Dom(ν) is the domain of the submatching. Agent i ∈ Dom(ν) is

matched with shift ν(i) by ν. The submatching that matches no one is

denoted ∅. A submatching ν is a cycle if for each i, j ∈ Dom(ν) there exists

an n ∈ N such that i = νn(j). If ν is a cycle then Dom(ν) is finite. Cycles

are alternatively denoted as vectors (i1, . . . , in) with the understanding that

ν(it) = it+1 for all t < n and ν(in) = i1. So agents 5 and 8 swap shifts in the

cycle (5, 8), conversely in the cycle (1, 3, 5) agent i ∈ {1, 3} works shift i+ 2

2So �i is complete transitive and antisymmetric.
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1 2 3 4 5 6

Figure 1: First and second best shifts

while agent 5 works shift 1.

A matching µ : N → N is a submatching with Dom(µ) = N. So for

µ to qualify as a matching, each shift has to be taken, and each agent has

to work a shift: schemes according to which some agent does not work any

shift (such as µ(i) = i− 1 for all i > 1) are ruled out. The identity function

id : N → N is the matching where each agent works his own shift (id(i) = i

for all i ∈ N). A matching µ is consistent with a submatching ν : S → S

if µ(i) = ν(i) holds for all i ∈ S. In this case I write ν ⊂ µ. The set of all

matchings and submatchings respectively are M and M. Each agent only

cares about the shift he works, so i prefers matching µ to µ′ if and only if

µ(i) %i µ
′(i).

A matching µ is Pareto optimal at a profile � if there is no alternative

matching µ′ 6= µ with µ′(i) %i µ(i) for all i ∈ N. A submatching ν : S → S

is globally Pareto optimal if there exists no matching µ such that µ(i) %i

ν(i) for all i ∈ S and µ(i) �i ν(i) for some i ∈ S. Conversely the submatching

is only locally Pareto optimal if there exists no submatching ν ′ 6= ν with

Dom(ν) = Dom(ν ′) and ν ′(i) %i ν(i) for all i ∈ S. For matchings the three
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Pareto properties coincide.3 A submatching ν : S → S is individually

rational at � if each agent i ∈ S finds ν(i) �i-acceptable.

A (direct revelation) rule R : ΩT → M maps each profile �∈ ΩT to a

submatching R(�) ∈M; agent i ∈ Dom(R(�)) is matched with R(�)(i). If

R maps each �∈ ΩT to a matching then R : ΩT →M is a (direct revelation)

mechanism. The rule R : ΩT → M is consistent with the mechanism

M : ΩT → M if R(�) is consistent with M(�) for each �∈ ΩT . Agent i

with preference �i behaves truthfully in a mechanism (or rule) if he reports

his true preference �i.

Mechanisms and rules are respectively Pareto optimal, globally Pareto op-

timal, locally Pareto optimal and individually rational if they map each pro-

file of preferences to Pareto optimal, globally Pareto optimal, locally Pareto

optimal or individually rational (sub-)matchings. A rule R : ΩT → M is

strategyproof if there does not exist any mechanism M : ΩT →M, profile

�, agent i, and deviation such that i ∈ Dom(R(�)), M(�′i,�−i)(i) �i R(�
)(i), and R consistent with M . So R is strategyproof if R is not consistent

with any mechanism M according to which some agent finds it for some

profile of preferences beneficial to declare a preference other than his own.

When R is a mechanism then the present definition reduces to the standard

definition of strategyproofness. A mechanism is strategyproof if truthtelling

is a dominant strategy for each agent. A Pareto optimal, strategyproof, and

individually rational mechanism is good.

3 Housing Markets

In a housing market, as defined by Shapley and Scarf [9] there are finitely

many agents and the preferences of these agents can be elicited simultane-

3Global Pareto optimality implies local Pareto optimality. Conversely, even if for some

submatching µ and each i ∈ N there exists a locally Pareto optimal submatching ν with

ν(i) = µ(i), µ need not be globally Pareto optimal. Consider � with �1: 3, 2, 1, �2: 4, 1, 2,

�3: 1, 3, �4: 2, 4, and �i: i for all i > 4. Then the cycles (1, 2) and (i) for all i ∈ N \ {1, 2}
are all locally Pareto optimal at �. However for µ to be (globally) Pareto optimal at � it

has to be consistent with the cycles (1, 3) and (2, 4). If for some submatching µ and each

i ∈ N there exists a globally Pareto optimal submatching ν with ν(i) = µ(i), then µ is

globally Pareto optimal.
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ously. Otherwise shift exchange problems are identical to housing markets:

Each agent is endowed with exactly one object (a house or a shift). Matchings

are one-to-one and onto mappings between agents and objects. The agents’

preferences over matchings are derived from their preferences over objects

which are in either case linear orders. The restriction that each agent i finds

all shifts outside {i−T, . . . i+T} unacceptable has no bite in housing markets

if we let T be large enough.

A housing market is defined by the (finite) sets of agents N , and houses

H, the initial endowment τ : N → H (a bijection), and by the profile �
of all agents’ (linear) preferences over all houses H. Calling the domains

of preferences and matchings Ω̂ and M̂, Gale’s top trading cycles G :

Ω̂ → M̂ is defined via the following algorithm that finds a matching G(�)

for each �∈ Ω̂: Initialize the algorithm so that all agents and houses remain

unmatched. Go to Step 1.

Step k: Each unmatched agent points to the owner of his most preferred

unmatched house. Match all agents in cycles to the houses they point to.

Terminate if all agents are matched. Otherwise, go on to Step k + 1.

Shapley and Scarf [9], Roth [8], and Ma [7] showed that a mechanism

M : Ω̂→ M̂ is good if and only if it is Gale’s top trading cycles mechanism.

4 Embedding Gale’s top trading cycles

To see that Gale’s trading process applied to a shift exchange problem need

not yield a matching, reconsider the profile where each agent i would like

to work tomorrow (shift i + 1). In this case Gale’s trading process does not

make a single match. Gale’s trading process therefore only defines a rule for

shift exchange problems. Taking this restriction into account, Theorem 1

shows how to extend Shapely and Scarf’s [9], Roth’s [8], and Ma’s [7] results

on the existence and uniqueness of good house matching mechanisms to shift

exchange problems. Any good mechanism for shift exchange problems must

use Gale’s trading process wherever possible. Conversely a mechanism that

combines Gale’s trading process with a locally Pareto optimal and individu-

ally rational rule that does not interfere with strategy proofness is good.
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The permacycles rule PC : ΩT →M adapts Gale’s trading process to

shift exchange problems. To calculate a submatching PC(�) for any �∈ ΩT

initialize the the process so that all agents and shifts remain unmatched. Go

to Step 1.

Step k: Each unmatched agent points to the owner of his most preferred

unmatched shift. Match all agents in cycles to the shifts they point to.

Terminate if no cycles formed or if all agents are matched. Otherwise, go on

to Step k + 1.

To see that PC is a well-defined rule fix a Step k. Since any preference

�i∈ ΩT
i is a linear order with no more than 2T + 1 �i-acceptable shifts, any

unmatched agent at Step k has a most preferred unmatched shift. Moreover,

if some cycles form at Step k, then some unmatched agents are bijectively

matched to some unmatched shifts. So PC(�) is indeed a submatching for

each �∈ ΩT .

The set of all agents not matched under permacycles at some profile �
is Q(�), so Q(�) is empty if and only if PC(�) is a matching. To see that

PC is not a mechanism consider the profile � where each agent i would most

like to work shift i + 1. At Step 1 there is not a single pointing cycle and

PC(�) = ∅. The descriptions of PC and Gale’s top trading cycles differ

only in one respect. While PC requires the trading process to terminate at

a round without a single pointing cycle, Gale’s top trading cycle does not

foresee this case. The number of agents is crucial for this difference: with

finitely many agents any step has a cycle. Permacycles therefore reduces to

Gale’s top trading cycles if we replace the set of agents N with any finite set

N . Example 1 shows that both finitely and infinitely long trading process

may but need not result in matchings.

Example 1 1. With �1: 2, 1 and �i: i−1, i+1, i for all i > 1, illustrated

in Figure 2 the trading process does not terminate and finds a matching.

