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1 Introduction

Experimental economists often ask subjects to simultaneously choose from several differ-

ent problems. One of these problems is then randomly drawn; the subject’s choice from

this problem determines the outcome of the experiment. The agent might, for example, be

asked to report choices from six different sets of bets, with the experimenter then rolling

a die to determine which of the six choices is payoff-relevant. Any experimental design

which uses a randomization device to elicit choices from several problems is a random

incentive mechanism.

If a subject’s choice from each separate problem is identical to his choice from the

same problem when it appears as part of a random incentive mechanism, the mechanism

has many advantages over separate single choice experiments. Large sets of data can be

elicited with one payment. The subject does not accumulate payments over the course of

the experiment, so the separate choices are not affected by what the agent has earned (or

lost) earlier in the experiment. More importantly, to check for regularities in an agent’s

behavior we must elicit his choices from various problems; a single choice experiment

carries no information about the consistency of an agent’s choices. But if an agent’s

behavior in a random incentive mechanism differs from his behavior in separate choice

situations it is not clear how one should interpret the data generated by the mechanism.

Random incentive mechanisms have been used widely in the experimental literature

on ambiguity aversion (see for instance Camerer and Weber [2], Halevy [6] and Ahn et

al. [1]). However, there are no theoretical results on the incentives for ambiguity averse

agents to reveal their true preferences in these mechanisms. Will the choices of ambiguity

averse agents in random incentive mechanisms coincide with their choices in separate

single choice problems?

The present study argues that random incentive mechanisms stand on shaky ground

when agents are ambiguity averse. Ambiguity aversion entails a preference for hedging:

ambiguity averse agents will typically prefer some randomization over a set of ambiguous

acts to any of the acts individually. Consider a mechanism that is designed to elicit

preferences over acts that are conditioned on a set of possibly ambiguous events. All acts

that the agent can choose from in the mechanism are conditioned on events in this set.

If this set of events is independent of the randomization device then the agent can use

the randomization device as a hedging device. Preference reversals, where agents behave
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differently in a random incentive mechanism than in single choice experiments, are bound

to happen. Let me give an example of a plausible ambiguity averse preference where such

hedging occurs.

Example: an urn and a coin. There is an urn filled with 30 blue balls and 60

green and red balls in unknown proportion. We are interested in an agent’s preferences

over “urn-acts” f = (f(B), f(G), f(R)) where f(B), f(G) and f(R) denote the agent’s

utility-payoffs in the events B, G, and R that a blue, green, or red ball is drawn.1 Let the

agent choose among a “blue act” that delivers utility 5 when a blue ball is drawn from the

urn, a “green act” that delivers utility 9 when a green ball is dawn and a “red act” which

also delivers 9 when a red ball is drawn. We can represent these acts as blue : = (5, 0, 0),

green : = (0, 9, 0) and red : = (0, 0, 9).

Assuming our agent believes that a blue ball is drawn from the urn with probability
1
3

the preference blue � green ∼ red is inconsistent with expected utility theory. If our

agent was an expected utility maximizer he would have to believe that either R or G

occurs with a probability of at least 1
3
. Consequently his preferred act among red and

green would have to deliver an expected utility of at least 1
3
× 9 whereas blue delivers

only 1
3
× 5. But an ambiguity averse agent might well prefer the objective lottery blue to

the acts green and red that leave winning probabilities uncertain. Would an ambiguity

averse agent with the preference blue � green ∼ red reveal this preference in a random

incentive mechanism?

To pose this question concretely, let us assume that the agent’s preference % over acts

f is represented by a maxmin expected utility U(f) = minπ∈C
∑

Ω f(ω)π(ω). Unlike an

expected utility maximizer this agent holds a set of beliefs C on the state space Ω, not

a single prior. He calculates an expected utility with respect to every prior in the set C

and evaluates his overall utility as the lowest among these. Evaluations thus depend on

the most pessimistic prior in C. Consistently with our earlier assumption that the agent

believes a blue ball is drawn with probability 1
3
, let π(B) = 1

3
hold for all π ∈ C. He is,

however, unsure with which probability a green ball is drawn and perceives the event G

1This is a deviation from the more common assumption that acts map to lotteries over outcomes.

Given that we assume an expected utility representation on lotteries over outcomes we can derive acts

f which directly map states to utilities from more basic acts g which map to lotteries over outcomes by

letting f(ω) = u(g(ω)) hold for every state ω.
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that a green is drawn as ambiguous. The same holds for the event R. Specifically, let

π(G) either equal 1
9

or 5
9
, implying that π(R) also equals either 1

9
or 5

9
.2 So our agent

evaluates any urn-act by either πred = (1
3
, 1

9
, 5

9
) or πgreen = (1

3
, 5

9
, 1

9
) where the components

of these vectors denote the probabilities of the events B, G and R respectively. Since our

agent assigns probability 1
3

to a blue ball, his utility of the act blue is 1
3
× 5. His utility of

green is just πred(G)9 = 1, given that πred is the most pessimistic prior in C to evaluate

green. Similarly, the agent’s utility of red is πgreen(R)9 = 1. In sum, our agent prefers

blue to both green and red.

Now let’s construct a random incentive mechanism to elicit these preferences. First,

let us ask our agent to list choices from the two problems SH : = {blue, green} and

ST : = {blue, red}. Let us then use a fair coin as the randomization device to determine

which of these two choices is operative for payment. The agent is paid according to his

choice from the set SH if heads comes up, otherwise he is paid according to his choice

from ST .3

To model the agent’s behavior we need to specify his preferences over acts that are

not only conditioned on the on the events B,G and R but also on the event H that the

coin comes up heads and the complementary event T . Since the color of the ball and the

side of the coin are the only payoff relevant facts, let us define any state ω in the state

space Ω as the intersection of a coin- and an urn-event. For example, the state ω with

{ω} = H ∩ B is the unique state at which the coin comes up heads and a blue ball is

drawn from the urn. Assuming that the agent assigns probability 1
2

to each coin-outcome,

let C consist of the priors defined by the following two matrices:

B G R

H 1
6

1
18

5
18

T 1
6

1
18

5
18

B G R

H 1
6

5
18

1
18

T 1
6

5
18

1
18

2The set C is not convex, so the representation U deviates from the maximin expected utility model

of Gilboa and Schmeidler [4], which requires that C be a convex and compact set. However, the analysis

of the example goes through unchanged if we replace the set C defined here with its convex hull.
3This example was inspired by the experimental setup in Ahn et al. [1]. Similarly to the example

presented here the subjects in Ahn et al.’s [1] experiment could choose acts conditioned on three different

events, one of which was known to have probability 1
3 . Nothing was known about the probabilities of

the other two events. However, Ahn et al. [1] did not just elicit choices from two sets but from a large

number of sets. Moreover, each of the sets contained vastly more options than SH and ST . Indeed Ahn

et al. [1] elicited a particularly rich set of data by presenting agents with budgets sets.
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According to C, the agent evaluates any urn-act at πred or at πgreen and he assigns a

probability of 1
2

to the coin coming up heads. The coin and the urn are independent

according to any prior in C. The probability of heads and a red ball π(H ∩ R) is, for

example, equal to the product of π(H) and π(R) for all π ∈ C.

