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Abstract

Fix a Pareto optimal, strategy proof and non-bossy deterministic

matching mechanism and define a random matching mechanism by

assigning agents to the roles in the mechanism via a uniform lottery.

Given a profile of preferences, the lottery over outcomes that arises

under the random matching mechanism is identical to the lottery that

arises under random serial dictatorship, where the order of dictators

is uniformly distributed. This result extends the celebrated equiva-

lence between the core from random endowments and random serial

dictatorship to the grand set of all Pareto optimal, strategy proof and

non-bossy matching mechanisms.

1 Introduction

A matching problem consists of a finite set of agents, a finite set of indivisi-

ble objects, henceforth called houses, and a profile of all agents’ preferences

over all houses. A matching is a maximal set of agent-house pairs. Mecha-

nisms map the sets of preference profiles to the set of matchings, with serial

dictatorship and Gale’s top trading cycles (GTTC) the two most prominent
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examples. Serial dictatorship matches one agent - the first dictator - to his

most preferred house in the grand set of all houses. A next agent - the sec-

ond dictator - is matched with his most preferred house in remainder, and

so forth. A GTTC starts with an initial matching called the endowment and

requires that there are equally many agents and houses. In a first round

each agent points to his most preferred house and each house points to its

owner according to the endowment. At least one pointing cycle forms and

each agent in such a cycle is matched with the house he points to and exits.

The same procedure is then repeated until all agents are matched.

Serial dictatorship and GTTC satisfy three central properties. They are

Pareto optimal : they map each profile of preferences to a matching that is

Pareto optimal at that profile. They are strategy proof : there is no profile

of preferences and agent such that this agent could benefit from reporting a

false preference, keeping the reports of all other agents fixed. They are non-

bossy : there is no profile of preferences, agent and deviation for this agent,

such that the agent obtains the same house under the original profile and

the deviation (keeping all other agents’ preferences fixed) while the matches

of some other agents change. Call any mechanism that satisfies these three

properties good.

No good mechanism treats equals equally: when two different agents sub-

mit the same preference they end up with different houses. Randomization

fixes this flaw. Consider drawing the sequence in which agents become dicta-

tors in a serial dictatorship from a uniform distribution on all such sequences.

The resulting random matching mechanism is known as random serial dicta-

torship or random priority. Any two agents who submit the same preferences

in random serial dictatorship face the same lottery over houses. The same

method can be used to symmetrize any good mechanism. Instead of assign-

ing one agent, say Anton, to assume the role of agent 1 in a mechanism, and

assigning Betty to the role of agent 2, and so forth, the symmetrization of

the mechanism uses a uniform lottery over all possible such assignments.

The set of all good mechanisms is large. So this method would seem to

generate many different random matching mechanisms, viewed as mappings

from profiles of preferences to lotteries over matchings. This is not the case:

Theorem 1 shows that the symmetrization of any good mechanism coincides
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with random serial dictatorship.

The first observations of this sort relate to GTTC: Abdulkadiroglu and

Sönmez [1] and Knuth [8] independently proved the identity of random se-

rial dictatorship and the symmetrization of GTTC, known as the core from

random endowments. Both their proofs start by fixing an arbitrary profile of

preferences. They then construct a bijection between the set of all sequences

of agents as dictators and the set of initial endowments such that the out-

come of the serial dictatorship with a given sequence equals the outcome of

GTTC with the image of this given sequence. The bijection ensures that (at

the fixed profile of preferences) the number of sequences with which serial

dictatorship yields some fixed matching equals the number of initial endow-

ments with which GTTC yields the same matching. So the probability of

that matching under random serial dictatorship (the proportion of sequences

with which serial dictatorship yields the matching) equals the probability of

the matching under the core from random endowments (the proportion of

initial endowments with which GTTC yields the matching). This result has

been extended to increasingly larger sets of good mechanisms by Pathak and

Sethuraman [11], Caroll [5], and Lee and Sethuraman [9].

There are three major differences between Theorem 1 and the preceding

results. First, I show the equivalence for all good mechanisms. Second,

Theorem 1 holds whether there are equally many agents and houses or not; in

fact my proof does not distinguish between these cases. These two differences

are made possible by the third innovation: a new simple strategy of proof.

This strategy relies on the construction of a sequence of good mecha-

nisms M0,M1, · · · ,MK from an arbitrary good mechanism M0 to a serial

dictatorship MK , such that any two consecutive mechanisms Mk,Mk+1 have

identical symmetrizations. I follow the bijective strategy pioneered by Ab-

dulkadiroglu and Sönmez [1] and Knuth [8] to establish the identity of these

symmetrizations. To make this step as straightforward as possible the differ-

ence between any two consecutive mechanism is kept at a minimum.

The proof crucially relies on Theorem 2 which characterizes the set of good

mechanisms as the set of trading and braiding mechanisms. Like GTTC,

trading and braiding mechanisms use rounds of trade in pointing cycles to

determine matchings. In any trading round, houses point to their owners
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and owners point to their most preferred houses. Matchings are obtained

through the consecutive elimination of trading cycles. Trading and braiding

mechanisms generalize three aspects of GTTC. One agent might own multiple

houses, a feature introduced by Papai [10]. There is a second form of control

called brokerage, introduced by Pycia and Unver [12]. At any normal trading

round there is at most one brokered house. A brokered house points to its

broker (just as an owned house points to its owner). The broker points to

the house he most likes among the owned houses. Finally, if there are only

three houses left a trading and braiding mechanism might terminate in a

braid. Braids, in turn are good mechanisms that aim to maximally avoid

some specific matches between these three houses and three agents.

This paper is the first to characterize the set of all good mechanisms.

While Pycia and Unver [12] lays out the same goal it arrives at an incorrect

characterization: the set of Pycia and Unver [12] trading cycles mechanisms

represents a a strict subset of the set of all good mechanisms. If one excludes

braids from the set of good mechanisms one obtains Pycia and Unver’s [12]

set of trading cycles mechanisms. In response to the present characterization

Pycia and Unver [13] presents a revised set of trading cycles mechanisms that

accommodates braids (now called “three broker∗ mechanisms”).

My characterization in Theorem 2 and its proof owe a large debt to Pycia

and Unver [12]. I build on Pycia and Unver’s [12] ingenious idea to use trading

processes with two forms of control, ownership and brokerage, to frame good

mechanisms. However, I arrive at a different conclusion. While the Pycia

and Unver [12] trading cycles mechanisms allow for at most one broker in a

round of trade, I show that there can be rounds with three brokers. In this

case the mechanism terminates as a braid. All parts of the proof pertaining

to braids originate with the current treatment.

My paper is concerned with a fully symmetric treatment of all agents.

It does not speak to existing results on random matching mechanisms that

treat different agents differently. Ekici [6], for example, considers two differ-

ent matching mechanisms that both respect initial (private) allocations. He

shows that a uniform randomization of any additional “social” endowment

of houses in the two mechanisms yields the same random matching mech-

anism. Similarly Carroll [5] considers the case of matching mechanisms in
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which agents are partitioned into groups and provides an equivalence result

for the case in which agents are treated symmetrically only within groups.

Lee and Sethuraman’s [9] equivalence results also cover the case where agents

are partitioned into groups that are treated asymmetrically.

2 A sketch of the proof: GTTC

To apply my strategy of proof to GTTC let M0 be the GTTC where each

agent i is endowed with house hi. Construct a sequence of mechanisms

M1, . . . ,MK such that each mechanism is derived from its predecessor by

consolidating the ownership of exactly two agents. The sequence terminates

with a serial dictatorship MK when all ownership has been maximally con-

solidated. M1 is identical to GTTC except that agent 1 owns h1 and h2.