The only cycle that forms at Step 1 is (1, 2). At each following Step k

the cycle (2k − 1, 2k) forms. So (i, i + 1) ⊂ PC(�) holds for all odd

i ∈ N.
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1 2 3 4 5 6

Figure 2: PC goes on forever, all agents are matched

2. The matching PC(�e) = id is found with the first step of the trading

process where each agent points to his own shift.

3. With �2: 1, 2, �i: i+3, i for each i ∈ 3N, �i: i+1, i for each i ∈ 3N+1

and �i: i − 3, i − 1, i for each i ∈ 3N + 2, illustrated in Figure 3 the

trading process neither terminates nor finds a matching.

1 2 3 4 5 6

Figure 3: PC neither finds a matching nor terminates

In Step k the cycle (3(k − 1) + 1, 3(k − 1) + 2) forms. All agents in

3N = Q(�) remain unmatched.

4. If �i: i+ 1, i holds for all i the trading process immediately terminates

without matching a single agent.

Just as in Gale’s top trading cycles the order in which trading cycles are

eliminated does not matter in permacycles. To see this consider a version

of permacycles P̃C : ΩT →M that sequentially matches arbitrarily chosen

trading cycles to achieve a submatching where no cycles form among the
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unmatched. So the algorithms used to calculate P̃C(�) and PC(�) are

identical except that each Step of the former only matches the agents in a

selection of cycles (as opposed to in all cycles). There are, moreover, no

pointing cycles among N \ Dom(P̃C(�))) the agents that are not matched

by P̃C(�).4

Lemma 1 P̃C(�) = PC(�) for all �∈ ΩT .

The strong relation between Gale’s trading process and the properties

of Pareto optimality, strategy proofness and individual rationality transfers

from housing markets to shift exchange problems. I first show in Lemma

2 that permacycles is an individually rational, globally Pareto optimal, and

strategyproof rule. Lemma 2 is then used to show in Theorem 1 that the com-

bination of permacycles with an appropriate rule for the unmatched yields a

good mechanism. Conversely any good mechanism for shift exchange prob-

lems must be consistent with permacycles.

Lemma 2 The permacycles rule PC : ΩT → M is individually rational,

globally Pareto optimal, and strategyproof.

Proof Fix any �∈ ΩT

Since any agent i ∈ Dom(PC(�)) is matched via a trading cycle, any

such i weakly prefers his match PC(�)(i) to his endowment i and PC is

individually rational.

To see that PC(�) is globally Pareto optimal, suppose not. So say there

existed some matching µ such that µ(i) %i PC(�)(i) for all i ∈ Dom(PC(�
)) and µ(j) %j PC(�)(j) for some j ∈ Dom(PC(�)). Say j is matched at

Step k of P̃C(�) and assume without loss of generality that µ(i) = PC(�)(i)

4If P̃C did allow pointing cycles among the unmatched, P̃C may match fewer agents

than PC. To see this, consider a rule P̃C defined as follows. Fix any step. If an even

agent i points to his own shift, then match the smallest such agent. If not match all agents

in all cycles. Each agent points to himself at the first steps of PC(�e) and respectively

P̃C(�e). So Step 1 already finds PC(�e) = id. However, each Step k ∈ N of P̃C(�e)

only matches agent 2k with his own shift. No odd agent gets matched by P̃C(�). The

problem here is that P̃C not only rearranges the order in which cycles are matched but

goes so far as to reassign some cycles to an infinite future that never occurs.
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holds for all agents matched by PC(�) at Steps 1 through k − 1. Since j

is matched at Step k of PC(�), PC(�)(j) is �j-preferred to all shifts that

remain unmatched at Step k. For µ(j) �j PC(�)(j) to hold µ(j) must

equal PC(�)(i) for some agent i matched at one of the preceding rounds - a

contradiction.

To see that PC is strategyproof, suppose there existed a mechanism

M : ΩT → M, profile �, agent i ∈ Dom(PC(�)), and deviation �′i such

that M is consistent with PC, and M(�′i,�−i)(i) �i PC(�)(i). Say that

i is matched at Step k of the trading process of PC(�), which reaches

the submatching ν in Steps 1 through k − 1. The definition of PC and

M(�′i,�−i)(i) �i PC(�)(i) together imply M(�′i,�−i)(i) ∈ Dom(ν). Now

consider the modified permacycles process P̃C(�′i,�−i) where any cycle ν ′

with Dom(ν ′) ⊂ Dom(ν) that also forms under PC(�) is matched before

all other cycles. Once ν is reached P̃C(�′i,�−i) goes on to match all agents

in all cycles that form at any step.5 Noting that P̃C(�′i,�−i) reaches the

submatching ν in Step k − 1, we see that ν ⊂ M(�′i,�−i) since PC = P̃C

(Lemma 1) is by assumption consistent with M . So M(�′i,�−i)(i) cannot

be contained in Dom(ν) - a contradiction. �

Lemma 2 entails a recipe for the construction of good mechanisms for

shift exchange problems: use permacycles wherever possible and then make

sure that the properties also hold for all agents not matched by permacycles.

Theorem 1 makes this explicit and shows that the converse also holds: any

good mechanism must use PC wherever possible.

Theorem 1 A mechanism M : ΩT →M is good if and only if it is consistent

with PC : ΩT →M and an individually rational and locally Pareto optimal

rule R : ΩT → M with Dom(R(�)) = Q(�) and R(�)(i) %′i M(�′i,�)(i)

for all �, i ∈ Q(�) and �′i.

Proof Fix a mechanism M : ΩT →M.

5Since i /∈ Dom(ν) and since ν(j) �j i holds for all j ∈ Dom(ν), the submatching ν is

indeed reached by P̃C(�′i,�−i). The reordering, moreover, matters only for finitely many

steps, implying that P̃C does not leave any cycles unmatched. P̃C(�′i,�−i) is therefore

well-defined.
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Say that M is consistent with PC and an individually rational and locally

Pareto optimal rule R : ΩT →M with Dom(R(�)) = Q(�) and R(�)(i) %′i
M(�′i,�−i)(i) for all �, i ∈ Q(�) and �′i. Fix a profile �, an agent i, and a

deviation �′i.

M(�)(i) %i i holds by Lemma 2 if M(�)(i) = PC(�)(i) and by assump-

tion if M(�)(i) = R(�)(i). M is in sum individually rational.

Suppose some matching µ did Pareto dominate M(�). By Lemma 2

µ(j) = PC(�)(j) holds for all j /∈ Q(�). Since R is assumed to be locally

Pareto optimal, µ(j) = PC(�)(j) must then also hold for each j ∈ Q(�) a

contradiction, and M is Pareto optimal.

If i ∈ Q(�), then M(�)(i) = R(�)(i) %i M(�′i,�−i)(i) holds by assump-

tion. If not then M(�)(i) = PC(�)(i) %i M(�′i,�−i)(i) holds since PC is

strategyproof as was shown in Lemma 2. M is in sum strategy proof.

Now assume that M is good. Define PCk : ΩT → M as the rule that

matches all trading cycles that form in any of the first k steps of Gale’s

trading process. Note that PC is consistent with M if and only if PCk is

consistent with M for each k ∈ N. It therefore suffices to show that PC1

is consistent with M and that PCk is consistent with M if PCk−1 is. To

see this fix a profile �∈ ΩT and any cycle ν : S → S at some Step k of

PC(�) assuming that either k = 1 or PCk−1 consistent with M . It then

suffices to show that ν ⊂ M(�). Since ν : S → S forms at Step k of

PC(�), Lemma 1 implies that PCk−1(�)(i) = PCk−1(�′S,�−S)(i) for each

�′ and each i ∈ Dom(PCk−1(�)). By the inductive hypothesis we then have

PCk−1(�) ⊂M(�′S,�−S) for any �′.

To see that ν ⊂ M(�), let �′′i : ν(i), i for each i ∈ S. The following

induction over | S \D | then shows that ν ⊂M(�′′D,�D) holds for all D ⊂ S.

Since (�′′D,�−D) equals � if D = ∅, we in particular obtain ν ⊂M(�).

Start of the induction. Let | S \D |= 0 and D ⊂ S, so S = D. Since

M is Pareto optimal and individually rational we have that ν ⊂M(�′′D,�−D
) = M(�′′S,�−S).