The agent prefers choosing green from SH and red from ST to all other choices within

the random incentive mechanism. For any prior π the expected utility of this plan equals
1
2
π(G)9+ 1

2
π(R)9. Since π(G)+π(R) = 2

3
holds for any π ∈ C this expected utility equals

3 = 1
2
π(G)9 + 1

2
(2

3
− π(G))9 for any prior π in C. Consequently the maxmin expected

utility of this plan also equals 3. On the other hand, choosing blue out of both sets yields a

utility of only minπ∈C π(B)5 = 5
3

to our agent. The remaining two options (choosing blue

from exactly one of the two sets) deliver a yet lower utility. In sum, there is a preference

reversal. While the agent prefers blue to green and red it is optimal for him to choose

green from SH and red from ST in the random incentive mechanism. �

The main result of the paper, Theorem 1, shows that the preceding example is no

accident. Preference reversals must occur when agents are ambiguity averse. To make

this point I consider the two most popular models of ambiguity averse preferences: the

maxmin expected utility model of Gilboa and Schmeidler [4] and the smooth model of

Klibanoff, Marinacci and Mukherji [10]. I fix a randomization device D, defined by a set

of “coin-events”, and a set of - possibly ambiguous - events A and assume that D and A
are independent. I assume that the agent is strictly ambiguity averse with respect to acts

that are conditioned on A. Then I consider the set of random incentive mechanisms in

which the agent gets to choose from sets of acts that are conditioned on events in A. In

all these mechanisms the randomization device D determines which of the agent’s choices

is operative for payment. Theorem 1 shows that the agent’s preference must exhibit a

reversal in some mechanism in this set. Such reversals can only be ruled out if the agent

is an expected utility maximizer with respect to the acts under study.

To put the example into perspective it helps to go back to Schmeidler’s [12] original

insight on the representation of ambiguity averse preferences, where he explains that

“intuitively, uncertainty aversion means that ‘smoothing’ or averaging utility distributions

makes the decision maker better off.” This is exactly what happens here: our experimental

subject uses the coin to average out the two uncertain acts green and red. On its own

each of these acts delivers utility 9 in one uncertain event and 0 otherwise. But in the
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compound act according to which green is played if the coin comes up heads and red is

played if tails, the event R is neither as advantageous as it is under red nor as unfavorable

as it is under green. If the event R occurs the compound act delivers utility 9 with tails

and 0 with heads and vice versa for G. The coin, therefore, averages out the utilities

delivered by the two urn-acts green and red. In the present case, this averaging or

hedging is so efficient that the agent’s choices in the random incentive mechanism differ

from his choices in the two single choice experiments.

My arguments share some similarity with the Karni and Safra’s [8] and Holt’s [7]

analysis preference reversals in random incentive mechanisms. These two studies take

some empirically documented reversals (Lichtenstein and Slovic [11] and Grether and

Plott [5]) of preferences over lotteries as their starting point and claim that such reversals

should be expected when agents have rank-dependent preferences. Similarly to the present

paper, Karni and Safra [8] and Holt [7] argue that, without the assumption of expected

utility preferences, an agent’s behavior in the random incentive mechanism as a whole

need not be indicative of the agent’s behavior in single choice experiments. However

Karni and Safra [8] and Holt [7] do not address the question whether random incentive

mechanisms truthfully elicit the preferences of ambiguity averse agents; their studies only

consider the case of objective lotteries. To make sure that my results are driven by

ambiguity aversion alone, I assume that preferences over objective lotteries have expected

utility representations.

The fact that some experimental studies, such as Stahl [13] on ambiguity aversion

find rather inconclusive results can be viewed as empirical motivation for my study. If

experimental subjects use the randomization device as a hedging device the full extent of

their ambiguity aversion will not be visible in the data. If others subjects do not hedge,

the empirical picture might turn out very had to analyze.

2 Definitions

2.1 Basics

The agent has a complete and transitive preference % over acts which are functions from

a finite state space Ω to R. Under the act f the agent obtains utility f(ω) in state ω. So

the acts under study here differ from Anscombe-Aumann acts which map a state space
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to objective lotteries over outcomes. But, if we assume an expected utility representation

u over objective lotteries, then we can map any Anscombe-Aumann act g to an act

f : Ω → R by letting f(ω) : = u(g(ω)) for all ω ∈ Ω. A constant act maps every state

to the same utility level x ∈ R. As a shorthand a constant act is also denoted x. The

constant act xf which is indifferent to an act f is the certainty equivalent of f . For

any pair of acts f, g and event E ⊂ Ω, I define the compound act fEg such that f(ω) is

agent’s payoff if ω ∈ E and g(ω) is the payoff if ω 6∈ E. If f and g are constant acts then

fEg is a bet (on E). In terms of the introductory example the compound act greenHred

is the act in which payoffs are determined by green in case of heads and by red in case

of tails. The acts blue, green and red are all bets.

Fix some partition P of Ω. The act f is called a P-act if any two states belonging to

the same event in the partition P yield the same utility level. For any P-act f and any

E ∈ P I write f(E) for f(ω) if ω ∈ E. Any union of events in P is called a P-event. The

complement of some event E is denoted E. The set of probability measures on some finite

set S is denoted ∆S. So ∆Ω is the set of priors on Ω. For any π ∈ ∆Ω, the marginal

distribution on P (the restriction of π to P-events) is denoted πP . The conditional

distribution of P-events when conditioning on some event E is denoted πP(· | E).

2.2 Random incentive mechanisms

The experimenter is interested in an agent’s preference over the set of A-acts, where some

events in the partition A might be ambiguous. The experiment uses a randomization

device D. Formally D : = (D1, · · · , Dn) is another partition of the state space Ω. In

terms of the introductory example we have D = (H,T ) and A = (B,G,R). Since the

events in the partitions A and D are the only ones that matter to the present study,

it is without loss of generality to assume that any singleton subset of the state space

is the intersection of a D-event and an A-event: each ω ∈ Ω is identified with a pair

of events A ∈ A and Di ∈ D such that {ω} = A ∩ Di. For any act f : Ω → R and

any i ∈ {1, · · · , n} define an A-act f [i] by f [i](A) : = f(A ∩ Di) for all A ∈ A. There

is a one-to-one-correspondence between acts f : Ω → R and lists (f [1], · · · , f [n]) of A-

acts. The list (f [1], · · · , f [n]) of A-acts uniquely defines the act f : Ω → R through

f(A ∩Di) = f [i](A) for all A ∈ A and i ∈ {1, · · · , n}.
Random incentive mechanisms, designed to elicit preferences over A-acts, are
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constructed as follows. The agent is presented with n sets S1, · · · , Sn of A-acts. He is

asked to choose one act f ∗[i] from each Si. Then the randomization device D selects the

choice that determines the agent’s payoff. If Di is drawn the agent is paid in accordance

with his choice f ∗[i] ∈ Si. The agent’s choices determine the act f ∗ : Ω → R that

corresponds to the list (f ∗[1], · · · , f ∗[n]). A random incentive mechanism that uses D to

elicit preferences over A-acts is denoted S : = (S1 × · · · × Sn). An act f : Ω → R is an

element of S if f [i] ∈ Si for all i.