Once agent 1 exits, agent 2 inherits the unmatched house in {h1, h2}.
To see that the symmetrizations of M0 (GTTC) and M1 are identical,

fix a profile of preferences. Fix an assignment of agents to roles (initial

endowment). To keep things simple, let this endowment be the original one

where i owns hi. Suppose that some cycle at the start of M0 involves agent

1 but not agent 2. In this case, agent 1 is part of the same cycle at the

start of M1; the only difference is that agent 1 additionally owns house h2
under M1. But for the formation of cycles under the given preferences this

difference does not matter. Once the cycle involving 1 is matched, M0 and

M1 continue identically (given that 2 inherits house h2 under M1). So M0

and M1 yield the same outcome under the given profile of preferences and

assignment of agents to roles.

Now assume that in the first round of M0 there is a single pointing cycle.

Say this cycle, 2 → h → i → h∗ · · · → h2 → 2, involves 2 but not 1 who

prefers h∗ to all other houses. Every agent in the cycle is matched to the

house he points to, i 6= 1, in particular, is matched with h∗. Under M1, 1

owns h2, the cycle 1 → h∗ · · · → h2 → 1 forms in the first round, and 1 is

matched to h∗. If we switch the roles of agents 1 and 2 in M1 2 owns h1 and

h2 at the start of M1. The cycle 2→ h→ i→ h∗ · · · → h2 → 2 which forms

in the first round of M0 with the original assignment also forms in the first

round of M1 with the new assignment. The fact that 2 additionally owns
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h1 is irrelevant. Once the agents and houses in this cycle exit, M1 with the

new assignment is identical to M0 with the original assignment (given that

1 inherits house h1).

The preceding two paragraphs illustrate the bijections used to prove the

identity of symmetrizations. In the first case where M0 and M1 map the

given profile of preferences to the same outcome, the bijection maps the

original assignment of roles onto itself. In the second case where M0 and M1

map the profile of preferences to the different outcomes, the new assignment

is derived from the original by swapping the roles of agents 1 and 2. It turns

out that the above reasoning also applies when neither 1 nor 2 is matched

in the first round and when both take part in the same cycle under M0. So

there exists a bijection between the assignments of roles such that M0 with

the original assignment and M1 with the image of that assignment map the

given profile of preferences to the same matching. The existence of such a

bijection implies that the symmetrizations of M0 and M1 are identical. The

remaining mechanisms in the sequence M2, · · · ,MK are constructed via the

further consolidation of ownership. At the start of M2 agent 1 owns h1, h2
and h3, at the start of M3 he also owns h4. The process of consolidation

terminates when M0 has been transformed into a serial dictatorship MK .

To apply the consolidation strategy to any good mechanism M0 the above

arguments have to be extended to the case where agents may own multiple

houses. A somewhat different approach is needed to absorb brokers and to

replace braids with serial dictatorships. One feature that all these cases share

with the simple case of M0,M1 is that the bijections between assignments

of roles which show that the symmetrization of two consecutive mechanisms

Mk and Mk+1 are identical, switch the roles of at most three agents.

3 Definitions

A housing problem consists of a set of agents N : = {1, · · · , n}, a finite set

of houses H and a profile of preferences R = (Ri)
n
i=1. The option to stay

homeless ∅ is always available: ∅ ∈ H. Preferences Ri are linear orders1 on

1So hRih
′ and h′Rih together imply h = h′.
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H and each agent prefers any house to homelessness, so hRi∅ holds for all

i ∈ N, h ∈ H. The notation hRiH
′ means that agent i prefers h to each

house in H ′. The set of all profiles R is denoted by R. The restriction of

R to some N ′ ⊂ N and H ′ ⊂ H is a profile of preferences R (defined for N ′

and H ′) with hRig ⇔ hRig for all h, g ∈ H ′ and i ∈ N ′.
Submatchings match subsets of agents to at most one house each. A

submatching is a function ν : N → H such that ν(i) = ν(j) and i 6=
j imply ν(i) = ∅. The sets of agents and houses matched under ν are

Nν : = N \ ν−1(∅) and Hν : = ν(Nν). When ν(i) 6= ∅ then i is matched

to house ν(i); Nν : = N \ Nν and Hν : = H \ Hν are the sets of agents

and houses that remain unmatched under ν. Any submatching ν can also

be interpreted as a set of agent-house pairs {(i, h) : ν(i) = h 6= ∅}. For

two submatchings ν and ν ′ with Nν ∩Nν′ = ∅ = Hν ∩Hν′ the submatching

ν ∪ ν ′ : Nν ∪ Nν′ → Hν ∪ Hν′ is defined by (ν ∪ ν ′)(i) = ν(i) if i ∈ Nν

and (ν ∪ ν ′)(i) = ν ′(i) otherwise. A submatching ν is considered maximal

(minimal) in a set of submatchings if there exists no ν ′ in the set such that

ν ( ν ′ (ν ′ ( ν). Any maximal submatching (in the set of all submatchings)

is a matching, so µ is a matching if and only if Hµ = H or Nµ = N (or

both) hold. The sets of all matchings and of all lotteries over matchings are

denoted M and ∆M respectively.

A (deterministic) mechanism is a function M : R → M where i is

matched with M(R)(i) under M at R. A mechanism M is Pareto optimal

if for no R there exists a matching µ 6= M(R) such that µ(i)RiM(R)(i) for

all i.2 A mechanism M is strategy proof if M(R)(i)RiM(R′i, R−i)(i) holds

for all triples R,R′i, i: declaring one’s true preference is a weakly dominant

strategy. A mechanism M is non-bossy if M(R)(i) = M(R′i, R−i)(i) implies

M(R) = M(R′i, R−i) for all triples R,R′i, i, so an agent can only change

someone else’s match if he also changes his own match. A mechanism M is

good if it is Pareto optimal, strategy proof and non-bossy.

Let P be the set of all permutations p : N → N . The permutation

involving only agents j and j′ is denoted (j, j′), so (1, 2)(2) = 1, (1, 2)(1) = 2,

and (1, 2)(i) = i for i 6= 1, 2. Abusing notation p or p−1 also stands for the

2Since all Ri are linear some i∗ must strictly prefer µ(i∗) to M(R)(i∗) for µ to differ

from M(R) and for µ(i)RiM(R)(i) to hold for all i.
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restriction of p or p−1 for which some given composition is well-defined. So

for any submatching ν, ν ◦ p denotes the more precise and cumbersome ν ◦ p
where p is the restriction of p that has Nν as its image. Similarly ν ◦ p with

p = (1, 2), 1 /∈ Nν , and 2 ∈ Nν is such that ν(p(i)) = ν(i) for all i ∈ Nν \ {2}
and ν(p(1)) = ν(2).

For any mechanism M and any permutation p define the permuted

mechanism p�M : R →M via (p�M)(R)(i) = M(Rp(1), · · · , Rp(n))(p
−1(i)).

The permutation p assigns each agent in N to a “role” in the mechanism, such

that agent p(i) under p�M assumes the role that agent i plays under M .3 If

S : R →M is the serial dictatorship with agent i as the ith dictator, then p(i)

is the i-th dictator under p�S. To calculate (p�S)(R) we need to substitute

p(i)’s preference for agent i’s preference to obtain the new profile of prefer-

ences (Rp(1), · · · , Rp(n)). Under S(Rp(1), · · · , Rp(n)) agent 1 is matched p(1)’s

most preferred house. Under (p � S)(R) this house is matched with p(1):

(p� S)(R)(p(1)) = S(Rp(1), · · · , Rp(n))(p
−1(p(1))) = S(Rp(1), · · · , Rp(n))(1).