Step of the induction. Suppose that the claim holds for all D ⊂ S with

| S \D |≤ m. Consider some D ⊂ S with | S \D |= m + 1. The inductive
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hypothesis implies ν ⊂ M(�′′D∪{i},�−(D∪{i})). By the definition of PC, ν(i)

is the �i-best shift out of all shifts that are not matched by PCk−1(�). Since

PCk−1(�) ⊂M(�′S,�−S) for any �′, agent i cannot be matched with a �i-

better shift than ν(i) under M(�′′D,�−D). Since M is strategyproof, M(�′′D
,�−D)(i) = ν(i) holds for each i ∈ S \D. These equalities together with the

assumption that �′′i : ν(i), i holds for all i ∈ D, the individual rationality of

M , and the fact that ν is a cycle imply that M(�′′D,�−D)(i) = ν(i) must

also hold for all i ∈ D.

We can conclude that PC must be consistent with M . Define a rule

R : ΩT → M such that Dom(R(�)) = Q(�) and R(�)(i) : = M(�)(i)

for all �∈ ΩT and i ∈ Q(�). Since PC is globally Pareto optimal and

since M is Pareto optimal R must be locally Pareto optimal. Since M is

individually rational, the rule R must be too. Since M is strategy proof each

agent i ∈ Q(�) must weakly �i-prefer M(�)(i) = R(�)(i) to M(�′i,�−i)(i)
for all �′i∈ ΩT

i . �

The first part of Theorem 1 gives a recipe how to construct a good mecha-

nism using permacycles. Since permacycles inherits some crucial welfare and

incentive properties of Gale’s top trading cycles, this recipe asks for perma-

cycles to be used wherever possible. All agents not matched by permacycles

must then be matched via an individually rational and locally Pareto optimal

rule that is consistent with strategy proofness.6

The only aspect of ΩT that matters for the proof of the first part of

Theorem 1 is that PC is well-defined on ΩT . The definition of ΩT was only

indirectly used in the proofs of Lemmas 1 and 2: The mechanism PC : ΩT →
M is well-defined since there exists a unique optimal shift j for each agent

6To see that combining PC with any individually rational rule is not enough define the

mechanism PC∗ : ΩT → M by PC∗(�)(i) = i if i ∈ Q(�) and PC∗(�)(i) = PC(�)(i)

otherwise. While PC∗ is individually rational, it is neither Pareto optimal nor strategy

proof. To see this consider a profile � where each agent i most likes to work shift i+ 1 so

that PC(�) = ∅ and PC∗(�)(i) = i for all i ∈ N. Now assume that agent 2 ranks agent 1’s

shift above his own. Agent 2 has an incentive to deviate to�′2: 1, 2 as PC∗(�′2,�−2)(2) = 1

which is strictly �2-preferred to shift 2. The matching PC∗(�′2,�−2) moreover strictly

Pareto dominates PC∗(�) at �.
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i ∈ N set S ∈ N with i ∈ S and preference �i∈ ΩT
i . As long as each set S

contains for each �i∈ Ω′i and i ∈ N a unique best element, the rule PC is

well-defined on Ω′.7 Lemmas 1 and 2 as well as the first part of Theorem 1

immediately extend to any domain Ω′ on which PC is welldefined: on any

such domain the recipe for the construction of good mechanisms works.

The proof that good mechanisms must be constructed following this

recipe (second part of Theorem 1) relies on a different aspect of ΩT . If

a shift j is �i-acceptable for some �i∈ Ωi, then there exists a preference

�′i∈ ΩT for which shift j is the only �′i-acceptable shift (other than shift

i). The second part of Theorem 1 then applies to any domain Ω′ that satis-

fies this richness condition. This same richness condition is used in Ma’s [7]

proof that Gale’s top trading cycle is the unique good mechanism for housing

markets. On less rich domains there may indeed be more good mechanisms.

Restricting attention to the domain of single peaked preferences Bade [4]

defines alternative good mechanisms for housing markets as well as for shift

exchange problems.8

5 Short Trading Spans

Theorem 2 characterizes the set of all good mechanisms for the domain Ω1

where agents never find working two or more days before or after their own

shift acceptable. Given Theorem 1 this characterization boils down to defin-

7To see that PC need not be well-defined if this condition is violated say that each

agent i’s preference �i is such that j �i j
′ holds for all j > j′. Then no agent at Step 1

has a most preferred unmatchted shift.
8For a different example consider the set of housing markets for three agents and houses

{1, 2, 3} and a domain of preferences Ω′ which does not contain any preferences where an

agent finds only one house other than the house he was endowed with acceptable. Call the

two matchings where each agent obtains a house that differs from his endowment µ◦ and

µ′. Define a good mechanism M∗ that uses Gale’s top trading cycles whenever at least

one agent finds only his own house acceptable. In the alternative case where all agents

find all houses acceptable the mechanism chooses agent 1’s preferred matching among µ◦

and µ′. The mechanism M∗ differs from Gale’s top trading cycles: If � is such that agents

1 and 3 top rank house 2, while agent 2 top ranks house 3, then agent 1 is matched with

house 1 according to Gale’s top trading cycles (G(�)(1) = 1). However M∗(�) is agent

1’s preferred matching for which everyone moves, and we have M∗(�)(1) = 3.
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ing an appropriate rule R : Ω1 → M to match all agents not matched by

permacycles. The following observations on the domain of very short trading

spans simplify this task: If a cycle ν involving more than one agent is individ-

ually rational at some �∈ Ω1, then it is a swap between two adjacent agents,

so we have ν = (i, i+ 1) for some i ∈ N. There, moreover, exists some cutoff

i∗ ∈ N such that agent i is not matched by PC(�) if and only if i ≥ i∗ and

each agent i ≥ i∗ would like to delay his shift by a day.9 Finally if each agent

i in some infinite tail of the problem has the preference �i: i+ 1, i− 1, i then

it is locally Pareto optimal to match each odd agent (or each even agent)

with his direct successor. These preliminary observations are summarized in

Lemma 3 for which I define the submatchings νE[i◦] and νO[i◦] for {i◦, . . . }
by (i, i + 1) ⊂ νX [i◦] for each even (odd) i ≥ i◦ if X = E (if X = O) as

well as νX [i◦](i◦) = i◦ if the match of i◦ is not determined by the preceding

condition.10

Lemma 3 Fix a profile �∈ Ω1.

1. Fix µ ∈ M and i ∈ N such that i 6= µ(i). If µ is individually rational

then it is either consistent with (i, i+ 1) or with (i− 1, i).

2. If Q(�) 6= ∅ then there exists an agent i∗ ∈ N such that Q(�) =

{i∗, . . . } and each i ∈ Q(�) �i-prefers i+ 1 to all shifts Q(�).

3. If there exists an i◦ ∈ N such that �i◦ : i
◦ + 1, i◦ and �i: i + 1, i − 1, i

for all i > i◦ ∈ N then νE[i◦] and νO[i◦] are globally Pareto optimal at

�.

To define permacycles with even privilege PCE : Ω1 → M fix an

arbitrary �∈ Ω1 and define S, �◦S, and i◦ as follows. Let S : = {i ∈ Q(�) |
i + 1 �i+1 i}. For each i ∈ S let �◦i : =�e

i if �i: i + 1, i and �◦i : i − 1, i if

9Even at T = 2 this need not hold. At the profile � with �2: 2, �i: i+2, i for each odd

i and �i: i − 1, i for each even i > 2 we have Q(�) = N \ {2} and some agents i ∈ Q(�)

most prefer to work earlier shifts.
10Considering νE [7] note that the first condition implies (i, i + 1) ⊂ νE [7] for all even

i < 7. Since this condition does not determine νE [7](7), agent 7 is by the second condition

matched with his own shift.
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�i: i + 1, i− 1, i.11 Agent i◦ is such that �i◦ : i
◦ + 1, i◦ and �i: i + 1, i− 1, i

for all i > i◦. PCE(�) is then defined such that PC(�◦S,�−S) ⊂ PCE(�).

If PC(�◦S,�−S) is not a matching then νE[i◦] ⊂ PCE(�). The present

notation suppresses the dependence of S, �◦S, and i◦ on �. This is possible,

since all upcoming arguments refer to an arbitrary but fixed profile �.