Do the choices of an agent in a random incentive mechanisms truthfully represent his

preference? That is, does an agent’s choice from each Si in a random incentive mechanism

reveal what he would choose if he only had that one choice? The preference % does not

exhibit a preference reversal in the random incentive mechanism S if

f ∗ % f for allf ∈ S ⇔ f ∗[i] % f [i] for all f [i] ∈ Si and 1 ≤ i ≤ n.

So% does not exhibit a preference reversal in S if the agent chooses the same f ∗[i] from the

set Si, whether he faces just that choice or has to choose from the entire list (S1, · · · , Sn).

Conversely, % exhibits a preference reversal in S if the preceding equivalence is violated.

So S exhibits a preference reversal if the agent’s optimal choices within the mechanism

differ from his optimal choices in the separate choice problems. If % does not exhibit

a preference reversal in any mechanism (that uses the randomization device D to elicit

preferences over A-acts) then % is transparent.

2.3 Representations

A representation U of the preference % is a MMEU representation (maxmin ex-

pected utility representation, Gilboa and Schmeidler [4]) if there exists a convex and

compact set of beliefs C on Ω such that U(f) = minπ∈C
∑

Ω f(ω)π(ω). A representa-

tion V is smooth (Klibanoff, Marinacci and Mukherji [10]) if there exists a concave

function φ : R → R and a probability measure µ on the set of priors ∆Ω such that

V (f) =
∫

∆Ω
φ
(∑

Ω f(ω)π(ω)
)
dµ(π). A smooth representation is often viewed as a two-

stage procedure: in the first stage nature uses the distribution µ to determine the distri-

bution π from which she then draws the state ω in the second stage. Just as risk aversion

is expressed through the curvature of a utility functional u that maps monetary outcomes

to utilities, ambiguity aversion is expressed through the curvature of φ. Given that acts
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directly map states to utilities in this paper, a MMEU representation is defined entirely

through the set of beliefs C, and a smooth representation is defined entirely through the

prior over priors µ and the function φ.

I assume from now on that % either has a MMEU or a smooth representation. A

preference (that has such a) is strictly ambiguity averse if it does not have an expected

utility representation.

2.4 Independence

Two events E1 and E2 are (stochastically) independent if the probability of both

events occurring is equal to the product of their probabilities, π(E1 ∩E2) = π(E1)π(E2).

Two partitions P1 and P2 are (stochastically) independent if any pair of P1- and P2-

events are stochastically independent. So P1 and P2 are independent according to π if

π(E1 ∩ E2) = π(E1)π(E2) holds for any P1-event E1 and any P2-event E2.

Since the representations we consider involve multiple priors on Ω we cannot use the

classic notion of independence to define D and A as independent. Instead we need a

behavioral concept of independence, which I define following Klibanoff [9]. Fix two events

E1 and E2 and a bet b, that delivers 1 if E2 occurs and 0 otherwise. Consider the agent’s

preference over xb, the certainty equivalent of b, and the compound act bE1xb according

to which the agent gets to play the bet b if E1 occurs and receives xb if E1 does not occur.

If the agent is an expected utility maximizer with a prior π according to which E1 and

E2 are independent then he must be indifferent between bE1xb and xb. The reason is that

the two acts only differ in the event E1, and, due to the independence of E1 and E2, the

preferred outcome of the bet b is just as likely under π(· | E1) as it is under π.

It is therefore reasonable to say that the events E1 and E2 are “independent” for an

agent if bEi
xb ∼ b holds for all bets b on Ej and all {i, j} = {1, 2}. If the indifference

bE1xb ∼ b holds for a bet b on E2 then the value that the agent assigns to b does not

depend on E1 occurring or not. So the agent cannot consider his preferred event under b,

be it E2 or E2, to be correlated with E1. The following definition generalizes this idea to

the case of two partitions P1 and P2 on Ω.

Definition 1 Two partitions P1 and P2 on Ω are (behaviorally) independent accord-

ing to % if f ∼ fExf holds for all pairs of a Pi-event E and a Pj-act f , with {i, j} = {1, 2}.
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This definition applies the intuition developed above to any combination of a Pi-event

and a Pj-act f , not just bets. Klibanoff [9] shows that behavioral independence reduces

to the classical definition when the agent is an expected utility maximizer.

3 An Impossibility Result

Independent randomization devices offer agents the opportunity to hedge. When the

agent does hedge, his choices in the mechanism appear to be more ambiguity accepting

than the choices he would make if he faced the problems on their own. Consequently

any strictly ambiguity averse preference exhibits a reversal in some random incentive

mechanism with an independent randomization device. For the statement of the following

theorem remember that the preference % is defined over all acts f : Ω → R, where each

state ω ∈ Ω can be represented as the intersection of a D-event with a A-event and the

randomization device D and A are independent. The preference % either has a smooth

or a MMEU representation. A preference that does not exhibit a reversal in any random

incentive mechanism that uses D to elicit preferences over A-acts is said to be transparent.

Theorem 1 If % is transparent, then the restriction of % to A-acts, must have an ex-

pected utility representation.

The proof of the theorem is by contradiction. The following three properties of an am-

biguity averse preference % cannot be reconciled: transparency, strict ambiguity aversion

with respect to A-acts, and the independence of D and A. In the next section I illustrate

the clash of these properties with the example of the coin and the urn. The proof is in

the Appendix.

4 The coin and the urn

Let the preference % be transparent. First I assume that % has a MMEU representation

and coincides on the set of urn-acts with the ambiguity averse preference postulated in

the Introduction. To illustrate Theorem 1, I show that the coin and the urn then cannot

be independent according to %. After repeating this exercise for the case of a smooth

representation, I sketch the proof of Theorem 1.
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Assume that the agent’s preference over acts conditioned on the coin and the urn have

a MMEU representation U I(f) = minπ∈CI

∑
Ω f(ω)π(ω). Define four priors,

πcoin × πred : =

B G R

H 1
6

1
18

5
18

T 1
6

1
18

5
18

πmix1 : =

B G R

H 1
6

5
18

1
18

T 1
6

1
18

5
18

πcoin × πgreen : =

B G R

H 1
6

5
18

1
18

T 1
6

5
18

1
18

πmix2 : =

B G R

H 1
6

1
18

5
18

T 1
6

5
18

1
18

and let CI : = {πcoin × πred, πcoin × πgreen, πmix1, πmix2}.4 Fix two arbitrary urn acts f

and g and assume that the minimum of
∑

ω∈Ω(fHg)(ω)π(ω) over all π ∈ CI , U I(fHg), is

attained at π∗. Since any prior π in CI assigns probability 1
2

to heads, we have∑
ω∈Ω

(fHg)(ω)π∗(ω) =
1

2

∑
A∈A

f(A)π∗(A | H) +
1

2

∑
A∈A

g(A)π∗(A | T ).

