3 The intuitive idea of a limit

READING | Read Section 2.2 of Rogawski

Reading

D

do

D

3.1 Guessing limits

We begin with an example.

Example 1. Consider the function

$$f(x) = \frac{\sin^2(x)}{x}.$$

f(x) is not defined when x = 0, but is defined for all real numbers. (So we can take the domain of f to be $\mathbb{R}\setminus\{0\}$.)

However, f(x) can be calculated for values arbitrarily close to zero:

х	f(x)
3	0.006638285563
2	0.4134109052
1	0.7080734183
0.1	0.09966711080
0.01	0.009999666671
0.0001	0.00009999999966
0.000001	0.000001000000000
0.000000001	10-9

x	f(x)
-0.5	-0.4596976942
-0.02	-0.01999733347
-0.01	-0.009999666671
-0.006	-0.005999928000
-0.003	-0.002999991000
-0.001	-0.0009999996666
-0.0007	-0.0006999998856
-0.000001	-0.000001000000000

It appears that "when x is very close to 0, f(x) is very close to O."

We can also spot this type of behaviour in graphs:

Example 2. The graph of $\frac{\sin^2(x)}{x}$:

From the graph,

It appears that "when x is very close to 0, f(x) is very close to $\underline{0}$." It appears that "when x is very close to $-\pi$, f(x) is very close to $\underline{\underline{0}}$."

Example 3. Let $f(x) = \sin(\frac{1}{x})$. The graph of this function is

Let's investigate numerically what happens to f(x) as x gets close to 0.

x	f(x)
0.1	-0.5440211109
0.05	0.9129452507
0.01	0.8268795405
0.001	-0.3056143889
0.0001	0.03574879797
0.000001	-0.3499935022
0.0000000001	-0.4875060251
0.00000000000000001	0.8582727932

\boldsymbol{x}	f(x)
- 0.1	-0.5440211109
-0.05	-0.9129452507
-0.01	-0.8268795405
-0.001	
-0.0001	
-0.000001	
-0.00000000000000001	-0.8582727932
-0.001 -0.0001	0.3056143889 -0:03574879797 0.3499935022 0.4875060251 -0.8582727932

do

do

do

do

When x is very close to zero, f(x) Does not bet close to any number.

This leads us to the idea of a limit.

Idea of a limit	We say that the limit of $f(x)$ as x tends to c is L if " $f(x)$ is very close to L whenever x is very close to c ".
	This is denoted by " $\lim_{x\to c} f(x) = L$ ", or " $f(x) \to L$ as $x \to c$ ".

In even looser terms, $\lim_{x\to c} f(x) = L$ if "when x gets closer and closer to a number c, f(x) gets closer and closer to a number L".

Observe that limits do not always exist!

Example 4. The two limits from the examples above are:

Example 5. The following limit does not exist:

Example 6. Let $f(x) = \frac{x^2-4}{x-2}$. By calculating values, guess $\lim_{x\to 2} \frac{x^2-4}{x-2}$. Solution.

х	f(x)
1.9	3.9
1.99	3.99
1.999	3.999
1.99999	3.99999
1.9999999	3,9999999 (

x	f(x)
2.1	4.1
2.01	4.01
2.0001	4.0001
2.00001	4.00001
2.0000001	4.0000001

From the values in the table, we guess that

$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = 4$$

Example 7. Let $g(\theta) = \frac{\sin(\theta)}{\sin(\theta)}$. By calculating values, guess $\lim_{\theta \to \pi} g(\theta)$. Remember to use x values both larger and smaller than π .)

Solution.

θ	$g(\theta)$
3.1	(
7.141	1
3.1415	1
3.141592	1

θ	g(heta)	
3.15	0	
3.142	0	
3.1416	D	
3,141563	8	

do

B

From the values in the table, we guess that

$$\lim_{\theta \to \pi} \frac{\sin(\theta)}{\sin(\theta)} = 4$$

Example 8. Let f(x) be the function with the following graph.

From the graph we can have

$$\lim_{x \to -5} f(x) = \{ , \lim_{x \to 1} f(x) = 5 , \lim_{x \to 7} f(x) = -2 .$$

Example 9. Let $g(t) = \ln\left(\frac{\sin(t)}{t}\right)$. By calculating values, guess $\lim_{t\to 0} \ln\left(\frac{\sin(t)}{t}\right)$.

Solution.

t	g(t)
-1	-0.1726037463
-0.1	-0.001667222543
-0.01	-0.00001666673889
-0.0001	$-1.700000001 \times 10^{-9}$

t	g(t)
1	-0.1726037463
0.1	-0.001667222543
0.01	-0.00001666673889
0.0001	$-1.700000001 \times 10^{-9}$

From the values in the table, we guess that

$$\lim_{t\to 0} \ln\left(\frac{\sin(t)}{t}\right) = \bigcirc$$

Example 10. Let $h(t) = \ln\left(\frac{\sin(t)}{2t}\right)$. By calculating values, guess $\lim_{t\to 0} \ln\left(\frac{\sin(t)}{2t}\right)$.