To understand PCE fix a profile � and note that PCE(�) is consistent

with PC(�). If PC(�) is not a matching, part 2 of Lemma 3 implies the

existence of an agent i∗ such that each i ∈ Q(�) : = {i∗, . . . } ranks i+ 1 at

the top. If the shift of agent i ∈ Q(�) is considered unacceptable by i + 1

then i ∈ S. By part 1 of Lemma 3 no agent i ∈ S is matched with i + 1 for

any individually rational matching. Since �◦i is derived from �i by deleting

i + 1 from the list of acceptable shifts, a matching is individually rational

at � if and only if it is individually rational at (�◦S,�−S). Depending on

whether i ∈ S finds i − 1 acceptable or not PCE(�)(i) = PC(�◦S,�−S)(i)

either equals i − 1 or i. If S has a maximal agent then this agent is i◦ − 1

and �i: i + 1, i − 1, i holds for any agent i > i◦. PCE(�) then matches the

agents {i◦, . . . } in accord with the submatching νE[i◦], which is by part 3 of

Lemma 3 globally Pareto optimal and individually rational.

Permacycles with even privilege is a mechanism: If PC(�◦S,�−S) is a

matching then PCE(�) equals this matching. If not then PCE(�) is con-

sistent with PC(�◦S,�−S) and νE[i◦]. Since νE[i◦] matches all agents not

matched by PC(�◦S,�−S), PCE(�) is also in this case a matching and PCE

is well-defined.

The set of good matching mechanisms not only contains PCE, but any

permacycles mechanisms PCf with incentive compatible termination rule

f : ΩT → {E,O}. To calculate PCf (�) fix an arbitrary � and define S,

�◦, and i◦ as above. Let PC(�◦S,�−S) ⊂ PCf (�). If PC(�◦S,�−S) is not

a matching then νf(�)[i◦] matches all agents in Q(�◦S,�−S) = {i◦, . . . }. The

termination rule f is incentive compatible if PCf (�)(i) %i PC
f (�′i,�−i)

holds for all i ∈ Q(�). The outcomes PCf and PCE differ at � if and

only if Q(�◦S,�−S) 6= ∅ and f(�) = O. The characterization of all incentive

compatible termination rules f : Ω1 → {E,O} intricate. Since it is also

irrelevant for all practical purposes it is omitted. To show the existence of

11Since S ⊂ Q(�), any such i ∈ S most prefers i+ 1 and �◦i is well-defined.
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some termination rule f for which PCf is indeed strategyproof, I show that

PCE, the permacycles mechanism PCf with the termination rule f that

maps each � to E, is strategy proof.

Theorem 2 A mechanism M : Ω1 → M is good if and only if it can be

represented as permacycles with termination rule PCf . Permacycles with

even privilege PCE is a good mechanism.

Theorem 2 shows that Gale’s trading process goes a long way in shift

exchange problems with short trading spans. To determine a Pareto optimal

and individually rational matching in a strategyproof way, one first has to use

Gale’s trading process wherever possible. If only finitely many agents can be

matched in this way, then each remaining agent i wants to work “tomorrow”.

If i + 1 finds shift i unacceptable then i will, under no individually rational

matching, get to work tomorrow. The preference of each such agent i is

edited to delete i+1 from the set of acceptable shifts. Gale’s trading process

is then applied to the remaining agents given the edited profile of preferences.

If even this step matches only finitely many agents, then the remaining agents

are matched such that either all odd or all even ones among them get their

most preferred shift, while the others get their second most preferred shift.

In the next section I show that this mechanism - as well as any good

mechanism for a domain Ω′ that embeds Ω1 is inherently infinite.

6 Endless Mechanisms

In a shift exchange problem there are infinitely many agents whose prefer-

ences cannot be elicited simultaneously. The preceding two sections consid-

ered the infinite size of shift exchange problems while ignoring the restriction

that the match of any particular agent may only depend on a finite set of

preferences. The present section the focusses on the latter requirement and

finds that no good mechanism for shift exchange problems satisfies it. To

demonstrate that the results in the present section are driven by the impos-

sibility to simultaneously elicit all preferences rather than the infinite amount

of agents, I also consider house matching problems with N = H = {1, . . . , n}
where each agent i never finds houses with j with j >| i−T | acceptable. To

20



distinguish such problems from standard house matching problems as well

as from infinite shift exchange problems I denote the set of all preference

profiles in such problems by Ω̂T .

A mechanism is endless if there is no (strict) subset {1, . . . , K} of all

agents, such that eliciting the preferences of these first K agents is sufficient

to match at least one agent. So M : ΩT → M (M : Ω̂T → M̂) is endless

if for each K ∈ N (K < n) there exist profiles �, �′ such that M(�)(i) 6=
M(�{1,...,K},�′{K+1,... })(i) holds for all i ≤ K.

Theorem 3 first shows that any good mechanism for the domains Ω1 and

Ω̂1 of short trading spans in endless. With longer trading spans (T ≥ 2) the

nonexistence problem becomes more severe: in that case any Pareto optimal

and individually rational mechanism is endless.

Theorem 3 Fix a Pareto optimal and individually rational mechanism M :

ΩT →M or M : Ω̂T → M̂. If

1. M is strategyproof and T = 1, or

2. T > 1

then M is endless.

Proof Fix an arbitrary K ∈ N (K < n). The construction of two profiles

�T∈ ΩT for T = 1, 2 such that M(�T
{1,...,K},�e

{K+1,... })(i) 6= M(�T )(i) for all

i ∈ {1, . . . , K}, shows that M is endless in all four cases.12

1. If T = 1 and M is strategyproof, define �1 such that �1
1: 2, 1, �i:

i + 1, i− 1, i for all 1 < i ≤ K + 1, �i=�e
i for all i > K + 1. Figure 4

illustrates �1
i for the agents up to agent K.

If �1∈ Ω1 then PC(�1) ⊂ M(�1) and PC(�1
{1,...,K},�e

{K+1,... }) ⊂
M(�1

{1,...,K},�e
{K+1,... }) hold by Theorem 1. If �1∈ Ω̂1 the same conclu-

sion follows from the fact that Gale’s top trading cycles is the unique

strategyproof, efficient and individually rational matching mechanism

for housing problems. While the the cycles (K,K + 1), (K− 2, K− 1),

(K − 4, K − 3), ... form under PC(�1), the cycles (K − 1, K), (K −
12This completes the proof since Ω2 ⊂ ΩT and Ω̂2 ⊂ Ω̂T holds for all T > 1.
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K-4 K-3 K-3 K-1 K K+1

Figure 4: The choice of K + 1 matters

3, K − 2), ... form under PC(�1
{1,...,K},�e

{K+1,... }). So for each i ≤ K,

M(�1)(i) differs from M(�1
{1,...,K},�e

{K+1,... })(i).

2. If T > 1, define the profile �2∈ ΩT with �2
i : i + 2, i for each odd i,

�2
i : i − 2, i for each even i > 2, and �2

2: 1, 2. Figure 5 illustrates �.

There is exactly one individually rational Pareto optimum at �2: the

1 2 3 4

Figure 5: An infinite “cycle” as the unique Pareto optimum

matching µ with µ(i) = i+ 2 for each odd i, µ(i) = i− 2 for each even

i > 2, and µ(2) = 1. Since M is individually rational and strategyproof

we have M(�2) = µ. However the endowment is the only individually

rational matching at (�2
{1,...,K},�e

{K+1,... }).

In the alternative case of a house problem let �2 be defined as above for

all agents i < K. If K is odd, let �2
K : K+1, K and �2

K+1: K−1, K+1,

if K is even let �2
K : K − 2, K and �2

K+1: K,K + 1. Furthermore let

�2
i =�e

i for all i > K + 1. Note that all agents from 1 to K + 1 form a

single cycle in the unique individually rational Pareto optimum at �2.
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Conversely, the endowment is the only individually rational matching

at (�2
{1,...,K},�e

{K+1,...,n}).

�

Theorem 3 implies that there are no good mechanisms for shift exchange

problems where some decisions must be made in finite time. When T > 1

this non-existence result holds even if we disregard incentive constraints. But

any imaginable real life infinite horizon matching problem will require some

decisions to be made in finite time: The shifts of September 2019 will have

to be worked before we can elicit preferences over shifts in 2040. We cannot

wait with kidney transplants that are feasible today until get a full picture of

renal disease in 14 years. Considering only mechanisms where participation

is voluntary - and therefore keeping the requirement of individual rationality

in place, we need content ourselves with matching mechanisms that violate

strategy proofness and/or Pareto optimality. We need to find compromise

mechanisms that can be implemented in finite time and do reasonably well.