It is easily checked that the MMEU of any urn-act (including f and g) is attained either

at πred or πgreen. This fact together with the observation that for any π ∈ CI the

distribution of urn outcomes when conditioning on heads or tails is either πred or πgreen,

implies that U I(f) is a lower bound for the expected utility of f according to π∗(· | H):∑
A∈A f(A)π∗(A | H) ≥ U I(f). By the same logic,

∑
A∈A g(A)π∗(A | T ) ≥ U I(g) also

holds.

In fact neither of these two inequalities can be strict. For suppose that, say, the

first inequality is strict and for concreteness imagine that according to π∗ the conditional

distribution of urn outcomes given heads is πred whereas U I(f) is attained at πgreen. Then

we could find another distribution π′ ∈ CI where
∑

ω∈Ω(fHg)(ω)π′(ω) is strictly less than

the value achieved at π∗, namely the distribution π′ whose conditional distribution given

4Just like the first set of beliefs defined in the introductory example, this is not a convex and compact

set. The analysis goes through unchanged if we replace CI by it’s convex hull co(CI) which is also

compact. As an aside, note that co(CI) is rectangular with respect to the filtration {H,T} in the sense of

Epstein and Schneider [3]. This means that full Bayesian updating with respect to H and T is dynamically

consistent. What is not implied by dynamic consistency but by independence is that the set of posteriors

on urn outcomes when updating with respect to H or T is identical to the set of priors on urn outcomes.

The priors πcoin × πgreen and πcoin × πred can be viewed as the product measures of πcoin and πgreen

and πred respectively, where πcoin is the marginal distribution on the coin, πcoin with πcoin(H) = 1
2 .
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heads is πred and whose conditional distribution given tails coincides with that of π∗.5 So

we have U I(fHg) = 1
2
U I(f) + 1

2
U I(g).

Now fix two arbitrary sets of urn acts ST and SH and consider the agent’s optimal

choice in the random incentive mechanism S = (SH × ST ), where the agent is paid

according to his choice from SH in case of heads and according to his choice from ST in

case of tails. Given the above equality we have

max
fHg∈S

U I
(
fHg

)
=

1

2
max
f∈SH

U I(f) +
1

2
max
g∈ST

U I(g).

It is optimal for the agent to choose f ∗Hg
∗ in the mechanism if and only if f ∗ is his optimal

choice from the set associated with heads and g∗ his optimal choice from the set associated

with tails. The preference represented by U I is indeed transparent.

I will show next that the agent’s preference can only be transparent if πmix2, whose

conditional distributions of urn outcomes given heads and tails differ, belongs to the

agent’s set of beliefs. To see this let U ′ be the MMEU with the belief set CI \ {πmix2}. It

is easily checked that

U ′(green) =
∑
ω∈Ω

green(ω)πred(ω) = U ′(red) =
∑
ω∈Ω

red(ω)πgreen(ω) = 1.

However U ′(greenHred) > 1 holds given that the agent holds no belief such that the con-

ditional distribution of urn outcomes given heads is πred and the conditional distribution

of urn outcomes given tails. For no prior does the agent simultaneously evaluate green

and red in the compound act greenHred by their respective minimizing distributions of

urn outcomes πred and πgreen. The agent with the belief set CI \ {πmix2} is able to hedge.

To see that the preference represented by U ′ exhibits a reversal in some mechanism, de-

fine the constant act x such that U ′(greenHred) > x > 1 and consider the mechanism in

which the agent can choose between green and x if heads and between red and x if tails.

In this mechanism the agent chooses green from the first set and red from the second,

even though he would choose x over either one of these two acts in separate single choice

experiments. In sum πmix2 (and by the same arguments mutatis mutandis πmix1) has to

be in CI for % to be transparent.

But the presence of πmix1 and πmix2 in CI prevent the coin and the urn from being

independent. To see this define a bet b on the coin which yields 1 if the coin comes up

5The crucial feature of CI is that for any two priors on urn outcomes π1, π2 ∈ {πred, πgreen}, there

exists a prior in CI such that πA(· | H) = π1 and πA(· | T ) = π2 both hold.
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heads and −1 otherwise. So we have b ∼ 0. For the coin and the urn to be independent

the act bG0 would have to be indifferent to 0. But U I
(
bG0
)

equals

min
π∈CI

(
π(H ∩G)− π(T ∩G)

)
= πmix2(H ∩G)− πmix2(T ∩G) = −2

9
< 0.

The urn and the coin are not independent. What is noteworthy is that the argument for

the transparency of % requires the existence of a prior π ∈ CI with πA(· | H) = πred and

πA(· | T ) = πgreen. The prior πmix2 has exactly that feature. But this feature entails that

under πmix2 a green ball is more likely in case of heads than in case of tails, a violation of

independence.

Preferences with a smooth representation fare no better. To see this assume that %

is represented by V I(f) =
∫

∆Ω
φ
(∑

Ω f(ω)π(ω)
)
dµI(π) with φ(0) = 0 and, to reflect the

agent’s ambiguity aversion, φ strictly concave. Let µI assign probability 1
4

to each one of

measures πH × πred, πH × πgreen, πT × πred and πT × πgreen with6

πH × πred : =

B G R

H 1
3

1
9

5
9

T 0 0 0

πH × πgreen : =

B G R

H 1
3

5
9

1
9

T 0 0 0

πT × πred : =

B G R

H 0 0 0

T 1
3

1
9

5
9

πT × πgreen : =

B G R

H 0 0 0

T 1
3

5
9

1
9

Since all uncertainty about the coin is resolved in the first stage (π(H) ∈ {0, 1} for all

π ∈ supp(µI)) the agent is ambiguity neutral with respect to bets on the coin. The agent

considers heads and tails to be equally likely as µI assigns probability 1
2

to the events

{π | π(T ) = 1} and {π | π(H) = 1}. The agent’s beliefs on the urn do not depend on the

throw of the coin: πred and πgreen are equally likely according to µI , whether the agent

conditions on heads or tails, or does not condition at all. The utility V I(fHg) of any

choice fHg in the mechanism can be calculated as:

6We can think of πH and πT as two marginal distributions on coin outcomes such that heads comes

up with certainty under πH and vice versa for πT .
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∫
∆Ω

φ
(∑

Ω(fHg)(ω)π(ω)
)
dµI(π) =

µI
(
{π | π(H) = 1}

) ∫
∆Ω

φ
(∑

A∈A f(A)π(A)
)
dµI
(
π | π(H) = 1

)
+

µI
(
{π | π(T ) = 1}

) ∫
∆Ω

φ
(∑

A∈A g(A)π(A)
)
dµI
(
π | π(T ) = 1

)
=

1
2

∫
∆Ω

φ
(∑

A∈A f(A)π(A)
)
dµI(π) + 1

2

∫
∆Ω

φ
(∑

A∈A g(A)π(A)
)
dµI(π) =

1
2
V I(f) + 1

2
V I(g).

The first equality equality splits the integral over all measures π into two parts: first

an integral over the measures with π(H) = 1 then an integral over the remainder. The

second equality holds since nature chooses a distribution π with π(H) = 1 with probability

one half and since the distribution over distributions of urn outcomes does not depend

on the conditioning events {π | π(H) = 1} and {π | π(T ) = 1}. Having established

V I(fHg) = 1
2
V I(f) + 1

2
V I(g), the proof that V I is transparent can be transferred from

the MMEU-case.