A (random matching) mechanism is a function that maps the set

of preference profiles R to the set of all lotteries over matchings ∆M: The

symmetrization of a mechanism M : R →M is a random matching mech-

anism ∆M : R → ∆M that calculates the probability of matching µ at the

profile R as the probability of a permutation p with µ = (p�M)(R) under

the uniform distribution on P . So we have

∆M(R)(µ) : =
|{p : (p�M)(R) = µ}|

n!
.

Abdulkadiroglu and Sönmez [1] call ∆M a random serial dictatorship if

M is a serial dictatorship and the core from random endowments if M

is GTTC.

Definition 1 Two (deterministic) mechanisms M and M ′ are s-equivalent4

if ∆M = ∆M ′.

3The symbol � is chosen as a reminder that p � M arises out of a non-standard

composition of the permutation p and the mapping M : � is similar to but different from

◦, the standard operator for compositions.
4The letter “s” is a reminder that symmetrizations are the base of s-equivalence.
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4 The Result

Theorem 1 Any good mechanism is s-equivalent to serial dictatorship.

For the proof fix an arbitrary good mechanism M0 and construct a se-

quence of of mechanisms M1, · · · ,MK such that ∆Mk = ∆Mk+1 holds for

0 ≤ k < K and MK is a serial dictatorship. The s-equivalence of any two

adjacent Mk,Mk+1 implies the s-equivalence of M0 and MK . The mini-

mal difference between Mk and Mk+1 is crucial. It simplifies the task to

find a bijection f : P → P with (p �Mk)(R) = (f(p) �Mk+1)(R) for all

p ∈ P . Such a bijection exists if and only if |{p : (p � Mk)(R) = µ}| =

|{p : (p�Mk+1)(R) = µ}| holds for all R and all matchings µ. The equality

|{p : (p�Mk)(R) = µ}| = |{p : (p�Mk+1)(R) = µ}| is, in turn, equivalent

to ∆Mk(R)(µ) = ∆Mk+1(R)(µ), implying that a bijection f exists if and

only if Mk and Mk+1 are s-equivalent.

5 Trading and braiding mechanisms

My construction of marginally different good mechanisms Mk,Mk+1 relies on

the characterization of the set of all good mechanisms as trading and braiding

mechanisms. Just like GTTC, trading and braiding mechanisms use sequen-

tial trading rounds to determine matchings. In such trading rounds owned

houses point to their owners, and owners point to their most preferred houses.

Agents in cycles are matched to the houses they point to. If a matching re-

sults the mechanism terminates, if not a new round ensues. There are three

differences between GTTC and trading and braiding mechanisms. Following

Papai’s [10] hierarchical exchange mechanisms trading and braiding mecha-

nisms permit the ownership of multiple houses. Following Pycia and Unver

[12] trading cycles mechanisms there is a second form of control in trading

and braiding mechanisms: houses might be “brokered”. At any given trading

round there is at most one broker and he brokers exactly one house. This

house points to the broker and the broker points to his most preferred house

among the owned ones. Finally when there are only three houses left a trad-

ing and braiding mechanism might terminate as a braid. Braids are good
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mechanisms that match three houses to three agents with the aim to obtain

a matching that maximally differs from some fixed “avoidance matching”.

The braid Bω : R → M is a mechanism for a problem with exactly

three houses and at least as many agents. It is fully defined through the

avoidance matching ω. Outcomes Bω(R) are chosen to avoid matching i

to ω(i) while keeping the set of matched agents equal to the set of agents

matched under ω. For any R let PO(R) be the set of Pareto optima µ with

Nω = Nµ and let Mini(R) : = argminµ∈PO(R) | {i : µ(i) = ω(i)} | be the

subset of all µ ∈ PO(R) that minimally coincide with ω. If Mini(R) is a

singleton let Mini(R) = {Bω(R)}. If not, at least two agents in Nω must

rank some house ω(i) at the top. If only one agent j 6= i ranks ω(i) at the

top then B(R) is the unique element in Mini(R) that matches j to ω(i). If

both agents j 6= i rank ω(i) at the top, then Bω(R) is i’s preferred matching

in Mini(R).

To concretely illustrate braids let H = {e, f, g} and N = {1, 2, 3}. Given

| H |=| N |= 3 it is convenient to denote matchings as vectors with the

understanding that the i-th component represents agent i’s match. Moreover,

Nω = Nµ is satisfied by any matching µ and can be ignored. Let ω : =

(e, f, g). A matching µ is maximally avoidant if µ(i) 6= ω(i) for all i ∈ N .

There are exactly two such matchings: ω′ : = (g, e, f), and ω′′ : = (f, g, e).

If all three agents rank e at the top and f at the bottom under R then

Mini(R) = {ω′, ω′′}. At least two agents rank house e = ω(1) at the top.

Since 2 and 3 both rank ω(1) at the top, agent 1’s preference of g = ω′(1)

over f = ω′′(1) implies B(R) = ω′. Under (R′2, R−2) where R′2 ranks g at the

top and e at the bottom there are four Pareto optima: ω, (e, g, f), (g, f, e)

and ω′′. So Mini(R) = {ω′′} and B(R) equals ω′′.

To formally define trading and braiding mechanisms I use Pycia and

Unver’s [12] notational system for matching mechanisms that determine out-

comes via trading processes. In this parsimonious system mechanisms are

defined via sets of control rights functions. A control rights function at

some submatching ν cν : Hν → Nν × {o, b} assigns control rights over any

unmatched house to some unmatched agent and specifies a type of control.

If cν(h) = (i, x), then agent i controls house h at ν. If x = o, then i owns

h; if x = b he brokers h. Control rights functions satisfy the following three
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criteria:

(C1) If more than one house is brokered, then there are exactly three houses

and they are brokered by three different agents.

(C2) If exactly one house is brokered then there are at least two owners.

(C3) No broker owns a house.

A control rights structure c maps a set of submatchings ν to control

rights functions cν . For now assume that c is specifies all cν for all submatch-

ings ν. The following algorithm uses c to map any profile of preferences R

to a matching.5

Initialize with r = 1, ν1 = ∅

Round r: only consider the remaining houses and agents Hνr and Nνr .

Braiding: If more than one house is brokered under cνr , terminate the

process with M(R) = νr ∪Bω(R) where the avoidance matching ω is defined

via cνr(ω(i)) = (i, b) and R is the restriction of R to Hνr and N νr . If not, go

on to the next step.

Pointing: Each house points to the agent who controls it, so h ∈ Hνr points

to i ∈ N νr with cνr(h) = (i, ·). Each owner points to his most preferred house,

so owner i ∈ Nνr points to house h ∈ Hνr if hRiHνr . Each broker points

to his most preferred owned house, so broker ib ∈ Nνr with cνr(hb) = (ib, b)

points to house h ∈ Hνr \ {hb} if hRibHνr \ {hb}.

Cycles: Select at least one cycle. Define ν such that ν(i) : = h if i points

to h in one of the selected cycles.

Continuation: Let νr+1 : = νr ∪ ν. If νr+1 is a matching terminate the

process with M(R) = νr+1. If not, continue with round r + 1.

5Without any further conditions, the algorithm may map someR to multiple matchings.

Consider the problem H = {e, g}, N = {1, 2, 3}, c∅(e) = (1, o), c∅(g) = (2, o), c{(1,e)}(g) =

c{(2,g)}(e) = (3, o) and R such that 1 and 2 respectively rank e and g highest. In the

first round two cycles form. Removing both at once the matching {(1, e), (2, g)} results.