Ideally truthtelling is a dominant strategy for a large share of agents and the

outcomes of such compromise mechanisms can only be Pareto dominated by

a small set of of matchings. The next section proposes two such compromises.

7 The Intervals Mechanisms

This section compares two different mechanisms for shift exchange problems

that apply Gale’s top trading cycles to all shifts and agents in trading in-

tervals of length I > T . While one of these two mechanisms prohibits all

trade across interval boundaries the other allows shifts swaps between agents

from different intervals. Both these mechanisms start by running Gale’s top

trading cycles with all agents in the first trading interval. While the closed

intervals mechanism CI finalizes all resulting matches, the open intervals

mechanism OI only finalizes the matches involving agents and or shifts that

cannot wait. The agents whose matches have not been finalized join the next

trading interval with their temporary matches from the first round as their
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endowments. In either case the inductive application of Gale’s top trading

cycles to all upcoming sets of agents yields a matching.

To formally define CI : ΩT → M and OI : ΩT → M fix an arbitrary

�∈ ΩT . Let �1 be the restriction of � to the sets of agents and shifts

I1 : = {1, . . . , I} and let τ 1 = id : I1 → I1 be the initial endowment. Go to

Round 1.

Round r

Gale’s top trading cycles Calculate G(�r) given the initial endowment

τ r : Ir → τ r(Ir).

Matching Let CI(�)(i) : = G(�r)(i) for all i ∈ Ir, and let OI(�)(i) : =

G(�r)(i) for all i ∈ Ir with i ≤ rI − T or G(�r)(i) ≤ rI − T . Let J be the

set of all agents in Ir not matched at the current step.

Updating Let Ir+1 : = {rI + 1, (r + 1)I} ∪ J , τ r+1(i) = i for each

i ∈ {rI+1, (r+1)I}, τ r+1(i) = G(�r)(i) for each i ∈ J and �r the restriction

of � to all agents Ir+1 and all shifts τ r+1(Ir+1). Go to Round r + 1.

To see that CI and OI are well-defined fix an arbitrary �∈ ΩT and i ∈ N.

There exists a Round r ∈ N with rI < i ≤ (r + 1)I when agent and shift

i enter the trading process. If agent or shift i is not matched in this round,

then he or it must be matched in Round r + 1 since i ≤ r(I + 1) and I > T

together imply i < (r + 2)I − T . So each agent and each shift get matched

and CI(�) : N → N as well as OI(�) : N → N are onto. They are also

one-to-one, since all agents are matched via trading cycles, so that no two

agents are matched with the same shift.

Both intervals mechanisms satisfy the requirement that we cannot wait for

all preferences to be elicited to match a particular agent or shift. According

to CI it suffices to elicit the preferences of all agents {rI + 1, . . . , (r + 1)I}
to match any agent in this interval. The mechanism OI allows the (later)

agents and shifts whose span intersects with the next trading interval to also

participate in this next interval where they must get matched. So OI is not

endless. Indeed it satisfies a much stronger criterion of decision making in

finite time. To match agent and shift i it - always - suffices to know the first

i+ I + T preferences.
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Since CI matches each i via a predetermined round of Gale’s top trading

cycles (namely the Round r for which (r − 1)I < i ≤ (r + 1)I) and since

Gale’s top trading cycles is strategyproof and individually rational, CI is

too. But CI rules out many potentially individually rational matches: if i,

j, and r are such that i ≤ rI < j, then CI never matches agent i with shift

j. However if j − i ≤ T , then any Pareto optimal and individually rational

matching µ at some �′∈ ΩT with �′i: j, i and �′j: i, j must be consistent

with (i, j) the cycle where i and j swap shifts. Conversely the open intervals

mechanism OI : ΩT → M allows for such matches. Considering the same

profile �′ note that agent i enters the trading process in Round r where he

points to his own shift. Since j− i ≤ T and j > rI the match between i and

his shift is not finalized in Round r and agent i also participates in Round

r + 1, where agent j enters. The cycle (i, j) now forms and is finalized since

i < (r + 1)I − T . So we obtain OI(�)(i) = j.

Example 2 Fix a profile �′ with with �′i: i + 2, i + 1, i for each odd i,

�′i: i− 2, i− 1, i for each even i > 2, and �′2: 1, 2 illustrated in Figure 6. So

the only difference between �′ and �2, defined in proof of Theorem 3 and

illustrated in Figure 5, is that each even (odd) agent i > 2 also accepts to

work shift i− 1 (i+ 1) under �′.

1 2 3 4 5

Figure 6: The profile �′

The new profile �′ shares with the profile �2, defined in the proof of

Theorem 3, that µ with µ(i) = i + 2 for each odd i, µ(i) = i − 2 for each

even i > 2, and µ(2) = 1 is the unique individually rational Pareto optimum.

Let I : = 5 and T : = 3. While C5 as well as O5 map the �2 to id, the
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acceptance of “intermediate” shifts under �′ yields better results.13

The cycles (5) and (1, 3, 4, 2) form in Round 1 of C5(�′) and O5(�′) (to

see this consider the arrows among agents 1 through 5 Figure 6). Under C5

these matches are immediately finalized and we obtain (1, 3, 4, 2) ⊂ C5(�′)
as well as C5(�′)(5) = 5. The cycles (6) and (7, 9, 10, 8) form in Round

2 of C5(�′) so that (7, 9, 10, 8) ⊂ C5(�′) and C5(�′)(6) = 6. Any odd

(even) trading round of C5(�′) looks just like any other odd (even) trading

round and we obtain G5(�′)(10n + i) = G5(�′)(i) + 10n for all n ∈ N and

i ∈ {1, . . . , 10}.
Under O5(�) only O5(�′)(1) = µ(1) = 3, O5(�′)(2) = µ(2) = 1, and

O5(�′)(4) = µ(4) = 2 are finalized with the first round. Agents 3 and 5 enter

the next trading round with shifts 4 and 5 as their respective endowments.

Round 2 of O5(�′) applies Gale’s top trading cycles to the profile of agents’

3, 5, 6, 7, . . . , 10 preferences over shifts 4, 5, 6, . . . , 10 where agent 3 is

endowed with shift 4 and each agent i ∈ {5, 6, 7, 8, 9, 10} is endowed with

his own shift i. Round 2 finalizes the match µ(i) for each i ∈ {3, 5, 6, 7, 8};
agents 9, and 10 go on to Round 3 with shifts 10 and 8 as their respective

new endowments. Proceeding inductively we obtain O5(�′) = µ

In sum we obtain C5(�′) 6= O5(�′) = µ. At �′ C5(�′) is strictly Pareto

ranked between the initial endowment id and µ.14 While both CI and OI

let the match of any single agent depend on only finitely many preferences,

only OI results in the infinite chain µ. The decisive difference between the

13In Step 1 of Round 1 of C5(�) and O5(�) there is a chain involving all agents. The

agent at the helm of this chain, agent 5, only finds his own shift �5-acceptable in the set

{1, . . . , 5}. Once he is matched with his own shift at Step 1, agent 3 is matched with his

own shift at step 2, ... . So in the first round of C5(�) and O5(�) each agent keeps his

own shift. Under the C5 trading process these matches are finalized, under the O5 trading

process only agents 1 and 2 are definitively matched with their own shifts, the other three

agents move on to the next trading round. While differently many agents take part in the

second trading rounds of C5 and O5 at �, this second trading round is in either case very

similar to the first. Each agent in the second round (and in each subsequent round) using

either trading process is matched with his own shift and C5(�) = O5(�) = id.
14While each agent obtains his most preferred shift under µ, only agents 2, 10n + 1,

10n + 4, 10n + 7, and 10n + 10 for all n ∈ N0 do so under C5(�′). Agents 10n + 5 and

10n+ 6 for all n ∈ N0 stay with their endowment which is their third most preferred shift.

All other agents obtain their second most preferred shift.
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two mechanisms is that trading cycles which form in one round may (only)

under OI be reopened in the next round.

