SOLUTIONS

radile;	
Signature:	
, , , , , , , , , , , , , , , , , , ,	

MA 125 Calculus 1 Test 4

- 1. Attempt all of the questions.
- 2. Write your name and J. number at the top of this page.
- 3. Answer the questions in the spaces provided.
- 4. Show all your work required to obtain your answers.
- 5. Simplify your answers when it is possible.
- 7. You may use your table of derivatives.

Question	Mark
1	/6
2	/9
3	/10
4	/19
total	/

1. Let $f(x) = (2x - x^2)e^x$. This function has a critical point at $x = -\sqrt{2}$. Use the **second** derivative test to determine if f(x) has a local minimum or a local maximum at $x = -\sqrt{2}$. If the second derivative test is inconclusive, state that this is the case.

[6]

$$f(x) = (2-2x)e^{x} + (2x-x^{2})e^{x} = (2-x^{2})e^{x}$$

$$f''_{(x)} = -2x e^{x} + /2 - x^{2} e^{x}$$

= $(-x^{2} - 2x + 2) e^{x}$

3. The concentration C(t) (in mg/cm^3) of a drug in a patient's blood-stream after t hours is given by

$$C(t) = \frac{t}{60(t^2 + 4t + 4)}.$$

Find the maximum concentration in the first 4 hours after the patient receives the drug, and the time at which it occurs. ((t) is ((t) = [0,4]

$$C'(t) = \frac{1}{60} \left[\frac{t^2 + 4t + 4 - t(2t + 4)}{(t^2 + 4t + 4)^2} \right] = \frac{1}{60} \frac{-t^2 + 4}{(t^2 + 2)^4} = \frac{1}{60} \frac{(z - t)(z + t)}{(t^2 + 2)^4}$$

$$= \frac{1}{60} \frac{(2-t)}{(t+2)^3}$$

$$C(a) = \frac{60(36)}{5} = \frac{1}{480}$$

$$C(b) = \frac{60(16)}{5} = \frac{480}{480}$$

2. (a) Find all of the local maxima of $f(x) = x^3 - 27x - 20$.

$$f(x)$$
 is defined energhed ()
 $f(x) = 0 \Rightarrow x = \pm 3$

$$f(x) = 0 \Rightarrow x = \pm 3$$

$$(-p, 3)$$
 $f(0) > 0$ $(3, 0)$ $f'(0) > 0$ $(3, 0)$

So local max at
$$x = -3$$

Minx $x = 3$

(b) Does the function $f(x) = x^3 - 27x - 20$ have an absolute maximum? Briefly justify your answer.

[7]

[2]

NO

- **4.** Let $f(x) = \cos(x) + x$, with domain $[0, 2\pi]$.
- (a) Determine on which intervals f(x) is increasing and on which f(x) is decreasing.

[7]

$$f(x) = -sGx + 1$$

fix) is defined every les

F(N=0 =) -swi(x)+1=0 => swi(x)=1

So E is the only critical point

<u>VIEVOI</u>	<u>Hat</u>	pobl	between
(0,至)	f(q)	>0	
(是,211)	F(T)	>0	

[4]

$$f''(x) = -eo(x)$$

hura)	lest valve	Concernity
(0,12)	F'(2) <0	dyn
(星)(里)	f"(n) >0	UP
(37,271)	f"[2](0]	Lown

(c) Sketch the graph of f(x), marking the points of inflection and the critical points on

your graph.

$$f(\theta) = 1$$

John UP Jamil

Citial point Photolying

Pt of whitehing

The state of th