Removing only {(1, e)}, the cycle involving g and 3 forms in the next round yielding the

matching {(1, e), (3, g)}. Conditions (C4), (C5), and (C6) below ensure that a mechanism

is defined via the application of the algorithm to c. Section 4 of the online appendix proves

this claim.
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A submatching ν is reachable under c at R if one can choose to match

cycles in the above algorithm (for the given c and R) such that some round

r starts with ν = νr. A submatching ν is c-relevant if it is reachable under

c at some R.6 A submatching ν is a direct c-successor of some c-relevant

ν◦ if there exists a profile of preferences R such that ν◦ is reachable under

c at R and ν arises out of matching a single cycle at ν◦. A trading and

braiding mechanism is a control rights structure c that maps any c-relevant

submatching ν to a control rights function cν and satisfies requirements (C4),

(C5), and (C6).

Fix a c-relevant ν◦ and a direct c-successor ν to ν◦.

(C4) If i /∈ Nν owns h at ν◦ then i owns h at ν.

(C5) If at least two owners at ν◦ remain unmatched at ν and if ib /∈ Nν

brokers hb at ν◦ then ib brokers hb at ν.

(C6) If i owns h at ν◦ and ν and if ib /∈ Nν brokers hb at ν◦ but not at ν,

then i owns hb at ν and ib owns h at ν ∪ {(i, hb)}.

While every good mechanism can be uniquely represented as a trading and

braiding mechanism, the proof of Theorem 1 also makes use of a slightly larger

set of representations. A control rights structure c defines a lax (trading

and braiding) mechanism if it satisfies (C2)’ instead of (C2) keeping all

else equal.

(C2)’ If exactly one house is brokered then there is at least one owner.

The above algorithm, together with the (lax) trading and braiding mech-

anism c, is used to map any fixed profile of preferences R to an outcome c(R).

If one strengthens (C1) to require that that at most one house is brokered,

one obtains the set of Pycia and Unver [12] trading cycles mechanisms. There

are also some representational differences. A Pycia and Unver [12] trading

6Consider a control rights structure c with three agents {1, 2, 3} and 4 houses {e, f, g, h},
where agent 1 starts out owning house e and agent 2 starts out owning the remainder. Let

R be such that 1 and 2 respectively rank e, and f at the top. The submatchings {(1, e)},
{(2, f)} and {(1, e), (2, f)} are reachable under c at R; {(2, g)} is c-relevant since 2 could

appropriate house g, but not it is not reachable under c at R given that 2 prefers f to g;

{(3, h)} is not c-relevant since 3 does not own h at ∅.
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cycles mechanism satisfies (C2)’ instead of (C2) and defines control rights

functions for every submatching. The latter difference implies a notational

difference between (C4), (C5) and (C6), on the one hand, and the Pycia

and Unver [12] requirements that link cν◦ and cν for different ν◦ and ν, on

the other hand. The stronger (C2) together with the definition of c only on

relevant submatchings allows for the uniqueness statement in the following

theorem.

Theorem 2 Any lax trading and braiding mechanism is good. Any good

mechanism has a unique representation as a trading and braiding mechanism.

Since any trading and braiding mechanism is a lax mechanism, Theorem 2

implies that trading and braiding mechanisms are good. Since any braidBω is

a trading and braiding mechanism, Theorem 2 comprises the statement that

braids are good. Theorem 2 moreover implies that any lax mechanism can

be represented as a trading and braiding mechanism. The next proposition

explains how to construct such alternative representations.

Proposition 1 Fix any lax mechanism c. For any c-relevant ν that satisfies

(C2) let cν = cν. For any c-relevant ν with cν(hb) = (ib, b) and cν(h) = (i∗, o)

for some ib, i
∗ ∈ N ν, hb ∈ Hν and all h ∈ Hν \ {hb} let cν(h) = (i∗, o) for all

h ∈ Hν and cν∪{(i∗,hb)}(h) = (ib, o) for all h ∈ Hν \ {hb}. Then c is a trading

and braiding mechanism and c(R) = c(R) holds for all R ∈ R.

The proofs of Theorem 2 and of Proposition 1 are in the online appendix.

The proof of Theorem 2 starts by showing that braids are good. The re-

mainder of Theorem 2 and of Proposition 1 are proved by induction over the

number of agents n. With only one agent both obviously hold true. The

next step is to show that lax mechanisms are well-defined: the order of the

elimination of trading cycles does not matter. This flexibility together with

the inductive hypothesis that any submechanism with fewer than n agents

is good shortens the proof that any lax mechanism is good to a page. Pycia

and Unver [12] broke the path for converse direction of the proof (any good

mechanism can be represented as a trading and braiding mechanism). While

my proof builds on the groundwork laid in Pycia and Unver [12], it ultimately
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deviates to show that more than one house might be brokered at some round

of the mechanism and that any such round is a braid.

6 Tools for Trading and Braiding Mechanisms

A c-relevant submatching ν is c-dictatorial if a single agent (the dictator

at ν) owns all houses Hν according to cν . A c-relevant submatching that is

not dictatorial is c-nondictatorial. A (lax) trading and braiding mechanism

c is a path dependent serial dictatorship if any c-relevant submatching is

c-dictatorial. A path dependent serial dictatorship c is a serial dictatorship

if the dictator at any c-relevant ν depends only on the number of agents

matched under ν.

Any c-relevant submatching ν∗ defines a submechanism c[ν∗] that maps

restrictions R (of R ∈ R to N ν∗ and Hν∗) to submatchings ν with the feature

that ν∗∪ν is a matching in the original problem. The control rights structure

c[ν∗] is such that ν = ν∗∪ν ′ is c-relevant if and only if ν ′ is c[ν∗]-relevant. For

any such pair ν, ν ′ we have c[ν∗]ν′ = cν . If c is a (lax) trading and braiding

mechanism then c[ν∗] also defines a (lax) trading and braiding mechanism.

Fixing R such that ν∗ is reachable under c at R, the definition of the trading-

cycles process implies c(R) = ν∗ ∪ c[ν∗](R).

Consider a c-relevant ν∗ 6= ∅ such that any c-relevant ν ( ν∗ is c-

dictatorial. Then the set of all c-relevant submatchings ν ( ν∗ can be rep-

resented as {νl}Ll=1, with ν1 = ∅ and νl+1 = νl ∪ {(il, ν∗(il))} with il the

dictator at νl for all 1 ≤ l < L =| Nν∗ |. Moreover ν∗ = νL ∪ {(iL, ν∗(iL))}.
To see that such a set {νl}Ll=1 exists observe that ν1 = ∅ ( ν∗ is c-relevant.

By the assumption that any c-relevant ν ( ν∗ is c-dictatorial ν1 = ∅ is c-

dictatorial. If ν∗ = {(i1, ν∗(i1))} we are done. If not ν2 = {(i1, ν∗(i1))} is

the unique direct c-successor to ∅ = ν1 with ν2 ( ν∗. Since ν2 ( ν∗, ν2 is

c-dictatorial. Mutatis mutandis, the application of the preceding arguments

to all consecutive νl establishes the claim.

A submatching ν is (p � c)-relevant if and only if ν ◦ p is c-relevant. If

ν is (p � c)-relevant then (p � c)ν(h) = (p(i), o) holds if cν◦p(h) = (i, o) and

(p � c)ν(h) = (p(i), b) holds if cν◦p(h) = (i, b). So if agent i controls house

h at ν ◦ p under c, then agent p(i) controls h at ν under p � c; the type of
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control stays the same.

