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Abstract The EM algorithm is a principal tool for parameter estimation in the hidden
Markov models, where its efficient implementation is known as the Baum–Welch algorithm.
This paper is however motivated by applications where EM is replaced by Viterbi training,
or extraction (VT), also known as the Baum–Viterbi algorithm. VT is computationally less
intensive and more stable, and has more of an intuitive appeal. However, VT estimators
are also biased and inconsistent. Recently, we have proposed elsewhere the adjusted Viterbi
training (VA), a new method to alleviate the above imprecision of the VT estimators while
preserving the computational advantages of the baseline VT algorithm. The key difference
between VA and VT is that asymptotically, the true parameter values are a fixed point of
VA (and EM), but not of VT. We have previously studied VA for a special case of Gaussian
mixtures, including simulations to illustrate its improved performance. The present work
proves the asymptotic fixed point property of VA for general hidden Markov models.
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1 Introduction

We consider procedures to estimate parameters of a finite state hidden Markov model
(HMM) given observations x1, . . . , xn. Let Y be a Markov chain with state space S =
{1,2, . . . ,K}, transition matrix P = (Pij ), and initial distribution π . To every state l ∈ S

there corresponds an emission distribution Pl with density fl that is known up to the para-
metrization fl(x; θl). When Yk , k ≥ 1, is in state l, an observation xk on Xk is emitted
according to Pl and independent of everything else. Y can also be called a regime.

A standard method to compute the (locally) maximal likelihood estimates of (π,P, θ1,

θ2, . . . , θK), the HMM parameters, is the EM algorithm. The computationally efficient im-
plementation of EM in the present context is also known as the Baum–Welch or simply
Baum, or forward–backward algorithm [1, 3, 7, 12, 16, 18, 37, 38]. Since EM can in prac-
tice be slow and computationally expensive, it is commonly replaced by Viterbi extraction,
or training, (VT), also known as the Baum–Viterbi algorithm. VT appears to have been in-
troduced in [17] by F. Jelinek and his colleagues at IBM in the context of speech recognition
where it has been used extensively ever since [12, 16, 31, 34, 38, 39, 44–46]. Its compu-
tational stability and intuitive appeal [12] have also made VT popular in natural language
modeling [35], image analysis [19, 28], and bioinformatics [4, 10, 11, 23, 30, 36]. VT is also
related to constrained vector quantization [9, 15]. The main idea of the method is to replace
the computationally costly expectation (E-step) of the EM algorithm with an appropriate
maximization step that generally requires less intensive computations. In speech recogni-
tion, essentially the same training procedure was also described by Rabiner et al. in [20, 39]
(see also [37, 38]) as a variation of the Lloyd algorithm used in vector quantization. In that
context, VT has gained the name of segmental K-means [12, 20]. The analogy with vector
quantization is especially pronounced when the underlying chain is trivialized to i.i.d. vari-
ables, thus producing an i.i.d. sample from a mixture distribution. For such mixture models,
VT was also described by Gray et al. in [9], where the training algorithm was considered
in the vector quantization context under the name of entropy constrained vector quantiza-
tion (ECVQ). A better known name for VT in the mixture case is Classification EM (CEM),
[8, 13], stressing that instead of the mixture likelihood, CEM maximizes the Classification
Likelihood [4, 8, 13, 32]. VT-CEM was particularly suitable for the early efforts in image
segmentation [42, 43]. Also, for the uniform mixture of Gaussians with a common covari-
ance matrix of the form σ 2I and unknown σ , VT, or CEM, is equivalent to the k-means
clustering [8, 9, 13, 41].

We presently focus on the case when π and P (the mixing weights, in the mixture case),
the regime parameters, are known. This might seem overly restrictive in general, but does
not appear to be entirely unrealistic in such applications as speech recognition. The overall
flexibility of such applications is usually attained via flexible models for the emission distri-
butions (e.g. mixtures of many high-dimensional Gaussians), whereas the regime is modeled
as simply as possible, if not simply fixed. Moreover, all training procedures considered in
this paper and including our adjusted Viterbi training (VA), extend relatively easily to the
general case as illustrated in [25]; assuming the regime to be known, however, greatly sim-
plifies the exposition.

