2 A quick trigonometry review

READING | Read Section 1.4 of Rogawski.

Reading

B

E

2.1 Angles

- Angles are measure in radians.
- Rotating an object by 2π radians will rotate by one complete revolution in the anticlockwise direction.
- π radians = 180°

Example 1.

Example 2. Convert 60° into radians.

Solution.

 π radians = 180°. So $1^{\circ} = \frac{1}{180}$ radians. Then $60^{\circ} = \frac{600}{180}$ radians = $\frac{1}{3}$ radians.

HOMEWORK | Rowgowski Section 1.4: Q 3 & 4.

Homewor

1.2 Two triangles to remember

Memorize

1.3 Sine and cosine

Every angle θ defines a point $P(\theta)$ on the unit circle by rotating the point (0,1) by an angle of θ about the origin:

$$P(\theta) = (\cos(\theta), \sin(\theta)).$$

Thus, $\cos(\theta)$ is the x-coordinate of $P(\theta)$; and $\sin(\theta)$ is the y-coordinate of $P(\theta)$.

Example 3. Find the exact values of $\cos\left(-\frac{5\pi}{6}\right)$ and $\sin\left(\frac{7\pi}{6}\right)$.

Solution. We begin by finding the coordinates of $P\left(-\frac{5\pi}{6}\right)$. Consider the following figure:

Using our standard triangles, we find that

$$P\left(-\frac{5\pi}{6}\right) = \left(\cos\left(-\frac{5\pi}{6}\right), \sin\left(-\frac{5\pi}{6}\right)\right) = \left(\frac{-\sqrt{5}}{2}, \frac{-1}{2}\right)$$

Finally, since $P\left(-\frac{5\pi}{6}\right) = P\left(\frac{7\pi}{6}\right)$, we have

$$\sin\left(\frac{7\pi}{6}\right) = \sin\left(-\frac{5\pi}{6}\right) = -\frac{1}{2}$$

Example 4. Solve the equation $\cos(\theta) = \frac{-\sqrt{2}}{2}$.

Solution. $\cos(\theta)$ is the x-coordinate of the point $P(\theta)$. So we need to find all of the values θ such that $P(\theta) = (-\sqrt{2}/2, y)$.

The appearance of $\sqrt{2}$ suggests we use the following standard triangle:

Then from the figure

we see that

$$\theta = \frac{3\pi}{4} + 2k\pi$$
, or $\frac{5\pi}{4} + 2k\pi$, where $k \in \mathbb{Z}$.

The following identity is very useful.

Theorem 1.

$$\cos^2(\theta) + \sin^2(\theta) = 1$$

HOMEWORK | Rowgowski Section 1.4: Q 7, 9, 13 & 30.

Homewor

1.4 The graphs of sine and cosine

The graph of $y = \sin(x)$ is

The graph of $y = \cos(x)$ is

Example 5. Let $t := \cos(5\pi/8)$. Use the graph of the cosine function to write down all of the solutions to the equation $\cos(\theta) = t$.

Solution.

Example 6. Use the graph of sine to write down all of the solutions to $\sin(x) + 1 = 0$, where $2\pi \le x \le 4\pi$.

Solution.

1.5 Other trigonometric functions

Recall

Memo

$$\tan(\theta) := \frac{\sin(\theta)}{\cos(\theta)}, \qquad \cot(\theta) := \frac{1}{\tan(\theta)}, \qquad \sec(\theta) := \frac{1}{\cos(\theta)}, \qquad \csc(\theta) := \frac{1}{\sin(\theta)}$$

Example 7. If $\cot(\theta) = 4$ and $0 \le \theta \le \frac{\pi}{2}$, find $\sin(\theta)$.

Solution.

$$So \quad Cot(\Theta) = \frac{cidj}{opp}$$

HOMEWORK | Rowgowski Section 1.4: Q 19, 21, 24, 25 & 27

Homewor

1.6 Inverse trigonometric functions

By restricting the domain of sine and cosine as above we have found definitions of \sin^{-1} and \cos^{-1} . We have:

Memorize

 $\sin^{-1}(x)$ is the unique angle θ in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ such that $\sin(\theta) = x$ $\cos^{-1}(x)$ is the unique angle θ in $[0, \pi]$ such that $\cos(\theta) = x$

We can similarly define inverses of all of the other trig. functions. These definitions can be found in Section 1.5 of the textbook.

Example 8. Calculate $\cos^{-1}(-\sqrt{3}/2)$.

Cost(-15) is the unique anglé in [0, 11] with $\cos(0) = -\sqrt{2}$

Cos(0) is the x-coord of 1915) so we have

we see 0 = 5T

Example 9. Calculate $\cos^{-1}(\cos(9\pi/5))$.

Solution. Cos'(cos(95)) is de unique angleoin [O,T] with $cos(\Theta) = cos(\Theta)$

Cos(0) is ile x-coord of P(6) = P(91)

Using symmetry ve see 0= 17 So Cos-1(cos(9)) = TE

HOMEWORK Rowgowski Section 1.5: Q 23, 25, 27, 29, 31, 33, 35, 37

Homeworl

Co