Consider two mechanisms c, c′ that only differ on c-relevant submatchings

ν with ν∗ ⊂ ν. For any fixed ν with ν∗ 6⊂ ν, we have cν = c′ν and ν is c-

relevant if and only if it is c′-relevant. If ν∗ 6⊂ c(R) then c and c′ prescribe the

same control rights function for any reachable ν under c at R and we obtain

c(R) = c′(R). In the context of permuted mechanisms (p�c′)(R) = (p�c)(R)

holds for any p for which ν∗ ◦ p−1 6⊂ (p� c)(R).

7 The proof

Fix any trading and braiding mechanism c0. In Section 7.1 I construct a

sequence from c0 to a serial dictatorship cK . Step α determines whether Step

β, γ or δ should be used to transform ck into ck+1: β consolidates ownership,

γ replaces a braid with a serial dictatorship, and δ reorders dictators in a

path dependent serial dictatorship. In Section 7.2 I show that the sequence

is well-defined and terminates indeed with a serial dictatorship. In Section

7.3 I show that any two mechanisms ck, ck+1 are s-equivalent.

7.1 Construction of a sequence c0, c1, · · · , cK

Go to Step (α, 0).

Step (α, k): If ck is a serial dictatorship end with k = K. If not, go to Step

(δ, k) if ck is a path dependent serial dictatorship. If neither case applies fix a

minimal ck-nondictatorial submatching ν∗. If at most one house is brokered

at ν∗ under ck go to Step (β, k) if not go Step (γ, k).

Step (β, k): Let ck+1 be the trading and braiding mechanism that represents

the lax mechanism c which is defined as follows. For any ck-relevant ν with

ν∗ 6⊂ ν let ckν = cν . Assume w.l.o.g. that 1 and 2 own houses under ckν∗ .

Say that a ck-relevant ν is of type 0 if 1, 2 /∈ Nν . For any type 0 ν let

cν(h) = (1, o) if ckν(h) = (2, o) and cν(h) = ckν(h) for all other h ∈ Hν . Let ν

with 1 ∈ Nν be a direct c-successor to a type 0 submatching ν◦. If ν is ck-

relevant then ν is of type 1. If not then ν is of type 2. Any direct c-successor

of a type t 6= 0 submatching is of type t. For any type 1 submatching ν let
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ckν = cν , for any type 2 submatching let cν(h) = (2, o) if ckν◦(1,2)(h) = (1, o)

and cν(h) = ckν◦(1,2)(h) otherwise. Go to Step (α, k + 1).

Step (γ, k): Let ckν = ck+1
ν for any ck-relevant ν 6= ν∗. Let ck+1[ν∗] be a serial

dictatorship. Go to Step (α, k + 1).

Step (δ, k): Fix three ck-relevant submatchings ν∗ ⊂ ν ′ ⊂ ν ′′, such that

ck[ν∗] is a serial dictatorship with i the dictator at ν ′ and j < i the dictator

at ν ′′. Say i = 2 and j = 1. Let ckν = ck+1
ν for any ck-relevant ν with ν∗ 6⊂ ν

and ck+1[ν∗] = (1, 2)� ck[ν∗]. Go to Step (α, k + 1).

7.2 All transformations from ck to ck+1 are welldefined

Claim 1: If ck+1 is constructed via β (γ or δ) then it is a trading and braiding

mechanism if c[ν∗] is a lax mechanism (if ck+1[ν∗] is a trading and braiding

mechanism).

If ν∗ = ∅ the claim trivially holds; so assume that ν∗ 6= ∅. First consider

the case that β is used to construct ck+1 and that c[ν∗] is a lax mechanism.

Thanks to Theorem 2 it is sufficient to show that c is a lax mechanism. For

any ck-relevant ν with ν∗ 6⊂ ν cν = ckν satisfies (C1), (C2), and (C3) as ck is a

trading and braiding mechanism. By the same reason (C4), (C5), and (C6)

are satisfied at ν◦, ν if ν a direct c-successor to ν◦ and ν∗ 6⊂ ν. Any ν with

ν∗ 6⊂ ν is c-relevant if and only if it is ck relevant. So cν is for any c-relevant

ν with ν 6⊂ ν∗ uniquely defined as ckν .

Since ν∗ is a minimal non-dictatorial submatching all ck-relevant ν ( ν∗

are ck-dictatorial and can (by the arguments in Section 6) be represented as

{νl}Ll=1 with ν1 = ∅, νl+1 = νl ∪ {(il, ν∗(il))} for all 1 ≤ l < L =| Nν∗ |, and

νL ∪ {(iL, ν∗(iL))} = ν∗. There is exactly one pair of a c-relevant ν◦ and a

direct c-successor ν with ν◦ ( ν∗ ⊂ ν: ν◦ = νL and ν = ν∗. Since νL is

c-dictatorial (C4), (C5), and (C6) do not impose any restrictions on cν∗ .

For any c-relevant ν ⊃ ν∗ cν is defined as c[ν∗]ν′ where ν = ν∗ ∪ ν ′.
By the above arguments there is exactly one path of cycle removal to reach

ν∗ under c. So ν ⊃ ν∗ is c-relevant if and only if ν \ ν∗ is c[ν∗]-relevant,

implying that for any c-relevant ν ⊃ ν∗ there exists a c[ν∗]-relevant ν ′ such

that ν = ν∗ ∪ ν ′. The uniqueness of the path of cycle removal implies that
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ν cannot be reached on any other path, and cν = c[ν∗]ν\ν∗ is well-defined for

any c-relevant ν. Moreover, since c[ν∗] is - by assumption - a lax mechanism

(C1), (C2)’, (C3) as well as (C4), (C5), and (C6) hold for the submatchings

in c[ν∗] and c is a lax mechanism.

The above arguments have to be modified slightly to show that ck+1

is a trading and braiding mechanism if ck+1[ν∗] is a trading and braiding

mechanism when Step γ or δ is used to construct ck+1. If γ is used then

any ck-relevant ν ( ν∗ is ck-dictatorial by the same reason as above. If δ is

used the same conclusion holds as ck is a path dependent serial dictatorship.

Steps γ and δ directly construct a trading and braiding mechanism ck+1 and

c has to be replaced by ck+1 wherever it appears.

Claim 2: c[ν∗], constructed via Step β is a lax mechanism; ck+1[ν∗],

constructed via Step γ or δ is a trading and braiding mechanism.

If ck+1 is constructed via Step γ or δ then ck+1[ν∗] is a serial dictatorship

and we are done. So assume that c is constructed via Step β. Fix any type

0 ν◦ together with a direct c-successor ν. Under cν◦ there is one less owner

than under ckν◦ . Since ck satisfies (C2) there is at least one owner under cν◦ ,

as required by (C2)’. Since cν◦(h) = (i, b) only holds if ckν◦(h) = (i, b) and

since ck satisfies (C1) and (C3), cν◦ satisfies (C1) and (C3).

If ν is of type 0 then ν◦ and ν are both ck-relevant. If cν◦(h) = (1, o) then

ckν◦(h) = (i, o) = ckν(h) holds for i ∈ {1, 2} as ck satisfies (C4). The definition

of c then implies cν(h) = (1, o). So 1’s ownership continues from ν◦ to ν

under c as well as under ck. On the other hand, 2, who is an owner at ν∗

under ck, is by (C4) an owner at ν◦ and at ν under ck. Since at least two

agents (1 and 2) own houses at ν◦ and ν under ck which satisfies (C4) and

(C5), cν◦(h) = ckν◦(h) = ckν(h) = cν(h) holds for any h with cν◦(h) = (j, ·)
for some 1 6= j ∈ N ν . So (C5) and (C6) are satisfied by c at ν◦, ν as any

agent ib ∈ Nν who brokers at ν◦ under c continues to do so at ν. Since the

ownership of of agent 1 continues from ν◦ to ν under c (as shown above) c

also satisfies (C4) at ν◦ and ν.