The VT algorithm for estimation of the emission parameters can be described as fol-
lows. Fix an initial value of the parameters θ(0) and find a realization of Y to maximize the
likelihood of the given observations. Such an n-tuple of states is called a Viterbi, or forced,
alignment. Every alignment partitions the original sample into subsamples corresponding to
distinct states. If regarded as an i.i.d. sample from Pl , the subsample corresponding to state l

gives rise to μ̂n
l , the maximum likelihood estimate (MLE) of θl . These estimates replace the
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current parameter values and are subsequently used to obtain an alignment in the next step
of the training, and so on. It can be shown that in general this procedure converges in finitely
many steps [20]; also, it is usually much faster than the Baum algorithm. (Although the two
algorithms scale essentially as K2n, the E-part of the Baum algorithm additionally requires
expensive evaluations of the densities fl at every data point and for all l = 1,2, . . . ,K .)

Despite its attractiveness, VT has a significant theoretical disadvantage that might also
affect its performance in applications. The VT estimators are generally biased and not con-
sistent. This has been noted, at least in the case of mixtures, since [4], with a specific caveat
issued in [47]. (In Sect. 4.1, we illustrate numerically an appreciable bias in VT estimation
of an HMM that is more general than an i.i.d. mixture.) The fact that the VT estimators are
biased and inconsistent is not particularly surprising. Indeed, in contrast to EM, VT’s objec-
tive is different from increasing the likelihood of the parameters given the observed data x.
Instead, VT increases the joint likelihood of the (hidden) state sequence and the parameters,
given the observed data x. It is true that under certain reasonable conditions [21, 33], the
difference between the two objective functions vanishes as D, the dimension of the emission
Xi , grows relative to log(K), which can be realistic in isolated word recognition [33]. Even
though, this does not imply closeness of the parameter estimates obtained by EM and VT
since both perform local rather than global optimization [12].

Certainly, unbiasedness and consistency are neither necessary nor sufficient for a proce-
dure to perform well in applications [43]. However, there are a number of indications that
some applications, such as segment-based speech recognition [44], do benefit from staying
faithful to the standard, i.e. EM-type, likelihood maximization. Perhaps, such indications
should be interpreted with caution since a real application integrates its HMM, or, more of-
ten a hierarchy of interacting HMMs, into a complex system, making it difficult to isolate its
particular factor, such as parameter estimation, for evaluation. Nonetheless, it is acknowl-
edged, for example in [44], that conventional speech recognizers would prefer the “smoother
convergence” of EM, presumably over the more abrupt, greedy one of VT. Furthermore, it
appears that concessions to using VT in segment-based speech recognizers are more due to
domain specific complications associated with a direct implementation of the Baum algo-
rithm, and less due to the (ten-fold) speed advantage of VT over Baum [44]. It also appears
consistent with these observations that other applications [35] propose compromises using
VT with more than one best alignment, or several perturbations of the best alignment. There
are other considerations (e.g. related to initialization) in favor of the Baum–Welch algorithm
for use in segment-based speech recognition [44].

Motivated by the above considerations, we have attempted to investigate the following
question: Is it possible to adjust VT in an analytic way so that adjusted training still enjoys
the good properties of VT (fast convergence and overall computational feasibility) while
the adjusted estimators become less biased or more consistent? In particular, we focus on
a special property of the EM algorithm that VT lacks. This property ensures that the true
parameters are asymptotically a fixed point of the algorithm. In other words, for a sufficiently
large sample, the EM algorithm “recognizes” the true parameters and does not change them
significantly. In contrast to this, an iteration of VT would in general disturb the correct
values noticeably (Sect. 4.1). We have thus proposed in [25] to modify VT in order to make
the true parameters an asymptotically fixed point of VA, the resulting algorithm. The idea
of reducing the bias of VT also appeared in [21], where a sequentially (in time) adjusted
VT was proposed based on random delays and suitable for on-line processing of virtually
infinite processes. Although VA is also based on the asymptotic properties of the process, it
is substantially different from the sequential segmental K-means of [21] as, for one instance,
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it uses the entire batch of observations x1, . . . , xn. (Although our default setting has been off-
line, on-line implementations of VA might also be considered in the future.)