There is only one smooth representation that on the one hand coincides with V I on

the set of urn-acts and on the other hand assigns probability one half to either side of

coin: V I . The fact that the agent is ambiguity neutral with respect to bets on the coin

requires that all uncertainty about the coin is resolved at the first stage. Moreover the

conditional distribution over distributions of urn outcomes given heads must be identical

to the unconditional distribution over distributions of urn outcomes. If not, then the

agent’s preferences over the choice set associated with heads in a random incentive mech-

anism would differ from the agent’s preferences over urn acts. Given this difference the

preference would exhibit a reversal in some mechanism. By the same logic, the conditional

distribution over distributions of urn outcomes given tails must also be identical to the

unconditional distribution over distributions of urn outcomes.

The problem is, here as it was with the MMEU representation U I , that the coin and

the urn are not independent according to V I . To see this define a bet b on the coin which

yields 1 if the coin comes up heads and x otherwise. Assume moreover that b is indifferent

to 0. So we have b : = 1Hx ∼ 0. To see that bG0 is not indifferent to 0 calculate V I(bG0)
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as

µI
(
{π | π(H) = 1}

)(1

2
φ
(
πred(G) + 0πred(G)

)
+

1

2
φ
(
πgreen(G) + 0πgreen(G)

))
+

µI
(
{π | π(T ) = 1}

)(1

2
φ
(
xπred(G) + 0πred(G)

)
+

1

2
φ
(
xπgreen(G) + 0πgreen(G)

))
>

1

2

(1

2

(
φ(1)πred(G) + φ(0)πred(G)

)
+

1

2

(
φ(1)πgreen(G) + φ(0)πgreen(G)

))
+

1

2

(1

2

(
φ(x)πred(G) + φ(0)πred(G)

)
+

1

2

(
φ(x)πgreen(G) + φ(0)πgreen(G)

))
=

1

2

(
φ(1)

1

2
+ φ(x)

1

2

)(
πred(G) + πgreen(G)

)
= 0

1

2

(
πred(G) + πgreen(G)

)
= 0.

The definition of µI entails that the distributions πred or πgreen on urn outcomes are

equally likely - whether we condition on {π | π(H) = 1} or on {π | π(T ) = 1}. The

inequality follows from the strict concavity of φ together with πred(G), πgreen(G), πred(G),

and πgreen(G) all being positive. I also replaced µI({π | π(H) = 1}) and µI({π | π(T ) =

1}) by one half. The next equality follows from φ(0) = 0. Finally φ(1)1
2

+ φ(x)1
2

= 0 is

none other than the value of the bet b. In sum the coin and the urn are not independent

according to V I .

A necessary condition for % to be transparent is that fHg ∼ xfHg ∼ fHxg holds for

all urn-acts f, g. The necessary condition implies that fHg ∼ xfHxg holds for all urn-acts

f, g. Since the agent prefers bets with higher payoffs to bets with lower payoffs he prefers

f ∗Hg
∗ to all possible choices fHg in the mechanism if he prefers f ∗ to all f ∈ SH and g∗ to all

g ∈ ST . But this is none other than the agent preferring to choose f ∗ from SH and g∗ from

ST in the random incentive mechanism to any other option. Now compare the condition

fHg ∼ xfHg ∼ fHxg holds for all urn-acts f, g with the requirement that the coin and

the urn are independent. Letting f = g the condition implies f ∼ fHxf ∼ xfHf for any

urn-act f . We could think of this last requirement as the “first half of independence”. An

additional symmetric “second half of independence” has to hold for the independence of

the coin and the urn: bExb ∼ b has to hold for any bet on the coin and any urn-event E. So

independence symmetrically imposes two comparatively weak conditions of indifference.

Conversely transparency requires a condition that is strong and asymmetric. The proof

of Theorem 1 revolves around showing that transparency clashes with the “second half of

independence”.

For the proof of Theorem 1 I fix the set of all random incentive mechanisms that use
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the randomization device D and to elicit preferences over A-acts. As a first step of the

proof I identify a necessary and sufficient condition for % to be transparent. This - strong

and asymmetric - condition is stated precisely in Lemma 1. In Lemma 2 I characterize

the set of preferences with a MMEU representation that satisfy the condition identified

in Lemma 1. Lemma 3 does the same for smooth representations. Finally Lemma 4

shows that the violation of independence is not specific to the representations U I and

V I . I fix any preferences that satisfy the characterization of either Lemma 2 or 3 and

assume that agent’s preferences over A-acts are strictly ambiguity averse. I show that

these assumptions preclude the the device D and A from being independent.

5 Discussion

Let me take up three suggestions to salvage random incentive mechanisms when prefer-

ences are ambiguity averse. Recall that Theorem 1 is due to the clash among transparency,

ambiguity aversion, and independence. The first suggestion is to impose a weaker notion

of independence. The second is to drop independence altogether. The third is to weaken

transparency.

Given that there is no agreed upon notion of stochastic independence for ambiguity

averse preferences one might consider replacing the Klibanoff’s [9] notion of independence

by a weaker one. However, Klibanoff’s [9] notion is already very weak. Gilboa and

Schmeidler [4], for example, introduced a more restrictive notion of independence in their

original article on MMEU representations: any two events that are independent according

to that notion are also independent according to Klibanoff’s [9]. The converse does not

hold. Theorem 1 continues to hold if we replace Klibanoff’s independence with any other

notion proposed in the literature on ambiguity aversion.

The second suggestion is to drop the requirement of independence. To make sure

that agents reveal their true preferences in the mechanism we must then instead assume

that the randomization device does not induce hedging. There are two problems with

this approach. First, hedging is a subjective concept. It is not clear what objective

information about the randomization device could convince experimental subjects that

they cannot use the randomization device to smooth out ambiguity. With independence,

in contrast, we can reasonably hope that an expected utility maximizing agent would
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consider a randomization device independent if the experimenter publicly states that the

device is indeed objectively independent. The second problem is that ambiguity aversion

is defined as a preference for hedging. So the brute-force assumption that randomization

devices cannot serve to hedge would erase the very phenomenon under study.

The third suggestion is to weaken transparency. Let me once again use the example

of the coin and the urn to illustrate. Call an urn-act whose payoff in the event G is at

least as high as its the payoff in the event R a G-act. Using a comparable definition for

R-acts, observe that any urn-act is either a G-act or an R-act (or both). Replace the

assumption of transparency with the assumption that % does not exhibit reversals in any

mechanism in which only G-acts can be chosen. In such experiments, the subjects cannot

use the randomization device to hedge since for all possible choices the favorable outcome

is associated with the same ambiguous event (G). These assumptions only allow us to

elicit preferences over G-acts.