While OI(�) may Pareto dominate CI(�) (as shown in Example 2), the

converse never holds. To see this, fix � such that CI(�) 6= OI(�). Fix

r, j ∈ N such that CI(�)(i) = OI(�)(i) holds for all i matched in Rounds

1, . . . , r − 1 of CI(�) whereas CI(�)(j) 6= OI(�)(j) holds for agent j who

is matched in Round r of CI(�). Any agent i matched in some Round

r′ < r under CI(�) who enters Round r of OI(�) must be matched with his

temporary endowment (which equals CI(�)(i)) at Round r of OI(�) and can

therefore be ignored in Round r of OI(�). Both mechanisms (temporarily)

match agent j to CI(�)(j) in Round r. Under CI this match is finalized.

For CI(�)(j) 6= OI(�)(j) to hold agent j must enter Round r + 1 under

OI(�). Since CI(�)(j) is agent j’s temporary endowment in that round we

have OI(�)(j) �j C
I(�)(j) and CI(�) cannot Pareto dominate OI(�). The

following example shows that the outcomes of the two intervals mechanisms

need not be Pareto ranked.

Example 3 Let T = 2 and I = 4. Define � such �4: 6, 4, �5: 6, 5, �6: 4, 5, 6

and �e
i=�i otherwise (see Figure 7 for an illustration). Under C4(�) and

O4(�) exactly 2 agents swap shifts while all other agents work their own

shift: (5, 6) ⊂ C4(�) and (4, 6) ⊂ O4(�).

2 3 4 5 6

Figure 7: Agent 5 prefers C4 to O4

Barriers to trade generally incur benefits and losses to different parties. Here

it is agent 5 who benefits from the trading barrier between agents 4 and 6.
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In the face of this barrier agent 6 makes do with his second most preferred

shift, namely agent 5’s shift. Conversely agents 4 and 6 are harmed by the

trading barrier between them. The following proposition summarizes the

welfare comparisons between the two intervals mechanisms.

Proposition 1 Fix some I > T . There exists some �∗∈ ΩT such that

OI(�∗) Pareto dominates CI(�∗). For some other �◦∈ ΩT , OI(�◦) and

CI(�◦) are not Pareto ranked. There exists no �∈ ΩT such that CI(�)

Pareto dominates OI(�).

While the open intervals mechanism outperforms the closed one in terms

of welfare, it fares less well in terms of incentives. The following Theorem

4 on the open intervals mechanism shows that truthtelling is only for the

earlier agents in each interval a dominant strategy. The later agents may

be able to misrepresent their preferences to obtain a better shift. The open

intervals mechanism is individually rational. Finally, to Pareto dominate a

matching OI(�) distant enough agents have to engage in swapping chains.

Theorem 4 Fix an open intervals mechanism OI : ΩT → M and a profile

�∈ ΩT . If some matching µ ∈ M Pareto dominates OI(�) then there exist

i, j, r, n ∈ N such that i ≤ rI−T , j > rI and µn(i) = j. If OI(�′i,�−i)(i) �i

OI(�)(i) holds for some �′i and i, then there exists a number r ∈ N such

that rI − T < i ≤ rI. OI(�)(i) %i i holds for all i.

The incentives for truthtelling in OI are illustrated in Example 4. Exam-

ple 5 then shows that the outcome of the open intervals mechanism may be

dominated by a matching that involves reasonably distant agents who belong

to different trading intervals.

Example 4 Let T = 1 and I = 5 and consider �∗ with �∗4: 5, 4, �∗5: 6, 4, 5

and �∗6: 5, 6 with �∗i =�e
i for all i ∈ N \ {4, 5, 6} illustrated in Figure 8.

Under O5(�∗) agent 4 and 5 swap shifts in the first round. Since 4 <

I + 1 − T = 5 these matches are finalized in the first round and we obtain

(4, 5) ⊂ O5(�∗). Each cycle forming in the first round of O5(�′5,�∗5) with

�′5: 6, 5 consists of one agent and his shift. Given T = 1 these matches are

finalized for agents 1, 2, 3, and 4. Agent 5 (endowed with shift 5) goes on
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3 4 5 6 7

Figure 8: Tuthtelling need not be strategyproof under OI

to the next round where he swaps shifts with agent 6. Since 2I + 1− T > 6

both these matches are finalized in round two. Since O5(�′5,�∗−5)(5) = 6 �5

4 = O5(�∗), O5 is not strategy proof.

To understand the incentives for the earlier agents in any given interval

consider agent 7 who enters the trading process with Round 2. Since 7 <

2I + 1− T = 10 agent 7 is for each � matched by the application of Gale’s

top trading cycles to �2. Since G is strategy proof and since agent 7 has no

impact on the size of the set I2, the truthful revelation of his preference is

weakly dominant for agent 7.

Example 5 Let T = 2 and I = 5 and consider �∗ with �∗3: 4, 3, �∗4: 6, 4,

�∗5: 3, 5, �∗6: 5, 6 and �∗i =�e
i for all i ∈ N \ {3, 4, 5, 6} illustrated in Figure 9.

2 3 4 5 6

Figure 9: A matching that dominates OI

The first round of O5(�∗) matches each agent with his own shift. These

matches are finalized for agents 1, 2, and 3. Agents 4 and 5, endowed with

their original shifts, move on. The second round (and any round thereafter)

presents the same picture: each participating agent is matched with his own
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shift, and we obtain O5(�∗) = id. But in Figure 9 there is a pointing

cycle (3, 4, 6, 5) and the matching µ with (3, 4, 6, 5) ⊂ µ and µ(i) = i for

i /∈ {3, 4, 5, 6} Pareto dominates O5(�∗) = id. Letting i = 3, j = 6, r = 1

and n = 2 the conditions i ≤ rI−T , j > rI and µn(i) = j are satisfied by µ.

To see that a dominating matching µmust reach far enough across interval

boundaries vary the interval length I. If I = 6, all agents in the pointing

cycle Figure 9 take part in Round 1 of O6(�∗) and we obtain O6(�∗) = µ.

If I = 4, then each agent is matched with his own shift in the first round of

O4(�∗). Since T = 2 agents 3 and 4 then move on to the next round with

their original shifts as their endowments. The agents 3, 4, 5, and 6 all take

part in Round 2 and O4(�∗) equals µ.

Theorem 4 implies that the open intervals mechanism does reasonably

well if T is small in comparison to I. If T = 1, then the statement in

Theorem 4 can be strengthened: whether we allow for strategic behavior or

not, the outcomes of open intervals mechanism are Pareto optimal. Con-

sider an actual profile of preferences � and a profile of reported preferences

�′ where only agents who strictly benefit from a misrepresentation of their

preferences do so (�i 6=�′i implies OI(�′)(i) �i O
I(�i,�′−i)(i)). The open in-

tervals mechanism maps the profile of reported preferences �′ to a matching

that is Pareto optimal at the actual preferences �.

Corollary 1 Fix two profiles of preferences �,�′∈ Ω1 with either �′i=�i or

OI(�′) �i O
I(�i,�′−i) for each i. Then OI(�′) is Pareto optimal at �.

Proof Suppose some matching µ Pareto dominated OI(�′) at �. First

suppose that µ Pareto dominated OI(�′) at the reported profile �′. By

Theorem 4 there would have to exist i, j, r, n ∈ N such that µn(i) = j,

i ≤ rI − T , and j > rI, implying i− j > 1. So µ is by Lemma 3 part 1 not

individually rational at �′ and can therefore not Pareto dominate OI(�′) at

�′, which is by Theorem 4 individually rational at �′.
For µ to Pareto dominate OI(�′) at �, OI(�)(j) 6= µ(j) must therefore

hold for some j with �′j 6=�j. Since truthtelling is by Theorem 4 a dominant

strategy for any agent i /∈ {I, 2I, 3I, . . . }, agent j must equal nI for some

n ∈ N.
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For j = nI to (strictly) benefit from reporting �′j instead of �j we must

have OI(�j,�′j)(j) = j − 1 and OI(�′)(j) = j + 1, �j: j + 1, j − 1, j and

�′j: j + 1, j.15 Consequently OI(�′)(j) 6= µ(j) implies that j strictly prefers

OI(�′)(j) to µ(j) and µ cannot Pareto dominate OI(�′) at �. �

8 Conclusion

In a housing market there are finitely many agents and equally many objects.