In order to understand VA it is crucial to understand the asymptotic behavior of μ̂n
l ,

the maximum likelihood estimators based on the subsamples obtained from the align-
ment. Since the alignment depends on θ(0), the initial values of the parameters, so does
μ̂n

l (θ
(0), x1, . . . , xn). Thus, for θ∗

l to be asymptotically fixed for every l ∈ S means the fol-
lowing: Assuming θ∗

l are the true parameters and the alignments are based on θ∗
l ,

μ̂n
l (θ

∗,X1, . . . ,Xn) →
n→∞ θ∗

l , a.s. (1)

The reason why VT does not enjoy the desired fixed point property is that (1) need not hold
in general [4, 47]. Hence, in order to improve VT in the above sense, one needs to study
the asymptotics of μ̂n

l . In particular, the following questions should be answered: Does the
sequence μ̂n

l (θ
∗,X1, . . . ,Xn) converge (a.s.) at all? If yes, then what is μl(θ

∗), its limit?
These questions have been essentially answered in [24]. Namely, it has been shown (under
certain mild conditions) that the empirical measures P n

l (·; θ∗,X1,X2, . . . ,Xn) obtained via
the Viterbi alignment (with true parameters) do converge weakly to a limiting probability
measure Ql(·; θ∗) and that in general Ql(θ

∗) �= Pl(θ
∗). Formally, for every l ∈ S, there exists

a probability measure Ql such that for any Ql-integrable g

∫
g(x)P n

l (dx; θ∗,X1, . . . ,Xn) →
n→∞

∫
g(x)Ql(dx; θ∗), a.s., (2)

which implies P n
l (θ∗,X1, . . . ,Xn) ⇒ Ql(θ

∗), a.s. [2] (“⇒” denotes the weak convergence
of probability measures). In order to obtain the above results, Viterbi alignments, or paths,
have to be extended at infinitum. Earlier attempts to consider convergence of Viterbi paths
appear in [5, 6] with a more general and more complete treatment of the problem to be found
in [24, 26].

In this paper, we show that under general conditions on the densities fl(x; θl), conver-
gence (2) implies convergence of μ̂n

l , i.e.

μ̂n
l (θ

∗,X1, . . . ,Xn) →
n→∞μl(θ

∗), a.s.,

where μl(θ
∗) def= arg max

θ ′
l
∈�l

∫
lnfl(x; θ ′

l )Ql(dx; θ∗). (3)

Since in general Ql �= Pl , it is most likely that μl(θ
∗) �= θ∗

l . Reduction of the bias μl(θ)− θl

is the main feature of the adjusted Viterbi training.
The rest of the paper is organized as follows. In Sect. 2, we present the HMM framework

and adjusted Viterbi training formally. In Sect. 3, we prove convergence (3), which is the
theoretical result of the paper. Simulations in Sect. 4.1 illustrate the discrepancy between
the measures Pl and Ql , as well as the performance of VA. A concluding discussion follows
in Sect. 4.2.

2 Adjusted Viterbi Training

2.1 The Model

Assume Y to be irreducible and aperiodic with transition matrix P = (pij ) and assume the
initial distribution π to be also the stationary distribution of Y . We consider the hidden
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Markov model (HMM), in which to every state l ∈ S there corresponds an emission distribu-
tion Pl on (X ,B). We assume X and B to be a separable metric space and the corresponding
Borel σ -algebra, respectively. Let fl be the density of Pl with respect to a reference measure
λ on (X ,B), where λ can be, for example, the Lebesgue measure.

In this model, to any realization y1, y2, . . . of Y there corresponds a sequence of in-
dependent random variables, X1,X2, . . . , where Xn has the distribution Pyn . We do not
know the realizations yn (the Markov chain Y is hidden), as we only observe the process
X = X1,X2, . . . , or, more formally:

Definition 2.1 We say that the stochastic process X is a hidden Markov model if there is a
(measurable) function h such that for each n,

Xn = h(Yn, en), where e1, e2, . . . are i.i.d. and independent of Y. (4)

Hence, the emission distribution Pl is the distribution of h(l, en). The distribution of X is
completely determined by the regime parameters (π,P) and the emission distributions Pl,

l ∈ S. The process X is also α-mixing and, therefore, ergodic [12, 14, 27].