If ν is of type 1, let cν◦(h) = (ib, b), ib /∈ Nν and cν(h) 6= (ib, b), implying

ckν◦(h) = (ib, b) and ckν(h) 6= (ib, b). Since 2 is neither matched at ν◦ nor at ν

and since 2 is an owner under ck at ν◦, 2 must by (C4) be an owner under ck

at ν. Since ck satisfies (C5) no other agent is an owner under ck at both these
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matchings. The derivation of c from ck implies that no agent is an owner at

ν◦ and ν under c. So c satisfies (C5) and (C6) at ν◦, ν. If cν◦(h) = (i, o) and

i /∈ Nν then i 6= 1, 2 as 1 is matched under ν (which is of type 1) and as 2 is

not an owner under c at ν◦ (which is of type 0). The definition of c and the

fact that ck satisfies (C4) then imply (i, o) = cν◦(h) = ckν◦(h) = ckν(h) = cν(h).

If ν is of type 2 agents 1 and 2 have to be switched in all of the arguments

that refer to ck (including the replacement of ν by ν ◦ (1, 2) whenever ν is of

type 2) to show that c satisfies (C4), (C5) and (C6) at ν◦, ν.

If ν is of type 1 or 2 then c[ν] respectively equals ck[ν] and (1, 2)� ck(ν ◦
(1, 2)). In either case c[ν] is a trading and braiding mechanism and (C1)-(C6)

are satisfied in all remaining cases. Since any c-relevant ν is of type 0, 1,

or 2, and since no submatching ν is of two different types, Step β uniquely

specifies cν for every c-relevant ν. In sum c[ν∗] is a lax mechanism.7

In either case c[ν] is a trading and braiding mechanism and (C1)-(C6)

are satisfied in all remaining cases. Since any c-relevant ν is of type 0, 1,

or 2, and since no submatching ν is of two different types, Step β uniquely

specifies cν for every c-relevant ν. In sum c[ν∗] is a lax mechanism.

Claim 3: The sequence c1, . . . , cK ends with a serial dictatorship cK

Fix a ck+1-relevant ν such that neither ν nor ν ◦ (1, 2) is ck-relevant. For

7To see that no submatching is of type 1 as well as of type 2, suppose some ν was of

both types, implying that ν is reached on two different paths for two different profiles of

preferences. Say that under c with R◦ ν is reached via a cycle in which 1 exchanges a

house that he owns under ck (type 1), whereas with R∗ ν is reached via a cycle in which

1 exchanges a house that 2 owns under ck (type 2). Now define a profile of preferences R

with ν(i)RiH for all i ∈ Nν . Since trading cycles may be eliminated in any which order

(as is shown in Section 4 of the online appendix), ν is reachable under c with R via the

paths under which it is reached with R∗ and R◦. Let ν′ be the first submatching at which

1 is part of a cycle under c with R. Section 4 of the online appendix shows that for a

trading cycles not to persist from round to round, a broker must lose control over the

house he brokers. This case is not relevant here: to reach ν first a sequence of dictators

has to choose in accordance with ν∗ ⊂ ν. At ν∗ under ck 1 and 2 are both owners. Since

they remain owners under ck until ν is reached no broker may (by C5) loose control under

ck until ν is reached. The derivation of c from ck implies that the same holds for c. In

sum, agent 1 is matched via the cycle that first forms at ν′ under c with either R, R◦, or

R∗. A contradiction ensues since this cycle involves a house owned by either 1 or 2 under

ck and the submatching ν is either of type 1 or type 2.
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such a ν to exist ck+1 must have been derived via β or γ (if ck+1 is constructed

via a reordering of dictators as prescribed by δ then ν is ck+1-relevant if and

only if either ν or ν ◦ (1, 2) is ck-relevant). If γ was used, then ck+1 arises

out of ck via the replacement of a braid with a serial dictatorship and ν is

ck+1-dictatorial. If β was used then ck+1 is derived from c via Proposition 1

and ν equals ν ′ ∪ {(i, hb)} for a house hb that is brokered at ν ′ under ck but

owned by i at ν ′ under ck+1. Such a ν is ck+1-dictatorial. So the number of

ck-nondictatorial submatchings does not increase in k. If ck-nondictatorial

submatching exists, α prescribes to follow β or γ. Since β reduces the number

of owners at at least one ck-relevant submatching and since γ replaces a braid

with a serial dictatorship, the process of transformations eventually reaches a

trading and braiding mechanism ck
′
such that any ck

′
-relevant submatching is

ck
′
-dictatorial. But such a ck

′
is a path dependent serial dictatorship. Finally

Step δ is iteratively reorders agents as dictators such that an earlier dictator

i swaps roles with a later dictator j if i > j. Such reordering occurs until a

serial dictatorship cK is attained.

7.3 ∆ck = ∆ck+1 holds for all k

The claim holds if for any R there exists a one-to-one f : P → P with

(p � ck)(R) = (f(p) � ck+1)(R) for all p ∈ P . Fix an arbitrary R, let P 0

be the set of all p ∈ P with ν∗ ◦ p−1 6⊂ (p � ck)(R). For any p ∈ P 0 let

f(p) : = p. Since ckν = ck+1
ν holds for any ck- and ck+1-relevant ν with

ν∗ 6⊂ ν, (p � ck)(R) = (f(p) � ck+1)(R) holds for any p ∈ P 0. Since the

restriction of f to P 0 is one-to-one and since f(P 0) = P 0, f is one-to-one if

also its restriction to P : = P \ P 0 is one-to-one and if f(P ) ⊂ P .

To see that f(p) is an element of P holds if p(i) = f(p)(i) holds for all

i ∈ Nν∗ and if p ∈ P , note that, no matter whether β, γ, or δ was used to

define ck+1, ν ( ν∗ is ck-relevant if and only if it is ck+1-relevant. By the

arguments in Section 6 the set of all ν ( ν∗ can be represented as {νl}Ll=1

with ν1 = ∅, νl+1 = νl ∪ {(il, ν∗(il))} for all 1 ≤ l < L =| Nν∗ | and il the

dictator at νl. Given p(i1) = f(p)(i1), the role of i1, the dictator at ∅ under

ck and ck+1 is assumed by p(i1) under p � ck and by f(p)(i1) = p(i1) under

f(p)� ck+1. The trading cycles processes of p� ck and f(p)� ck+1 at R start
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out identically: p(i1) appropriates house ν∗(i1). Since ν∗ ◦ p−1 ⊂ (p� ck)(R)

(as is required for p ∈ P ), we can proceed inductively to obtain ν∗ ◦ p−1 ⊂
(f(p) � ck+1)(R) and f(P ) ⊂ P . To establish ∆ck = ∆ck+1 it is in sum

sufficient to construct a one-to-one f : P → P with f(p)(i) = p(i) for all

i ∈ Nν∗ and (p� ck)(R) = (f(p)� ck+1)(R) for all p ∈ P .

7.3.1 When Step (β, k) is used to construct ck+1

Fix any p ∈ P and let ν be the maximal reachable submatching under p� ck
at R with p(1), p(2) /∈ Nν .