The designer simultaneously decides over all matches between agents and

objects. This is unproblematic since all agents in a housing market know

their preferences. Conversely only a few agents know their preferences at the

start of a shift exchange problem. As time goes on more and more agents

learn their preferences. It is impossible to simultaneously elicit all preferences

as some agents have to be matched before all preferences become known. The

ongoing nature of shift exchange problems is captured via the assumption of

countably infinite sets of agents and shifts.

The result that Pareto optimality, strategy proofness and individual ra-

tionality can only be achieved by using Gale’s top trading cycles - wherever

possible - transfers to the case with infinitely many objects (Theorem 1).

However, with infinitely many objects Gale’s trading process need not match

all agents (and shifts). To obtain a good mechanism Gale’s trading process

needs to be combined with an additional rule to match the agents that are

not part of any trading cycle.

In Theorem 2 I provide an example of such a good mechanism for the case

that each agent may only swap shifts within a very short time span. Theorem

3 then shows that any good mechanism for a domain that contains this - very

15Since OI is individually rational we have OI(�j ,�′−j)(j) %j j; since OI(�′)(j) �j

OI(�j ,�′−j)(j), OI(�′)(j) 6= j. Since Gale’s top trading cycles, which is used in each

trading round, is strategyproof, the report �′j must be such that agent j’s match is de-

termined by a different trading round under �′ and (�j ,�′−j). But this is only possible

if agent j is under (�j ,�′−j) definitively matched in the trading round with which he

enters, while he stays for a next trading round under �′. For j to be definitively matched

in the trading round in which he enters we must have OI(�j ,�′−j)(j) = j − 1. Since

OI(�′)(j) 6= j, we must then have OI(�′)(j) = j + 1.
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small - domain may have to elicit infinitely many preferences to decide how to

match the first agent. With longer trading spans this problem turns out to be

yet more severe: in that case any Pareto optimal and individually rational

mechanism (strategyproof or not) may require the elicitation of all agents

preferences to decide on the shift that the first agent should be matched to.

The design of reasonable mechanisms consequently requires us to either

weaken our efficiency and incentive compatibility standards or to content

ourselves with good mechanisms for smaller domains. Keeping the domain

fixed, Section 7 compares two different approaches to apply Gale’s top trading

cycles to the same fixed intervals of agents. According to the first CI no trade

may occur across intervals. Conversely the intervals mechanism OI allows

for some “smoothing” across intervals. Any agent for whom there remains

scope to improve their match after they participated in a trading interval of

OI goes on to participate in the following interval. While OI outperforms

CI in terms of its welfare properties as shown in proposition 1, OI does less

well in terms of incentives. While CI is strategyproof, truthtelling is only

dominant for the earlier agents in each trading interval of OI . On the domain

with very short trading spans OI is Pareto optimal - no matter the extent to

which agents act strategically.

Besides the restriction to very short trading spans I did not explore do-

main restrictions in this paper. In Bade [4] I show that good mechanisms

for shift problems exist when all agents preferences are single peaked. The

second part of Theorem 1 which states that Gale’s trading process must be

used wherever possible in a good mechanism for a shift exchange problem

does not apply to the domain of single peaked preferences.

One dimension that was entirely ignored in the present paper stands out:

uncertainty. But, when agents submit their own preferences they may know

only a few other agents preferences. One might specify a distribution over

possible preferences and assume that agents have preferences over lotteries.

Suppose that all agents know all preferences in the current trading interval

but don’t know the preferences of agents in the upcoming interval. Now sup-

pose furthermore that agents are expected utility maximizers who consider

the utility differential between their own shift and any other acceptable shift

large. Finally suppose that agents consider the event that a shift is acceptable
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to be rare. Under these assumptions truthtelling is a (Bayes-Nash) equilib-

rium strategy in OI . To see this consider an agent i who under truthtelling is

definitively matched with some shift j 6= i in the trading round with which he

entered the trading process. Under a misreport this same agent may obtain

a better shift in the next trading round. However, given that such compat-

ibility is rare the expected utility of a misreport falls below the utility of

obtaining j for sure.

In addition to such exogenous uncertainty one could investigate random

matching mechanisms which introduced probabilistic matching rules to in-

centivize truthtelling. Considering agents who don’t know whether the de-

signer uses CI or OI to match them with shifts, truthtelling is a best reply

if the probability of CI being chosen is high enough. In a similar vein one

could investigate the effect of the interval length I being drawn from some

distribution.

Appendix

Proof of Lemma 1: Suppose there exists a profile �∈ ΩT where either

PC(�)(i) 6= P̃C(�)(i) or i /∈ Dom(P̃C(�)) holds for some i ∈ Dom(PC(�
)). Say that PC(�) matches i via the cycle ν : S → S at Step k, while

PC(�)(j) = P̃C(�)(j) holds for all j ∈ S ′, the set of all agents matched

by PC(�) in Steps 1 through k − 1. As long as some agents in S ′ remain

unmatched in the trading process of P̃C(�) the agents in S either all take

part in pointing chains terminating with some shifts in S ′ or they form the

cycle ν. If all agents in S form the cycle ν at some step, they cannot become

part of any other cycle at any later step. Since PC(�)(j) = P̃C(�)(j)

holds for each j ∈ S ′, the cycle ν then forms among the agents who remain

unmatched by P̃C(�) a contradiction. So we must have PC(�) ⊂ P̃C(�)

for each �. Since any cycle ν that forms at Step k of the of P̃C(�) forms at

some Step k′ ≤ k under PC(�), the inverse subset relation also holds. �

Proof of Lemma 3:

1. Say agent i is the smallest agent such that µ is not consistent with (i),

(i, i + 1), or (i − 1, i). Since µ is individually rational, �i∈ Ω1
i , and
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µ(i) > i, we have µ(i) = i+ 1. Since (i, i+ 1) is not consistent with µ,

µ(i+ 1) must by the same reason equal i+ 2. For µ′ to be a matching

some agent i′ ≥ i+2 must then be matched with shift i, a contradiction

to individual rationality given that �i′∈ Ω1
i′ .

2. Let i∗ : = minQ(�). Define a function f : Q(�) → Q(�) such that

f(i) is agent i’s most preferred shift in Q(�). If f(i∗) = i∗ then PC(�
)(i∗) = i∗ and i∗ cannot be inQ(�). Since�i∗∈ ΩT

i∗ , i
∗+1 must be agent

i∗’s most preferred shift in Q(�) we have f(i∗) = i∗ + 1 ∈ Q(�). Now

suppose that f(i) = i+ 1 ∈ Q(�) holds for all i∗ ≤ i < n. If n− 1 or n

is agent n’s most preferred shift in Q(�) then PC(�)(n) ∈ {n, n− 1}
and n cannot be in Q(�). So f(n) = n + 1 ∈ Q(�). In sum we

obtain that {i∗, . . . , } ⊂ Q(�) and consequently Q(�) = {i∗, . . . } =

N \ (Dom(PC(�))).

3. Say there exists some i◦ such that �i◦ : i
◦+1, i◦ and �i: i+1, i−1, i for

all i > i◦. Under νE[i◦] each even i ≥ i◦ works his most preferred shift.

Conditioning on each even agent working their most preferred shift each

odd agent gets to work his most preferred shift in {i◦, . . . } and νE[i◦]

is locally Pareto optimal. Only one agent finds a shift in {1, . . . , i◦−1}
acceptable for some profile in Ω1: this is agent i◦. But according to the

particular profile �, i◦ only finds shifts in {i◦, . . . } acceptable. So νE[i◦]

is also globally Pareto optimal. Mutatis mutandis the same applies to

νO[i◦].

�

Proof of Theorem 2: Fix a profile �∈ Ω1, an agent i, a deviation �′i.
For �, define S, �◦ and i◦ as in the main body of the text.

Fix a mechanism PCf .

Individual rationality: If i < i◦ then agent i considers PCf (�)(i) =

PC(�◦S,�−S)(i) by Lemma 2 acceptable at (�◦S,�−S). Since the set of �◦i -
acceptable shifts is a subset of the set of �i-acceptable shifts for each i ∈ S,

PCf (�)(i) is�i-acceptable for any i ∈ Dom(PC(�◦S,�−S)(i)). If i ≥ i◦ then
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PCf (�)(i) either equals νE[i◦](i) or νO[i◦](i) and is therefore �i-acceptable.