2.2 Viterbi Alignment and Training

Suppose we observe x1, . . . , xn, the first n elements of X. Throughout the paper we assume
that the sample x1, . . . , xn is generated by an HMM with regime parameters (π,P) and with
emission densities fl(x; θ∗

l ), where θ∗ = (θ∗
1 , . . . , θ∗

K) are the unknown true parameters. We
assume that the regime parameters P and π are known, but the emission densities are known
only up to the parametrization fl(·; θl), θl ∈ �l .

A key concept of the paper is the Viterbi alignment, which is any sequence of states
q1, . . . , qn ∈ S that maximizes the likelihood of observing x1, . . . , xn. In other words, the
Viterbi alignment is a maximum-likelihood estimator of the realization of Y1, . . . , Yn, treated
as a set of unknown parameters, for given x1, . . . , xn. In the following, the Viterbi alignment
will be referred to as the alignment. We start with the formal definition of the alignment. Let
q1, . . . , qn, qi ∈ S denote a sequence of states and define �(q1, . . . , qn;x1, . . . , xn; θ) to be
the likelihood function P(Yi = qi, i = 1, . . . , n)

∏n

i=1 fqi
(xi).

Definition 2.2 For each n ≥ 1, let the set of alignments be defined as follows:

Vθ (x1, . . . , xn) = {
v ∈ Sn: ∀w ∈ Sn �(v;x1, . . . , xn; θ) ≥ �(w;x1, . . . , xn; θ)

}
. (5)

Overloading the term, we also refer to any map vθ :X n �→ Vθ (x1, . . . , xn) as an alignment.

The non-uniqueness of alignment might cause problems when dealing with asymptotics
[24]. Specifying a unique vθ ∈ Vθ (x1, . . . , xn) for every n and x1, . . . , xn (and every θ ) in a
consistent manner is discussed in [6, 24]. From now on, vθ ∈ Vθ is assumed to be chosen
uniquely in accordance with [24]. For many cases in practice, however, Vθ consists of a
single alignment to begin with.

Recall that Viterbi training provides a common shortcut to computing MLE of θ∗, espe-
cially in situations where D, the dimension of X is high, n is large, and fls are complex. VT
replaces the computationally expensive expectation (E-)step by an appropriate maximiza-
tion step that is based on the alignment. We now describe the Viterbi training in the HMM
case.

Viterbi Training
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1. Choose an initial value θ(j) = (θ
(j)

1 , . . . , θ
(j)

K ), j = 0.
2. Given θ(j), obtain the alignment

vθ(j) (x1, . . . , xn) = (v1, . . . , vn)

and partition the sample x1, . . . , xn into K sub-samples, where the observation xk belongs
to the lth subsample if and only if vk = l. Equivalently, define (at most) K empirical
measures

P̂ n
l (A; θ(j), x1, . . . , xn)

def=
∑n

i=1 IA×l (xi, vi)∑n

i=1 Il(vi)
, A ∈ B, l ∈ S. (6)

3. For every sub-sample find MLE given by:

μ̂n
l (θ

(j), x1, . . . , xn) = arg max
θl∈�l

∫
lnfl(x; θl)P̂

n
l (dx; θ(j), x1, . . . , xn), (7)

and take
θ

(j+1)

l = μ̂n
l (θ

(j), x1, . . . , xn), l ∈ S.

If for some l ∈ S vi �= l for any i = 1, . . . , n (lth subsample is empty), then the empiri-
cal measure P̂ n

l is formally undefined, in which case we take θ
(j+1)

l = θ
(j)

l . We will be
ignoring this special case from now on.