But if we assume that the agent treats the events R and G symmetrically we can

identify his preferences over all urn-acts. More specifically, the symmetry assumption

implies that the agent is indifferent between the G-act f and the R-act g if f(G) = g(R)

and f(R) = g(G) hold. The data onG-acts, the symmetry assumption and the assumption

of transitivity allow the experimenter to identify the agent’s preference over any two urn-

acts. This approach indeed works for the agent with the MMEU preferences defined in

the Introduction: this agent truthfully reveals his preferences over G-acts. Moreover, the

symmetry assumption allows us to correctly derive his preferences over R-acts. While

this suggestion works well in the introductory example, it is not directly transferable to

other cases. For the suggestion to work, the assumption that a preference does not exhibit

reversals in some subset of mechanisms has to be complemented with some assumption

that allows the researcher to identify the remainder of the agent’s preferences. In the case

of the urn and the coin, the assumption that agents would treat G and R symmetrically

appears less fraught than the assumption of transparency. In other cases there will be no

clear solution.
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6 Appendix

The proof of Theorem 1 is by contradiction. Fix a preference % that either has a smooth

or a MMEU representation such that %A is strictly ambiguity averse. The contradiction

I obtain is that % cannot be transparent if A and the randomization device D are inde-

pendent. This proof is broken down into a series of steps. Lemma 1 identifies a necessary

and sufficient condition for % to be transparent. Lemmas 2 and 3 characterize the set

of MMEU and smooth representations that satisfy the condition identified in Lemma 1

given that the preference over A-acts is strictly ambiguity averse. Finally Lemma 4 shows

that D and A cannot be independent if % has a representation that is characterized by

either one of the two preceding Lemmas. But first I need to define some more notation

and concepts.

Notation: For any partition P of the set Ω let σP denote the algebra generated by P .

So an event E is a P-event if and only if E ∈ σP . An act f is a P-act if and only if f is

measurable with respect to the algebra σP . Let %P denote the restriction of % to the set

of P-acts. For any set C ⊂ ∆Ω and any partition P of Ω define CP as the set marginal

distributions on σP of all priors in the set C, formally CP = {πP | π ∈ C}. Let ΣA be the

algebra on ∆Ω generated by the partition of ∆Ω into sets {π | πA = π∗A}. For any prior

µ over priors ∆Ω, let µΣA be the marginal distribution with respect to the algebra ΣA.

For any set S let co(S) be the convex hull of the set S, so co(S) is the smallest convex

set that contains S.

Fix an event E and suppose % either has a MMEU or a smooth representation. In

the MMEU-case the event E is ambiguous if {π(E) | π ∈ C} is not a singleton. If %

has a smooth representation, then E is ambiguous if φ is strictly concave and {π(E) |
π ∈ supp(µ)} is neither a singleton nor a subset of {0, 1}. The preference %A is strictly

ambiguity averse if and only if there exists an ambiguous A-event. If no A-event is

ambiguous, then %A has an expected utility representation.

The randomization device D is said to be isolated from the set of events A if f ∼ xDi
f

holds for x ∈ R, act f and Di ∈ D if and only if x ∼ f [i]. So if D is isolated from A
then knowing Di does not make f [i] any more or less attractive than xf [i], no matter what

happens for all the other outcomes of the randomization device.

Any act f can be represented as a list ofA-acts (f [1], · · · , f [n]) with the understanding
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that f(A∩Di) = f [i](A) holds for all A ∈ A and all i. When D is isolated from A we have

that (f [1], · · · , f [n]) ∼ (xf [1], · · · , f [n]). Inductively applying isolation we obtain that

f = (f [1], · · · , f [n]) ∼ (xf [1], · · · , f [n]) ∼ (xf [1], xf [2], · · · , f [n]) ∼ · · · ∼ (xf [1], · · ·xf [n]).

This observation is used in the proofs of Lemmas 1 and 2:

Fact 1 If D is isolated from A then f ∼ (xf [1], · · ·xf [n]) holds for any act f .

Lemma 1 Assume that % is monotonic in the sense that f % f ′ holds when f(ω) % f ′(ω)

holds for all ω. Then % is transparent if and only if D is isolated from A.

Proof The statement can be formalized as (I)⇔ (II) with

(I) : (f ∗ % f ∀f ∈ S)⇔ (f ∗[i] % f [i] ∀ f [i] ∈ Si, i) ∀(S, f ∗)

(II) : (xDi
f ∼ f)⇔ (x ∼ f [i]) ∀(x, i, f).

To see (I)⇒ (II), fix a triple (x, i∗, f ∗) and assume that (II) does not hold. To simplify

notation let g : = f ∗[i∗] and Di∗ : = D.

First assume that f ◦ : = xDf
∗ ∼ f ∗ and x 6∼ g hold. Define S through Si∗ = {x, g}

and Si = {f ∗[i]} for all i 6= i∗. So f ◦ ∼ f ∗ % f holds for all f ∈ S, however x 6∼ g implies

that one of the two acts f ◦[i∗] = x and f ∗[i∗] = g must be strictly preferred. So (I) is

violated.

Next assume that f ◦ : = xgDf
∗ 6∼ f ∗ holds. Define S through Si∗ = {xg, g} and

Si = {f ∗[i]} for all i 6= i∗. Observe that f ◦[i] ∼ f ∗[i] % f [i] holds for all f [i] ∈ Si and all

i (including i∗), however f ◦ 6∼ f ∗ implies that one of these two acts must be preferred to

the other. So - once again - (I) is violated.

To see (II)⇒ (I) fix a tuple (S, f ∗) and assume that (II) holds.

First assume that f ∗ % f holds for all f ∈ S while f ∗[i∗] ≺ g holds for some i∗ and

g ∈ Si∗ . Let Di∗ : = D and define x such that f ∗ ∼ xDf
∗ holds. By (II) x is uniquely

defined through x ∼ f ∗[i∗]. This, f ∗[i∗] ≺ g, and monotonicity imply xDf
∗ ≺ xgDf

∗.

Applying (II) once again we obtain xgDf
∗ ∼ gDf

∗ and therefore gDf
∗ � f ∗, which

stands in contradiction with f ∗ % f for all f ∈ S. We can conclude that (f ∗ % f ∀f ∈ S)

implies (f ∗[i] % f [i] ∀ f [i] ∈ Si, i) if (II) holds.
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Now assume that f ∗[i] % f [i] holds for all f [i] ∈ Si and all i. So we have that

xf∗[i] % xf [i] holds for all f [i] ∈ Si and all i. Monotonicity and Fact 1 (which follows from

(II)) imply that f ∗ ∼ (xf∗[1], · · · , xf∗[n]) % (xf [1], · · · , xf [n]) ∼ f holds for all f ∈ S. In

sum we obtain that (f ∗[i] % f [i] ∀ f [i] ∈ Si, i) implies (f ∗ % f ∀f ∈ S) when (II) holds.

�

Lemma 2 Assume that % has a MMEU representation U(f) = minπ∈C
∑

Ω f(ω)π(ω)

and let C∗ : = co
(
{π | πD ∈ CD and πA(· | Di) ∈ CA for all i = 1, · · · , n}

)
. Then D is

isolated from A if and only if C∗ = C as well as π(Di) > 0 for all i and π ∈ C.