Solution.

t	h(t)
-0.1	-0.6948144032
-0.05	-0.6935638820
- 0.01	-0.6931638473
- 0.0005	-0.6931472222
- 0.00007	-0.6931471814
-0.000001	-0.6931471806
-0.00000001	-0.6931471806

t	h(t)
0.1	-0.6948144032
0.05	-0.6935638820
0.01	-0.6931638473
0.0005	-0.6931472222
0.00007	-0.6931471814
0.000001	-0.6931471806
0.00000001	-0.6931471806

From the values in the table, we guess that

$$\lim_{t \to 0} \ln \left(\frac{\sin(t)}{2t} \right) = -0.693147806... = -\ln(2)$$

Example 11. By comparing the last two examples, and considering the rules of logarithms, guess what the exact value of $\lim_{t\to 0} \ln\left(\frac{\sin(t)}{2t}\right)$ is.

$$\lim_{t\to 0} \ln\left(\frac{\sin t}{zt}\right) = \lim_{t\to 0} \left(\ln\left(\frac{\sin t}{z}\right) - \ln\left(2\right)\right) = \lim_{t\to 0} \left(\ln\left(\frac{\sin t}{z}\right)\right) - \lim_{t\to 0} \left(\ln\left(\frac{\sin t}{z}\right)\right) = \lim_{t\to 0} \left(\ln\left(\frac{\sin t}{z}\right)\right) = \ln(z)$$

HOMEWORK | Rowgowski Section 2.2: Q 1, 2, 3, 4, 7, 8, 21, 25, 29, 31

Homework

do

do

3.2 One-sided limits

Consider the function

$$f(x) = \frac{x}{|x|} = \begin{cases} 1 \text{ if } x > 0\\ -1 \text{ if } x < 0 \end{cases}$$

This function is undefined when x = 0. The graph of this function is:

Observe that $\lim_{x\to 0} f(x)$ does not exist. This is since f(x) is not close to any particular number when x is close to 0. (Depending on the value of x, f(x) is close to either 1 or -1.)

However notice that:

- f(x) is close to 1 when x is close to 0 and x > 0;
- f(x) is close to -1 when x is close to 0 and x < 0.

This leads us to the idea of a one-sided limit.

Idea of	
one-sided	limit

We say that the limit of f(x) as x tends to c from the right is L if "f(x) is very close to L whenever x is very close to c and x > c". This is denoted by " $\lim_{x \to c_+} f(x) = L$ ",

We say that the limit of f(x) as x tends to c from the left is L "f(x) is very close to L whenever x is very close to c and x < c". This is denoted by " $\lim_{x \to c_{-}} f(x) = L$ ",

Example 12. From the above we guess

$$\lim_{x \to 0_+} \frac{x}{|x|} = 1 \qquad \lim_{x \to 0_-} \frac{x}{|x|} = -$$

Note that

$$\lim_{x \to c} f(x) = L \quad \iff \quad (\lim_{x \to c_{+}} f(x) = L \quad \text{and} \quad \lim_{x \to c_{-}} f(x) = L)$$

Example 13. Let f(x) be given by the graph

Then

$$\lim_{x \to 2_{-}} f(x) = 2 \quad \lim_{x \to 2_{+}} f(x) = 6 \quad \lim_{x \to 5_{-}} f(x) = 5 \quad \lim_{x \to 5_{+}} f(x) = 5$$

Example 14. Investigate the one-sided limits $\lim_{x\to 0_{\pm}} |x|^{(\frac{1}{x})}$ numerically.

Solution.	x	f(x)
	0.5	0.25
	0.3	0.01807468966
	0.2	0.00032
	0.1	10-10
	0.05	$9.536743164 \times 10^{-27}$

\boldsymbol{x}	f(x)
-0.5	4
-0.3	55.32598450
-0.2	3125.000000
-0.1	10 ¹⁰
-0.05	$1.048576000 \times 10^{26}$

$$\lim_{x \to 0_{+}} |x|^{(\frac{1}{x})} = \bigcirc$$

$$\lim_{x \to 0_{-}} |x|^{(\frac{1}{x})} = \bigcirc \wedge E \qquad (0 \land 0)$$

HOMEWORK | Rowgowski Section 2.2: Q 6, 37, 38, 39, 41, 43

Homework

Co

B

D

4 Asymptotes

4.1 Guessing limits

We begin with an example.

Example 15. Consider the function

$$f(x) = \frac{1}{|x|}.$$

f(x) is not defined when x = 0. Lets investigate what happens to f(x) when x is close to 0.

x	f(x)
0.1	10

х	f(x)
-0.1	10

do

We see that "when x is very close to 0, f(x) is a very large positive number. In fact, we see we can make f(x) as large as we like by taking x close enough to zero.

In such a situation, we say that "as x tends to 0, f(x) tends to infinity".

We can also see the above behaviour in the graph of 1/|x|:

Idea of an	We say that the limit of $f(x)$ as x tends to c is ∞ if " $f(x)$ becomes arbitrarily large and positive whenever x is close enough to c ".
infinite limit	This is denoted by " $\lim_{x\to c} f(x) = \infty$ ",
	We say that the limit of $f(x)$ as x tends to c is $-\infty$ if
	" $f(x)$ becomes arbitrarily large and negative whenever x is close enough to c " This is denoted by " $\lim_{x\to c} f(x) = -\infty$ ",
	We say that $\lim_{x \to c_{-}} f(x) = -\infty$ if
	" $f(x)$ becomes arbitrarily large and negative whenever
	x is close enough to c and $x < c$ "
	and so on.

Example 16.

$$\lim_{x \to 0} \frac{1}{|x|} = \infty.$$

Example 17. Numerically investigate the one-sided limits of $f(x) = \frac{1}{x+2}$ as $x \to -2$.