PCf is in sum individually rational.

Pareto optimality: Suppose there exists a matching µ such that µ(i) %i

PCf (�)(i) for all i ∈ N and µ(j) �j PC
f (�)(j) for some j ∈ N. If j ∈ S

then j only prefers j + 1 to PCf (�)(j). So we must have µ(j) = j + 1

and - by part 1 of Lemma 3 - µ(j + 1) = j. The Pareto dominance of µ

(over PCf (�)), the individual rationality of PCf and j ∈ S then imply the

contradiction j = µ(j + 1) %j+1 PC
f (�)(j + 1) %j+1 j + 1 �j+1 j. So we

must have PCf (�)(i) = µ(i) for all i ∈ S.

Combining PCf (�)(i) = µ(i) for all i ∈ S with µ(i) %i PC(�◦S,�−S)(i)

for all i ∈ Dom(PC(�◦S,�−S))\S the global Pareto optimality PC(�◦S,�−S)

at (�◦S,�−S) (established in Lemma 2) implies that µ(i) must also equal

PCf (�)(i) = PC(�◦S,�−S)(i) for all i ∈ Dom(PC(�◦S,�−S)) \ S. Since

PCf (�) matches the remaining agents {i◦, . . . } = N \Dom(PC(�◦S,�−S))

via νf(�)[i◦], which is by part 3 of Lemma 3 globally Pareto optimal, µ cannot

Pareto domiante PCf (�) at � and PCf is Pareto optimal.

Strategyproofness If i ∈ S then i+1 �i+1 i and PCf (�′i,�−i)(i) 6= i+1

holds by the individual rationality of PCf . Since PCf (�)(i) is agent i’s

preferred shift in N \ {i + 1} we have that PCf (�)(i) %i PC
f (�′i,�−i)(i).

If i < i◦ and i /∈ S then PCf (�)(i) %i PC
f (�′i,�−i)(i) holds by Lemma 2.

If i ≥ i◦ then PCf (�)(i) %i PC
f (�′i,�−i)(i) holds by the assumption on f

made in the definition of PCf . In sum PCf is strategy proof.

Say that M : Ω1 → M is good. Theorem 1 implies that M must be

consistent with permacycles. So if PC(�) is a matching we are done.

So assume that S 6= ∅ and consider some i ∈ S. Since M is individually

rational and since i ∈ S, (i, j) 6⊂ M(�). By part 1 of Lemma 3 M(�)(i) 6=
i + 1. As a good mechanism M is by Theorem 1 consistent with PC. Since

M is strategy proof we therefore have M(�)(i) % PC(�◦i ,�−i)(i) = M(�◦i
,�−i)(i). Since M(�)(i) 6= i+1 and since PC(�◦i ,�−i)(i) is the �i-best shift

in N \ {i+ 1}, we have M(�)(i) = PC(�◦i ,�−i)(i) = PCf (�)(i). Given the

matches of any i ∈ S, PC(�◦I ,�−I)(�) ⊂M(�) must hold by the arguments

in the proof of Theorem 1.

If S has a maximum, suppose that M(�) restricted to {i◦, . . . } was nei-
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ther νE[i◦] nor νO[i◦]. So suppose there exists some agent j > i◦ with

M(�)(j) = j. Since M is consistent with permacycles M(�′j,�−j)(j) =

PC(�′j,�−j)(j) = j − 1 holds for �′j: j − 1, j. But since j > i◦ we have

�j: j + 1, j − 1, j and therefore M(�′j �−j)(j) �j M(�)(j) a contradiction

to the strategyproofness of M .

The first part of the proof implies that PCE is Pareto optimal and indi-

vidually rational. It moreover implies that no agent i < i◦ can benefit from

misstating his preferences. To see that PCE(�)(i) %i PC
E(�′i,�−i)(i) also

holds for i ≥ i◦ note that each even i ≥ i◦ is matched with PCE(�)(i) = i+1

his most preferred shift and therefore has not incentive to deviate. If i ≥ i◦

is odd then PCE(�)(i) is the second best shift according to �i. Given that

each i > i◦ ranks i+ 1 at the top, PCE(�′i,�i)(i) = i+ 1 would have to hold

for i to improve upon PCE(�)(i). However PCE(�′i,�i)(i) 6= i+ 1 holds for

all �′i and PCE is strategyproof. �

Proof of Theorem 4: Suppose that OI(�) was dominated by a matching

µ where for any agent i there exists a cycle ν and a number r such that ν ⊂ µ

i ∈ Dom(ν) ⊂ {(r − 1)I + 1− T, . . . , rI}. For each such cycle ν let r(ν) be

the smallest number such that Dom(ν) ⊂ {(r − 1)I + 1− T, . . . , rI}.16
Now choose ν∗ such that ν∗ ⊂ µ, ν∗ 6⊂ OI(�), and ν ⊂ OI(�) for all

ν ⊂ µ with r(ν) < r(ν∗). Note that each agent i ∈ {1, . . . , (r(ν∗)−1)I−T )}
belongs to to some cycle ν with r(ν) < r(ν∗). The open intervals mechanism

finds and finalizes all these matches by Round r(ν∗) at the latest. Since

Dom(ν∗) ⊂ {(r(ν∗)−1)I+1−T, . . . , r(ν∗)I} and since OI(�) does not match

any agent or shift i ∈ Dom(ν∗) with an agent or shift j ≤ (r(ν∗) − 1) − T ,

all agents and shifts in Dom(ν∗) take part in Round r(ν∗) of OI(�).

First suppose that ν∗ = ρ for some trading cycle ρ that occurs in the

application of Gale’s top trading cycles in Round r(ν∗). Since OI(�)(i) 6=
ν∗(i) for some i, this agent i must go on to Round r(ν∗) + 1 to swap ρ(i) =

ν∗(i) against the different and strictly �i-preferred shift OI(�)(i). But then

we have OI(�)(i) �i ρ(i) = ν∗(i) = µ(i) and µ cannot Pareto dominate OI(�
16To see that a cycle ν may belong to two different such sets note that the cycle ν :

{2I} → {2I} belongs to {I + 1− T, . . . , 2I} as well as to {2I + 1− T, . . . , 3I}.
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). So ν∗ cannot equal to a trading cycle that forms at Round r(ν∗). Therefore

there exist two agents j ∈ Dom(ν∗) and j′ 6= j respectively matched via

trading cycles ρ and ρ′ at Round r(ν∗) of OI(�) with ρ(j) 6= ν∗(j) = ρ′(j′)

and ρ′ forms no earlier than ρ at Round r(ν∗).17 Since ρ forms no later than

ρ′ we have ρ(j) �j ρ
′(j′) = ν∗(j). Since agent j can only improve his shift

if he goes on to Round r(ν∗) we have OI(�)(j) %j ρ(j). By transitivity we

obtain OI(�)(j) �j ν
∗(j) = µ(j) and µ cannot Pareto dominate OI(�).

To see that truthtelling is a dominant strategy for i ∈ {(r−1)I+1, . . . , rI}
if and only if i ≤ rI−T , first say that i ≤ rI−T so that OI(�)(i) = G(�r)(i).

For any deviation �′i we have OI(�′i,�−i) = G(�′′i ,�r
−i)(i) where �′′i is the

restriction of �′i to τ r(Ir) the set of shifts available in trading Round r.

Since G is strategy proof we have G(�r)(i) �r
i G(�′′i ,�r

−i)(i). Since �r
i is a

restriction of�i the preceding preference statement implies OI(�)(i) = G(�r

)(i) %i G(�′′i ,�r
−i)(i) = OI(�′i,�−i) and truthelling is a dominant strategy

for i.

If i > rI−T , let j : = rI−T and j′ : = rI+1, �j: i, j, �i: j
′, j, i, �′i: j′, i,

�j′ : i, j
′, and �i=�e

i for all other agents i. Agent i enters with Round r. If

he truthfully reveals his preference he is matched with j in round r. This

match is finalized in round r since j ≤ rI − T , yielding OI(�)(i) = j. If i

instead claims his preference is �′i then agent i is temporarily matched with

his own shift in round r. In round r+ 1 i swaps shifts with j′ and we obtain

OI(�′i,�−i)(i) = j′. Since j′ �i j agent i has an incentive to misrepresent

his preference at the profile �. �
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