Proof Let C = C∗ as well as π(Di) > 0 for all i and π ∈ C. Fix any act f and i∗,

define Di∗ : = D and f [i∗] : = g, so f = gDf holds and U(f) can be calculated as

min
π∈C

(
π(D)

∑
A∈A

g(A)π(A | D) +
∑
i 6=i∗

π(Di)
∑
A∈A

f [i](A)π(A | Di)
)

=

π∗D(D) min
πA∈CA

∑
A∈A

g(A)πA(A) +
∑
i 6=i∗

π∗D(Di) min
πi
A∈CA

∑
A∈A

f [i](A)πiA(A) =

π∗D(D)xg +
∑
i 6=i∗

π∗D(Di) min
πi
A∈CA

∑
A∈A

f [i](A)πiA(A) = U
(
xgDf

)
.

The first equality follows from C = C∗ and the definition π∗D ∈ CD as the marginal on

D at which the sum is minimized, the second follows from the definition of the certainty

equivalent of g. Given that π∗D(D) > 0 this second equality and thereby U(f) = U
(
xDf

)
only holds for x = xg. We can conclude that D is isolated from A if C∗ = C as well as

π(Di) > 0 for all i and π ∈ C.

To see the necessity of the conditions for isolation, suppose first of all that there exist

a D ∈ D and a π∗ ∈ C such that π∗(D) = 0. Then we have U(1D0) = 0 = U(0) = U(0D0)

even though 1 6∼ 0. So isolation is violated.7

Next suppose that C∗ 6= C. First suppose there exists a π∗ ∈ C∗ \ C. Since C and

C∗ are both convex the separating hyperplane theorem implies the existence of an act f ∗

such that minπ∈C∗
∑

Ω f
∗(ω)π(ω) < minπ∈C

∑
Ω f
∗(ω)π(ω). The arguments in the preced-

ing part of the proof imply that minπ∈C∗
∑

Ω f(ω)π(ω) = minπD∈CD
∑n

i=1 πD(Di)xf [i] =

7This argument also applies to the ambiguity neutral case: % is not transparent if the agent has an

expected utility representation with a prior π such that π(D) = 0 holds for some D ∈ D.
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U
(
(xf [1], · · · , xf [n])

)
holds for all acts f . In sum we obtain (xf∗[1], xf∗[2], · · · , xf∗[n]) ≺ (f ∗)

which stands in contradiction with Fact 1 which requires these two acts to be indifferent

when D is isolated from A. The case that there exists a π∗ ∈ C \ C∗ is covered by the

same arguments mutatis mutandis. �

Lemma 3 Assume that % has a smooth representation V (f) =
∫

∆Ω
φ
(∑

Ω f(ω)π(ω)
)
dµ(π)

and that the preference %A over A-acts is strictly ambiguity averse. Then D is isolated

of A if and only if π(D)π(D) = 0, µ({π | π(D) = 1}) > 0 and µΣA = µΣA(· | π(D) = 1)

hold for all D ∈ D and all π ∈ supp(µ).

Proof First assume that π(D)π(D) = 0, µ({π | π(D) = 1}) > 0 and µΣA = µΣA(· |
π(D) = 1) hold for all D ∈ D and all π ∈ supp(µ). Fix any act f and any D ∈ D. Define

g as the A-act for which gDf = f holds. Since π(D)π(D) = 0 holds for all π ∈ supp(µ) we

can represent V (f) as
∫

∆Ω,π(D)=1
φ
(∑

Ω f(ω)π(ω)
)
dµ(π)+

∫
∆Ω,π(D)=0

φ
(∑

Ω f(ω)π(ω)
)
dµ(π).

Rewrite the first term of the sum as follows:∫
∆Ω,π(D)=1

φ
(∑

Ω

f(ω)π(ω)
)
dµ(π) =

∫
∆Ω,π(D)=1

φ
(∑
A∈A

g(A)π(A)
)
dµ(π) =

µ({π | π(D) = 1})
∫

∆Ω

φ
(∑
A∈A

g(A)π(A)
)
dµ(π | π(D) = 1) =

µ({π | π(D) = 1})
∫

∆Ω

φ
(∑
A∈A

g(A)π(A)
)
dµ(π) =

µ({π | π(D) = 1})φ
(
xg
)

=

∫
∆Ω,π(D)=1

φ
(
xg
)
dµ(π).

The first and second equality follow from the restriction to probability measures π with

π(D) = 1 and the definition of the conditional probability µ(· | π(D) = 1). The third

equality holds since the marginal µΣA is equal to the conditional marginal µΣA(· | π(D) =

1). The fourth equality uses the definition of the certainty equivalent of g. In sum we

have V
(
f
)

= V
(
gDf

)
= V

(
xgDf

)
. Since µ({π | π(D) = 1}) is positive the equality

V
(
f
)

= V
(
xDf

)
holds if and only if x = xg. We can conclude that D is isolated from A

if π(D)π(D) = 0, µ({π | π(D) = 1}) > 0 and µΣA = µΣA(· | π(D) = 1) hold for all D ∈ D
and all π ∈ supp(µ).

To see the necessity of the conditions for isolation, suppose first of all that µ({π |
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π(D) = 1}) = 0 holds for some D. Then we have V (1D0) = 0 = V (0) = V (0D0) even

though 1 6∼ 0. So isolation is violated.8

I show next that π(D)π(D) = 0 has to hold for all π ∈ supp(µ) and all D ∈ D for D to

be isolated from A when %A is strictly ambiguity averse. Since %A is strictly ambiguity

averse there must exist an A-event A such that {π(A) | π ∈ supp(µ)} is neither a singleton

set, nor a subset of {0, 1}, moreover φ must be strictly concave. Normalize φ such that

φ(0) = 0 and φ is strictly concave in some neighborhood around 0. Implicitly define a

function y : R+
0 → R−0 through V

(
xAy(x)

)
= 0 and let b[x] : = xAy(x), so y(0) = 0. To

see that y cannot be linear at 0 suppose we had y(x) = −ρx for all x ∈ [0, x] for some

ρ > 0 and x > 0. Fix an x ∈ (0, x] to obtain the following contradiction

0 = V (b[
x

2
]) =

∫
∆Ω

φ
(
(
1

2
0 +

1

2
x)(π(A)− ρπ(A))

)
dµ(π) >

1

2

∫
∆Ω

φ(0)dµ(π) +
1

2

∫
∆Ω

φ(x(π(A)− ρπ(A)))dµ(π) = 0 +
1

2
V (b[x]) = 0.

The inequality follows since φ is strictly concave around 0, and since π(A) − ρπ(A) 6= 0

must hold for a set of π that has positive measure according to µ (given that {π(A) | π ∈
supp(µ)} is not a singleton). The conclusion follows from φ(0) = 0 and the definition of

b[x].

