1 vaine.	
Signature:	
J. Number:	

MA 125 Calculus 1 Exam 1

- 1. Attempt all 6 questions.
- 2. Write your name and J. number at the top of this page.
- 3. Answer the questions in the spaces provided.
- 4. Show all your work required to obtain your answers.
- 5. No calculators are allowed.
- 6. This is a closed book test.

Question	Mark
1	/
2	/
3	/
4	/
5	/
6	/
total	/

Some standard limits:

$$\lim_{x \to c} x = c, \qquad \lim_{x \to c} k = k, \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1, \qquad \lim_{x \to \infty} k = k, \qquad \lim_{x \to \infty} \frac{1}{x} = 0,$$

Some continuous functions:

$$x$$
, k , e^x , $\sin(x)$, $\cos(x)$, $\sqrt[n]{x}$

For finding derivatives:

$$(f+g)' = f' + g', (cf)' = cf', (fg)' = f'g + g'f, \left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$$

 $\frac{d}{dx}x^n = nx^{n-1}, \frac{d}{dx}\sin(x) = \cos(x), \frac{d}{dx}\cos(x) = -\sin(x), \frac{d}{dx}e^x = e^x$

1. Find all of the solutions in $[0, 2\pi]$ to the equation

$$\sin(x)\cos(x) + \sin(x) = 0.$$

(Hint: start by factorizing.)

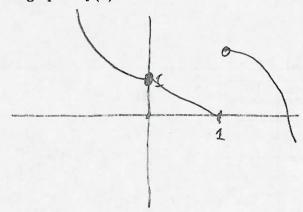
$$SU(X) COS(X) + SU(X) = 0 \iff SU(X) (COS(X) + 1) = 0$$

 $\Rightarrow SU(X) COS(X) = 1 \iff \emptyset$

$$() SU(N) = 0 \quad () COS(N) = 1$$

$$() X = 0, |T_1, Z|T$$

- 2. Let $f(x) = \begin{cases} x^2 + 1 & \text{if } x \le 0 \\ 1 x & \text{if } 0 > x \ge 1 \\ 4 x^3 & \text{if } x > 1 \end{cases}$
 - (a) Plot the graph of f(x).



(b) Write down the points of discontinuity.

$$x=1$$

(c) State whether f(x) is right-continuous or left-continuous at these points.

3. Using any of the results and methods (except for numerical estimates) you have seen in the course, determine the following limits. Justify your answer.

(a)
$$\lim_{x \to 3} \frac{1-x}{1+x} = \frac{1-7}{1+3} = -\frac{7}{4} = \frac{1}{2}$$

(b)
$$\lim_{x \to 1} \frac{x^3 - x}{x - 1} = \lim_{x \to 1} \frac{x(x^2 - 1)}{x - 1} = \lim_{x \to 1} \frac{x(x^2 - 1)}{x - 1} = \lim_{x \to 1} \frac{x(x^2 - 1)}{x - 1}$$

$$= \lim_{x \to 1} x(x + 1) = 2$$

(c)
$$\lim_{x \to 1} \left(\frac{1}{x-1} - \frac{2}{x^2-1} \right) = \lim_{x \to 1} \left(\frac{1}{x-1} - \frac{7}{(x-1)(x+1)} \right) = \lim_{x \to 1} \frac{x+1-7}{(x-1)(x+1)}$$

$$= \lim_{x \to 1} \frac{x-1}{(x-1)(x+1)} = \lim_{x \to 1} \frac{1}{x+1} = \frac{1}{7}$$

(d)
$$\lim_{x \to 3} \frac{\sqrt{x+1}-2}{x-3} = \lim_{x \to 3} \frac{(x+1-2)(\sqrt{x+1}+2)}{(x-3)(\sqrt{x+1}+2)}$$

$$= \lim_{x \to 3} \frac{x+1-4}{(x-3)(\sqrt{x+1}+2)} = \lim_{x \to 3} \frac{(x-3)(\sqrt{x+1}+2)}{(x-3)(\sqrt{x+1}+2)} = \lim_{x \to 3} \frac{1}{(\sqrt{x+1}+2)} = \frac{1}{4}$$

(e)
$$\lim_{t\to 9} \frac{\sqrt{t}-3}{t-9} = \lim_{t\to 9} \frac{\sqrt{t}-3}{(\sqrt{t}-3)(\sqrt{t}+3)} = \lim_{t\to 9} \frac{1}{\sqrt{t}+3} = \frac{1}{6}$$

4. (a) Write down the definition of the derivative f'(x) of a function f(x)

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

(b) Use the definition of a derivative to find g'(2) where $g(x) = \frac{1}{x}$.

$$f(z+h) = \frac{1}{2+h}$$

$$f(z) = \lim_{h \to 0} \frac{1}{z+h} - \frac{1}{z} = \lim_{h \to 0} \frac{z-z+h}{t+zh}$$

$$= \lim_{h \to 0} \frac{h}{h(4+zh)} = \lim_{h \to 0} \frac{1}{4+zh} = \frac{1}{4}$$

5. (a) State the Intermediate Value Theorem (IVT).