The Viterbi training can be interpreted as follows. Suppose that at some step j , θ(j) = θ∗
and hence vθ(j) is obtained using the true parameters. Let y1, . . . , yn be the actual hid-
den realization of Y . The training is then based on the assumption that the alignment
vθ(j) (x1, . . . , xn) = (v1, . . . , vn) is perfect, i.e., vi = yi , i = 1, . . . , n, or nearly perfect. If
the alignment were indeed perfect, the empirical measures P̂ n

l , l ∈ S, would be obtained
from the i.i.d. sample generated from Pl(θ

∗), and the MLE μ̂n
l (θ

∗,X1, . . . ,Xn) would be a
natural estimator to use. Clearly, under these assumptions P̂ n

l (θ∗,X1, . . . ,Xn) ⇒ Pl(θ
∗) a.s.

and, provided that {fl(·; θ) : θ ∈ �l} is a Pl-Glivenko–Cantelli class and �l is equipped with
some suitable metric, limn→∞ μ̂n

l (θ
∗,X1, . . . ,Xn) = θ∗

l a.s. Hence, if n is sufficiently large,
then P̂ n

l ≈ Pl and θ
(j+1)

l = μ̂n
l (θ

∗, x1, . . . , xn) ≈ θ∗
l = θ

(j)

l , ∀l ∈ S, i.e. θ(j) = θ∗ would be
(approximately) a fixed point of the training algorithm.

A weak point of the above argument is, of course, that the alignment in general is not per-
fect (even when the parameters used to find it, are the true ones). That is, generally vi �= yi .
In particular, this implies that the empirical measures P̂ n

l (θ∗,X1, . . . ,Xn) are not obtained
from an i.i.d. sample taken from Pl(θ

∗), and can be rather far from that. Hence, we have no
reason to believe that P̂ n

l (θ∗,X1, . . . ,Xn) ⇒ Pl(θ
∗) a.s. and limn→∞ μ̂n

l (θ
∗,X1, . . . ,Xn) =

θ∗
l a.s. Moreover, we do not even know whether the sequences of empirical measures

{P̂ n
l (θ∗,X1, . . . ,Xn)} and MLE estimators {μ̂n

l (θ
∗,X1, . . . ,Xn)} converge (a.s.) at all. We

thus present Theorem 3.2, the theoretical result of this paper, which states that if �l is a
closed subset of R

d , then, under certain assumptions on classes {fl(·; θl) : θl ∈ �l}, conver-
gence (2) (proven in [24] and implying P̂ n

l (θ∗,X1, . . . ,Xn) ⇒ Ql(θ
∗), a.s.) yields conver-

gence (3). In an attempt to reduce the bias θ∗
l − μl(θ

∗) (in general μl(θ
∗) �= θ∗

l ), we have
proposed adjusted Viterbi training as follows: Assuming (3), consider the mapping

θ �→ μl(θ), l = 1, . . . ,K. (8)

The function (8) is independent of the sample, hence the following correction is well-
defined:

	l(θ) = θl − μl(θ), l = 1, . . . ,K. (9)
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Adjusted Viterbi Training

1. Choose an initial value θ(j) = (θ
(j)

1 , . . . , θ
(j)

K ), j = 0.
2. Given θ(j), obtain the alignment and define the empirical measures P̂ n

l (θ (j), x1, . . . , xn)

as in (6).
3. For every l ∈ S, find μ̂n

l (θ
(j), x1, . . . , xn) as in (7).

4. For each l ∈ S, define

θ
(j+1)

l = μ̂n
l (θ

(j), x1, . . . , xn) + 	l(θ
(j)),

where 	l as in (9).

Note that, as desired, for a sufficiently large n, the adjusted training algorithm has θ∗ as
its (approximately) fixed point. Indeed, suppose θ(j) = θ∗. From (3), μ̂n

l (θ
(j), x1, . . . , xn) =

μ̂n
l (θ

∗, x1, . . . , xn) ≈ μl(θ
∗) = μl(θ

(j)), for all l ∈ S. Hence,

θ
(j+1)

l = μ̂l(θ
∗, x1, . . . , xn) + 	l(θ

∗) ≈ μl(θ
∗) + 	l(θ

∗) = θ∗
l = θ(j), l ∈ S. (10)

In [25], we have considered i.i.d. sequences X1,X2, . . . distributed according to mixture
densities

∑K

l=1 πlfl(x; θ∗) with mixing weights πl . In this particular case of HMM, the
alignment is trivial and convergences (2) and (3) follow directly from SLLN and consistency
of MLE, respectively; functions (9) are relatively easy to find. Thus, in this special case, the
adjusted Viterbi training algorithm is easy to implement. The simulations in [22, 25] have
also shown encouraging results to illustrate the main features of the proposed idea.