8 If p(1) is part of a cycle under p ◦ ck at ν let

p ∈ P 0
and f(p) : = p if not let p ∈ P and f(p) : = p ◦ (1, 2). Since 1 and

2 are not matched at ν∗, f(p(i)) equals p(i) for all i ∈ Nν∗ . Since c and ck+1

represent the same mechanism (p � ck)(R) = (f(p) � ck+1)(R) holds if and

only if (p� ck)(R) = (f(p)� c)(R). In the next two paragraphs I show that

(p� ck)(R) = (f(p)� c)(R) holds for any p ∈ P .

First, fix some p ∈ P
0

and say that ν is the (unique) direct (p � ck)-

successor of ν with p(1) ∈ Nν . If p(2) ∈ Nν represent the unique cycle at

ν under p � ck and R as p(1) → ν(1) → · · · → h2 → p(2) → ν(2) → · · · →
h1 → p(1). Since p(1) owns h2 under p � c at ν, the cycle p(1) → ν(1) →
· · · → h2 → p(1) forms at ν under p� c and R. Since p(1) trades h2 in this

cycle and since (p � ck)ν(h2) = (p(2), o), agent p(2) inherits h1 under p � c
once p(1) is matched. The cycle p(2) → ν(2) → · · · → h1 → p(2) forms

next under p � c at R. So ν is reachable under p � c at R. If p(2) /∈ Nν

then p(1) is part of the same cycle at ν under p � ck and at ν under p � c
8To see that for any lax mechanism c, R and i, j ∈ N there exists a unique maximal

reachable submatching ν that leaves i and j unmatched, let ν̂ and ν̃ be any two reachable

submatchings that leave i and j unmatched. Let ν̂ =
⋃L̂
l=0 ν̂l and ν̃ =

⋃L̃
l=0 ν̃l where

ν̂0 = ν̃0 = ∅ and ν̂l and ν̃l arise out of matching a single cycle in round l ≥ 1. Such sets

of submatchings exist, since cycles may be removed in any order (Section 4 of the online

appendix). Since ν0 = ∅, ν̂ ∪ ν̃0 is reachable under c at R. Let ν̂ ∪ (
⋃L
l=0 ν̃l) 6= ν̂ ∪ ν̃ be

reachable for some L < L̃. If ν̂ ∪ (
⋃L
l=0 ν̃l) = ν̂ ∪ (

⋃L+1
l=0 ν̃l), then ν̂ ∪ (

⋃L+1
l=0 ν̃l) is obviously

reachable under c at R. If not then ν̂ ∪ (
⋃L+1
l=0 ν̃l) is reachable under c at R since the cycle

yielding ν̃L+1 forms at
⋃L
l=0 ν̃l and may be removed next (if this cycle does not persist,

then a broker looses control in the set and two consecutive cycles are needed to form the

submatching ν̃L+1). By induction ν̂ ∪ ν̃ is reachable under c at R. The unique maximal

reachable submatching ν with i, j /∈ Nν is the union of all submatchings ν′ with i, j /∈ Nν′ .
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and ν is reachable under p � c and R. In either case the definition of c

implies that the submechanisms of p� ck and p� c following ν are identical:

(p�ck)[ν] = (p�c)[ν] and therefore (p�ck)(R) = (p�c)(R) = (f(p)�c)(R).

Now fix some p ∈ P : p(1) does not take part in any cycle at ν under p�c
and R. Instead p(2) takes part in the unique such cycle p(2)→ ν(2)→ · · · →
h2 → p(2).9 Let ν be the direct ck-successor of ν that arises out of matching

this cycle. Under f(p)�c at ν agent p(2) owns all houses owned by agents p(1)

and p(2) under p � ck at ν and p(2) → ν(2) → · · · → h2 → p(2) also forms

under f(p)�c at ν. Once this cycle is matched f(p)�c continues as if p(1) had

always played the role of 1 in ck: Since (1, 2) in the definition of c is inverted

by (1, 2) in the transformation of p under f , we have (f(p)�c)[ν] = (p�ck)[ν]

and (p� ck)(R) = (f(p)� c)(R).

Restricted to P
0

and to P f is one-to-one. Since f(P
0
) = P

0
, f is one-

to-one if f(P ) ⊂ P . Fix any p ∈ P and let p(2)→ ν(2)→ · · · → h2 → p(2)

be the unique cycle at ν under p � ck and R. The uniqueness of this cycle

and p ∈ P imply that p(1) is part of some chain p(1) → h∗ → · · · → h′

under p � ck and R at ν. This chain terminates with a house h′ in the

cycle p(2) → ν(2) → · · · → h2 → p(2). Under f(p) � ck agent p(1) owns

house h2 at ν so the cycle p(1) → h∗ → · · · → h′ → i′ → · · · → h2 →
p(1) forms at ν under f(p) � ck and R. In that case p(2) is part of the

chain p(2) → ν(2) → · · · → h′′ that terminates with house h′′ in the cycle

p(1) → h∗ → · · · → h′ → i′ → · · · → h2 → p(1). There cannot be another

cycle at ν under f(p) � ck and R since this cycle would only involve agents

i 6= p(1), p(2) and would therefore also form under p�ck at R - contradicting

the maximality of ν in the set of all reachable submatching under p � ck

at R which involve neither p(1) nor p(2). So there is only one cycle at ν

under f(p) � ck and R and this cycle involves f(p(2)) = p(1) implying that

f(p) ∈ P as required.

9The existence and uniqueness of this cycle follows from ν being maximal in the set of

submatchings ν with p(1), p(2) /∈ Nν that are reachable under p� ck at R.
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7.3.2 When the transformation is constructed using Step (γ, k)

The construction of f on P relies on Proposition 2 on random matching

mechanisms with just three agents and three houses. Some more concepts are

needed. For any random matching mechanism M : R → ∆M let M(R)[i, h]

be the probability that agent i is matched with house h when the agents

announce the profile of preferences R. A random matching mechanism M :

R → ∆M is ex post Pareto optimal if any µ in the support of M(R)

is Pareto optimal at R. The mechanism M is ordinally strategy proof

if
∑

hRih∗
M(R)[i, h] ≥

∑
hRih∗

M(R′i, R−i)[i, h] holds for all R,R′i, i, h
∗. So

under an ordinally strategy proof mechanism no agent can misrepresent his

preferences to increase his probability to get a house he prefers to some

fixed h∗. A mechanism M satisfies equal treatment of equals if any two

agents i and j who announce the same preferences face the same distribution

over matches, Ri = Rj ⇒ M(R)[i, h] = M(R)[j, h] for all h ∈ H. The

symmetrization of any good mechanism is ex post Pareto optimal, ordinally

strategy proof and satisfies equal treatment of equals.10

Proposition 2 Let H = {a, b, c} and N = {1, 2, 3}. Let M : R → ∆M be

ex post Pareto optimal, ordinally strategy proof and satisfy equal treatment

of equals. Then M is a random serial dictatorship.

The proof of Proposition 2 is in the online appendix. There I fix an

arbitrary M. For each R I derive 9 linearly independent linear equations

from ex post Pareto optimality, strategy proofness and equal treatment of

equals to uniquely determine the 9 values M(R)[i, h]. Since random serial

dictatorship satisfies the three properties it must equal M.