(b) Show that cos(x) - x has a solution in the interval [0, 1].

$$Cos(0) - 0 = 1$$

 $cos(1) - 1 < 0$

So by IVT Ree is some cin co,1] rullet cosser-e = 0 118

12

1. Find all of the solutions in $[0, 2\pi]$ to the equation

$$\cos(x)\sin(x) + \cos(x) = 0.$$

(Hint: start by factorizing.)

2. Let
$$f(x) = \begin{cases} x^2 & \text{if } x \leq 1\\ 2-x & \text{if } x > 1 \end{cases}$$

- (a) Plot the graph of f(x).
- (b) Write down the points of discontinuity
- (c) State whether f(x) is right-continuous or left-continuous at these points.
- 3. (a) State what it means for a function f(x) to be continuous at a point c.
 - (b) State what it means for a function to have a jump continuity at x = c.
 - (c) State what it means for a function to have a removable continuity at x = c.
 - (d) For what value of c is the function $f(x) = \begin{cases} 2x+9 & \text{if } x \leq 3 \\ -4x+c & \text{if } x > 3 \end{cases}$ continuous at x=3? Justify your answer.
- 4. (a) State the Intermediate Value Theorem (IVT).
 - (b) Find an interval of length 1/4 in [0,1] containing a root of $x^5 5x + 1$.
- 5. Using any of the results and methods (except for numerical estimates) you have seen in the course, determine the following limits. Justify your answer.

(a)
$$\lim_{x \to 4} (3 + x^{1/2})$$
.

(b)
$$\lim_{x \to -1} \frac{3x^2 + 4x + 1}{x + 1}$$
.

(c)
$$\lim_{h\to 0} \frac{\frac{1}{3+h}-\frac{1}{3}}{h}$$
.

(d)
$$\lim_{x \to 0} \frac{\sqrt{1+x} - \sqrt{1-x}}{x}$$

(e)
$$\lim_{t \to -2} \frac{2t+4}{12-3t^2}$$
.

- 6. (a) Write down the definition of the derivative f'(x) of a function f(x)
 - (b) Let $f(x) = (x+1)^2$. Use the definition of a derivative to prove that f'(x) = 2(x+1).

6

- (c) Use the definition of a derivative to find g'(-1) where $g(t) = \frac{2}{1-t}$.
- 7. Calculate the following derivatives.

Recall:
$$(f+g)' = f' + g'$$
, $(cf)' = cf'$, $(fg)' = f'g + g'f$, $\left(\frac{f}{g}\right)' = \frac{f'g - g'f}{g^2}$, $\frac{d}{dx}x^n = nx^{n-1}$, $\frac{d}{dx}\sin(x) = \cos(x)$, $\frac{d}{dx}\cos(x) = -\sin(x)$, $\frac{d}{dx}e^x = e^x$

(a)
$$\frac{d}{dz}7z^{-3} - 7x^2 + 10x + 9$$

(b)
$$\frac{d}{dx}3e^x - 2\cos(x)$$

6. Calculate the following derivatives. Use the standard derivatives and the laws of derivatives listed on the front page.

(a)
$$\frac{d}{dx}x^{3/2} = \frac{3}{2} \times \frac{1}{2} = \frac{3}{2} \sqrt{x}$$

(b)
$$\frac{d}{dx}2x^3 - 10x^{-1} + \cos(x) = 6x^7 + 10x^{-7} - \sin(x)$$

(c)
$$\frac{d}{dx}x^2e^x = 7xe^x + x^2e^x = (7x+x^2)e^x$$

(d)
$$\frac{d}{dx} \frac{x}{x+1}$$
 = $\frac{(1)(x+1)-x(1)}{(x+1)^2} = \frac{1}{(x+1)^2}$

7. What is the equation of the tangent line at x=3 assuming that f(3)=5 and f'(3)=2.

$$y = mx + b$$
 $m = f(b) = 2$