3 Convergence μ̂n
l →

n→∞μl

We now study convergence (3), the theoretical underpinning of adjusted Viterbi training.
Since (3) is intimately related to consistency of MLE (in a non-i.i.d. setting), a variety of
relevant results have been proved in the literature. Many of those are based on the Glivenko–
Cantelli property of classes {lnfl(·; θl) : θl ∈ �l}, which is in turn proved by several large
deviation bounds such as Azuma–Hoeffding’s inequality. Since our empirical measures are
not based on any of the standard processes, such as i.i.d., martingales, or Markov chains,
the aforementioned results do not apply directly. In finite-dimensional models, one can use
the so-called Wald’s consistency proof (see, e.g. [48]), which has also been applied in the
HMM context [40]. In the following, we consider the case where for every l ∈ S, �l ⊂ R

d ,
equipped with the Euclidean norm ‖‖. In this case, Wald’s technique is easy to adapt, making
the following assumptions about the classes {fl(·; θ) : θ ∈ �l}.
Assumptions For every l ∈ S,

(0) �l is closed;
(1) there exists θl ∈ �l such that

∫ | lnfl(x; θl)|Ql(dx) < ∞;
(2) there exists a Ql-integrable function Gl such that lnfl(x; θl) ≤ Gl(x), ∀θl ∈ �l , x ∈ X ;
(3) θl �→ lnfl(x; θl) is continuous for every x ∈ X ;
(4) for every x ∈ X , lim‖θl‖→∞ fl(x; θl) = 0.

Let us fix an arbitrary l ∈ S and let us also refer to θ∗
l ∈ �∗

l , Ql , P̂ n
l (θ∗, x1, . . . , xn), and

μ̂l(θ
∗, x1, . . . , xn), simply as θ∗ ∈ �∗, Q, Pn, and μn, respectively. Let φ(θ, x) stand for
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Gl(x) − lnfl(x; θ). By (2) we have φ(θ, x) ≥ 0, ∀ θ ∈ �, ∀x ∈ X . With this notation, we
have

μn = arg inf
θ∈�

∫
φ(θ, x)Pn(dx),

and

�
def= inf

θ∈�

∫
φ(θ, x)Q(dx)

by(1)
< ∞. (11)

Let

M def=
{
θ :

∫
φ(θ, x)Q(dx) = �

}
.

By (3), θ �→ ∫
φ(θ, x)Q(dx) is lower-semicontinuous. Hence M is closed. It also follows

from (4) that M is non-empty. We are going to prove that μn → M, a.s. Often the limit
is unique, μn → μ, a.s. (where μ = μl(θ

∗)). The regenerativity argument exploited in [24]
yields ∫

gdPn →
∫

gdQ, a.s., (12)

where g is an arbitrary Q-integrable function. From now on, we assume (12). The first step
is to prove that the sequence μn is a.s. bounded.

Proposition 3.1 There exists R0 < ∞ such that

P(‖μn‖ < R0, eventually) = 1.

Proof Let μ ∈ M. By (12),

∫
φ(μ,x)Pn(dx) →

∫
φ(μ,x)Q(dx) = �, a.s. (13)

On the other hand, by the definition of μn, for each n

∫
φ(μn, x)Pn(dx) ≤

∫
φ(μ,x)Pn(dx),

which together with (13) implies

lim sup
n

∫
φ(μn, x)Pn(dx) ≤ �, a.s. (14)

By (4) and monotone convergence,

lim
R↗∞

∫
inf

‖θ‖>R
φ(θ, x)Q(dx) = ∞. (15)

By (3), the function x �→ inf‖θ‖>R φ(θ, x) is measurable. Choose R0 sufficiently large for

∫
inf

‖θ‖>R0
φ(θ, x)Q(dx) ≥ � + 1 (16)
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to hold. Suppose ‖μn‖ > R0 i.o. (infinitely often), that is, ‖μnk
‖ > R0 for some subsequence

{μnk
}. Then, ∫

φ(μnk
, x)Pnk

(dx) ≥
∫

inf
‖θ‖>R0

φ(θ, x)Pnk
(dx). (17)

By (12) and (16)
∫

inf
‖θ‖>R0

φ(θ, x)Pn(dx) →
∫

inf
‖θ‖>R0

φ(θ, x)Q(dx) ≥ � + 1, a.s.