If D is isolated from A then b[x]D0 ∼ 0 ∼ 0Db[x] must hold for all x ≥ 0 and all

D ∈ D, implying

0 = V
(
b[x]D0

)
+ V

(
0Db[x]

)
=∫

∆Ω
φ
(
xπ(A ∩D) + y(x)π(A ∩D)

)
dµ(π) +

∫
∆Ω

φ
(
xπ(A ∩D) + y(x)π(A ∩D)

)
dµ(π) =∫

∆Ω
φ
(
xπ(A ∩D) + y(x)π(A ∩D)

)
+ φ
(
xπ(A ∩D) + y(x)π(A ∩D)

)
dµ(π) ≥∫

∆Ω
φ
(
xπ(A ∩D) + y(x)π(A ∩D) + xπ(A ∩D) + y(x)π(A ∩D)

)
dµ(π) =∫

∆Ω
φ
(
xπ(A) + y(x)π(A)

)
dµ(π) = 0

The concavity of φ implies the weak inequality, a contradiction is achieved if the inequality

holds strictly for some x. The strict concavity of φ at 0 together with the assumption

that φ(0) = 0 implies that φ(α) + φ(β) > φ(α + β) holds, if and only if α 6= 0 6= β.

Therefore the above inequality holds strictly if and only if xπ(A∩D)+y(x)π(A∩D)) 6=
0 and xπ(A ∩D) + y(x)π(A ∩D)) 6= 0 holds for a set of priors that has positive measure

8I used the same argument to rule out π(D) = 0 for any π ∈ C in the proof of Lemma 2.
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according to µ. To avoid such a contradiction any π ∈ supp(µ) which does not assign

probability 1 or 0 to D must satisfy

y(x) ∈
{
− xπ(A ∩D)

π(A ∩D)
,−xπ(A ∩D)

π(A ∩D)

}
.

If this condition held for some π∗ ∈ supp(µ) we would obtain y(x) = −ρx for ρ either
π∗(A∩D)

π∗(A∩D)
or π∗(A∩D)

π∗(A∩D)
given that y is continuous and y(0) = 0. This contradicts the observa-

tion that y cannot be linear in any small neighborhood around 0. We can conclude that

either one of the first two cases must hold. In sum, we have that π(D)π(D) = 0 holds for

all π ∈ supp(µ) and all D ∈ D.

If µΣA 6= µΣA(· | π(D) = 1) holds for some D ∈ D then there exists an A-act f such

that ∫
∆Ω

φ
(∑
A∈A

f(A)dπ(ω)
)
dµ(π) 6=

∫
∆Ω

φ
(∑
A∈A

f(A)dπ(ω)
)
dµ(π | π(D) = 1).

For this act f we have V
(
fDxf

)
=
∫

∆Ω
φ
(∑

A(fDxf )(A)π(A)
)
dµ(π) =

µ({π | π(D) = 1})
∫

∆Ω

φ
(∑
A∈A

f(A)dπ(ω)
)
dµ(π | π(D) = 1) + µ({π | π(D) = 0})φ(xf ) 6=

µ({π | π(D) = 1})φ(xf ) + µ({π | π(D) = 0})φ(xf ) = V (f).

The inequality is implied by µ({π | π(D) = 1}) > 0. In sum µΣA = µΣA(· | π(D) = 1)

must hold for all D ∈ D for D to be isolated from A. �

Lemma 4 Assume that % either has a MMEU or a smooth representation, that D is

isolated from A and that %A is strictly ambiguity averse. Then D and A cannot be

independent.

Proof Since %A is strictly ambiguity averse there exists an ambiguous A-event A. Fix a

D ∈ D and define a value x and a bet b such that b = 1Dx ∼ 0. In the following paragraphs

I show that bA0 6∼ 0 holds for either representation contradicting the independence of D
and A which requires bA0 ∼ 0 to hold.

If the preference has the MMEU representation U(f) = minπ∈C
∑

Ω f(ω)π(ω), then

x = −minπ∈C

(
π(D)/π(D)

)
: = π∗(D)/π∗(D) holds; according to Lemma 2 no prior
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in C assigns zero probability to any outcome of the randomization device, so x is well

defined and non-zero. We can calculate U
(
bA0
)

as

min
π∈C

(
π(A ∩D) + xπ(A ∩D) + 0π(A)

)
=

min
π1∈CD,π2,π3∈CA

(
π2(A)π1(D) + xπ3(A)π1(D)

)
=

min
π2∈CA

π2(A)π∗(D) + x max
π3∈CA

π3(A)π∗(D) =

π∗(D)( min
π2∈CA

π2(A)− max
π3∈CA

π3(A)) < 0

The first equality follows from Lemma 2 which shows that C must be defined as co({π |
πD ∈ CD and πA(· | Di) ∈ CA for all i = 1, · · · , n}) for D to be isolated from A. The

second equality recognizes the fact that a difference is minimized through minimising

the minuend and maximizing the subtrahend. The third uses the definition of x. The

inequality holds since A is ambiguous, meaning that {π(A) | π ∈ C} is not a singleton

set.

Now assume that % has the smooth representation V (f) =
∫

∆Ω
φ(
∑

Ω f(ω)π(ω))dµ(π)

with φ(0) = 0 and φ strictly concave in some open interval around 0. Define λ : = µ({π |
π(D) = 1}). Since b ∼ 0, we have V (b) = λφ(1) + (1− λ)φ(x) = 0.

V (bA0) =

∫
∆Ω

φ
(

(π(A ∩D) + xπ(A ∩D) + 0π(A ∩D) + 0π(A ∩D)))π(ω)
)
dµ(π) =

λ

∫
∆Ω

φ
(
π(A) + 0π(A)

)
dµ(π) + (1− λ)

∫
∆Ω

φ
(
xπ(A) + 0π(A))

)
dµ(π) >

λ

∫
∆Ω

(
φ(1)π(A) + φ(0)π(A))

)
dµ(π) + (1− λ)

∫
∆Ω

(
φ(x)π(A) + φ(0)π(A)

)
dµ(π) =∫

∆Ω

(
(λφ(1) + (1− λ)φ(x))π(A)

)
dµ(π) =

∫
∆Ω

(
0π(A)

)
dµ(π) = 0.

The first equality follows from the definition of the act bA0. The second equality is implied

by Lemma 3 which shows that π(D)π(D) = 0 and µΣA = µΣA(· | π(D) = 1) must hold for

all D ∈ D and all π ∈ supp(µ) for D to be isolated from A when %A is strictly ambiguity

averse. The inequality follows from the assumption that φ is strictly concave around 0

and µ({π | 0 < π(A) < 1}) > 0 as implied by A being ambiguous. The next equality

follows from φ(0) = 0, finally λφ(1) + (1− λ)φ(x) = 0 yields the conclusion. �

To prove Theorem 1 all preceding Lemmas need to be combined.
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Proof Assume that the % has a MMEU or a smooth representation. Given that any

such preference is monotonic, Lemma 1 applies; % is transparent if and only if D is isolated

from A. Lemma 4 shows that D and A cannot be independent if D is isolated from A and

if %A is strictly ambiguity averse. A contradiction is achieved, meaning that %A must be

ambiguity neutral. �
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