To see that ∆ck = ∆ck+1 holds when γ is used to derive ck+1, assume

w.l.o.g that {1, 2, 3} = Nω where ω is the avoidance matching that defines

the braid Bω = ck[ν∗] and that the three dictators in the serial dictatorship

ck+1[ν∗] are 1, 2 and 3. Partition P into sets P1, . . . , PM such that p, q belong

to the same Pm if and only if p(i) = q(i) for all i ∈ Nν∗ , so all permutations

in some subset Pm map the same agents to the roles in Nν∗ . For any m let

10A random matching mechanism is non-bossy if no agent can alter someone else’s

lottery over matches without altering his own. For a proof that non-bossiness is robust to

randomization when the base mechanism is strategy proof, see Bade [3].
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Im : = {I ⊂ Nν∗◦p−1 :| I |= 3, p ∈ Pm} be the set of sets consisting of three

unmatched agents under ck at ν∗ ◦ p−1 for any p ∈ Pm. Since ckν = ck+1
ν

holds for all ck-relevant ν 6= ν∗, we would obtain the same set Im if we

were to use ck+1 to define it. For any m ∈ {1, . . . ,M} and I ∈ Im let

P I
m ⊂ Pm be such that p({1, 2, 3}) = q({1, 2, 3}) = I for all p, q ∈ P I

m. By

Proposition 2 and the definition of P I
m there exists a bijection f Im : P I

m → P I
m

with (p � ck)(R) = (f(p) � ck+1)(R) for all p ∈ P I
m. Since {P I

m}I∈Im,1≤m≤M
partitions P , the function f : P → P defined by f(p) : = f Im(p) for any

p ∈ P I
m is one-to-one with (p � ck)(R) = (f(p) � ck+1)(R) for all p ∈ P .

Moreover, p(i) = f(p)(i) holds for all i ∈ Nν∗ as f(Pm) equals Pm for any

m ∈ {1, . . . ,M}.

7.3.3 When the transformation is constructed using Step (δ, k)

Define f(p) = p ◦ (1, 2) for any p ∈ P and note that (f(p) � ck+1)[ν∗] =

(p � ck)[ν∗] holds for any p ∈ P , since (1, 2) in the definition of ck+1 is

inverted by (1, 2) in the transformation of p with f . Moreover restricted to

P f is one-to-one and p(i) = f(p)(i) holds for all i ∈ Nν∗ since 1, 2 /∈ Nν∗ .

8 Conclusion

Two approaches had so far been used to establish the equivalence between

symmetrizations of different good mechanisms: Abdulkadiroglu and Sönmez

[1] as well as Knuth [8] constructed bijections to show the s-equivalence of

GTTC and serial dictatorship. Carroll [5] constructed more complex bijec-

tions to show the s-equivalence of serial dictatorship and any top trading

cycles mechanism. Pathak and Sethuraman [11] and Lee and Sethuraman

[9] used an inductive strategy over the number of agents in a mechanism to

prove that any hierarchical exchange mechanism following Papai [10] with

equally many houses and agents is s-equivalent to serial dictatorship.

Could one use either one of these strategies to extend the s-equivalence

result to differently many agents and houses? The case with more agents

than houses is easily accommodated: Fix a mechanism M with | N | agents

and houses that is s-equivalent to serial dictatorship and create | N | − | H |
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dummy houses. For any profile of preferences R on the original set of houses

H define an auxiliary profile of preferences R′ such that R is the restriction

of R′ to the original set of houses H and such that any agent ranks all houses

in H above all dummy-houses. Derive ∆M(R) = ∆S(R) by equating the

probability that an agent obtains a dummy house under ∆M(R′) or ∆S(R′)

with the probability that the agent obtains no house under ∆M(R) and

∆S(R).

To apply the same trick when there are more houses than agents, the

dummy agents would have to be endowed with “dummy preferences”. How-

ever, when a dummy agent is matched with a house that some real agent

prefers to his match, the exclusion of the dummy-house match leads to a

Pareto inferior matching and the trick does not work. Carroll’s [5] and Lee

and Sethuraman’s [9] results on partial symmetrizations that treat agents in

some sets symmetrically while maintaining their relative place with respect

to other sets of agents could be used to cover the case of more houses than

agents.

Could we use one of the existing strategies of proof for the case of a

good mechanism that is not a hierarchical exchange mechanism? The task

of directly constructing a bijection to prove Theorem 1 seems out of the

question. Carroll’s work [5] probably hits the limit in this dimension. The

inductive strategy or Pathak and Sethuraman [11] and Lee and Sethuraman

[9] relies on mechanisms being representable as trading mechanisms in which

each agent points to their most preferred house. Given that brokers may not

do so and given that braids are not representable as such trading mechanisms,

this strategy of proof does not extend to the grand set of mechanisms.

Since my strategy of proof relies on sequences of marginally different good

mechanisms, it can only be used on a sufficiently rich set of mechanisms. His-

torically speaking, it would have been difficult to apply the present strategy

of proof in 1996 or 1998, when Knuth [8] and Abdulkadiroglu and Sönmez

[1] respectively showed the s-equivalence of GTTC and serial dictatorship,

given that Papai’s [10] hierarchial exchange mechanisms came out in 2000.

The inductive consolidation of ownership works best with hierarchical

exchange mechanisms. To see this reconsider this paper without brokers or

braids. All that remains in Section 5 on the characterization of mechanisms,
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are control rights structures c that map any c-relevant submatching to a

control rights function in which all houses are owned. In this setup (C1),

(C2), (C3), (C5) and (C6) are trivially satisfied, only (C4) matters. With-

out brokers the definition of lax mechanisms is obsolete. Given that there

are no braids Step α assigns any ck to one of two possible transformations:

ck+1 is either constructed through the consolidation of ownership in Step β

or through a reordering of dictators in Step δ. To see that the sequence is

well-defined we only need to check that (C4) remains valid in the transfor-

mations. The case of hierarchical exchange mechanisms could be dealt with

in fewer than half the pages necessary to cover the grand set of good mecha-

nisms. Differently from the predecessors in the literature this proof that any

hierarchical exchange mechanism is s-equivalent to serial dictatorship, does

not involve any combinatorial arguments.

To deal with braids I showed Proposition 2: random serial dictatorship

is the unique ex post Pareto optimal and ordinally strategy proof random

matching mechanism for three agents and three houses that satisfies equal

treatment of equals. This result yields a more general conjecture than Theo-

rem 1. Could random serial dictatorship be the unique ex post Pareto opti-

mal and ordinally strategy proof random matching mechanism that satisfies

equal treatment of equals? Unfortunately, the method used in my proof of

Proposition 2 becomes cumbersome with more houses and agents. For each

R ∈ R, the probability distribution M(R) would have to be identified via

| H | × | N | linearly independent linear equations on the | H | × | N |
probabilities M(R)[i, h]. If i is not matched to h for any Pareto optimum

at R then we for example obtain the (linear) equation M(R)[i, h] = 0. The

problem is that Saban and Sethuraman [14] have shown that finding all

house-agent pairs that do not form in any Pareto optimum at some R is an

NP-complete problem. So a proof of the more general conjecture requires a

different attack.

While this question remains open, Erdil [7] provides an interesting con-

trast with the case of house matching problems in which agents can opt to

stay unmatched. He shows that in such problems the conjecture does not

hold. Instead random serial dictatorship is ex-ante Pareto dominated by

other strategyproof, non-bossy and fair mechanisms.
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Some papers, such as Bogomolnaia and Moulin [4] have presented possible

tradeoffs between Pareto optimality and strategy proofness while maintain-

ing equal treatment of equals and non-bossiness. In this context, random

serial dictatorship is typically used as the benchmark of a mechanism that is

best in terms of its incentive properties (ordinally strategy proof) and worst

in terms of its welfare properties (only ex post Pareto optimal). This paper

strengthens the case for using random serial dictatorship as the benchmark.

While initially one could have criticized the choice of a particular good mech-

anism as the base of the symmetrization, I have shown that this choice does

not matter: the symmtrization of any good mechanism leads to random serial

dictatorship.
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