Thus, given (17),

lim sup
n

∫
φ(μn, x)Pn(dx) ≥ lim sup

k

∫
φ(μnk

, x)Pnk
(dx) ≥ � + 1, a.s.,

contradicting (14). �

Theorem 3.2 Given (12), any sequence {μn} with

μn = arg max
θ∈�

∫
lnfl(x; θ)Pn(dx), (18)

satisfies

μn → M, a.s. (19)

Proof It follows from (4) and (11) that there exists R0 < ∞ such that ‖μ‖ ≤ R0 for all

μ ∈ M. Clearly, redefining R0
def= max{R0,R

0} does not affect Proposition 3.1. Without

loss of generality we restrict the parameter space �R def= {θ ∈ �: ‖θ‖ ≤ R0}. Let ε > 0 be
arbitrary and consider the set

�ε
def= {θ ∈ �R : d(θ,M) ≥ ε}, where d(θ,M) = min

μ∈M‖θ − μ‖.

By (0), the set �ε is closed and, therefore, compact. For every θ ∈ �ε ,
∫

φ(θ, x)Q(dx) > �,
and moreover, there exists a γ > 0 (possibly depending on ε) such that

inf
θ∈�ε

∫
φ(θ, x)Q(dx) ≥ γ + �. (20)

Using the technique of Wald, we show

lim inf
n

inf
θ∈�ε

∫
φ(θ, x)Pn(dx) ≥ � + γ

2
, a.s. (21)

Hence, if d(μn,M) > ε i.o., then

lim sup
n

∫
φ(μn, x)Pn(dx) ≥ � + γ

2
,

which contradicts (14). This finishes the proof of the theorem as soon as we prove (21). To
prove (21), note that for every θ ′ ∈ �ε ,

sup
δ>0

∫
inf

θ :‖θ−θ ′‖<δ
φ(θ, x)Q(dx) = lim

δ↘0

∫
inf

θ :‖θ−θ ′‖<δ
φ(θ, x)Q(dx),
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hence by monotone convergence, we have:

sup
δ>0

∫
inf

θ :‖θ−θ ′‖<δ
φ(θ, x)Q(dx) =

∫
lim
δ↘0

inf
θ :‖θ−θ ′‖<δ

φ(θ, x)Q(dx)

=
∫

φ(θ ′, x)Q(dx) ≥ � + γ.

Therefore, around every θ ′ ∈ �ε , there exists an open ball B(θ ′) such that
∫

inf
θ∈B(θ ′)

φ(θ, x)Q(dx) ≥ γ

2
+ �. (22)

The balls B(θ ′) form an open cover of �ε . Since the set �ε is compact, there is a finite
subcover {B(θi)}. Now

inf
θ∈�ε

∫
φ(θ, x)Pn(dx) = min

i
inf

θ∈B(θi )

∫
φ(θ, x)Pn(dx) ≥ min

i

∫
inf

θ∈B(θi )
φ(θ, x)Pn(dx),

and since mini

∫
infθ∈B(θi ) φ(θ, x)Pn(dx) →

n→∞ mini

∫
infθ∈B(θi ) φ(θ, x)Q(dx) ≥ � + γ

2 a.s.,

we finally obtain

lim inf
n

inf
θ∈�ε

∫
φ(θ, x)Pn(dx) ≥ � + γ

2
a.s.,

as required. �

Let us briefly discuss validity of assumptions (0)–(4). Assumption (0) guarantees the
compactness of �ε , and can be relaxed provided � contains the closed ball (centered at the
origin) of radius R0. Assumption (1) ensures that � < ∞, which is usual and very natural.
At first, this condition might appear difficult to verify given that the measures Ql are, in
general, analytically not known. However, using ergodic theory, one can show the existence
of V = (V1,V2, . . .), a stationary process taking values in S, such that

Ql(A) = P(X1 ∈ A|V1 = l) ≤ P(X1 ∈ A)

P(V1 = l)
=

K∑
i=1

aiPi(A), (23)

where 0 ≤ ai = πiP(V1 = l)−1 < ∞ [26]. Therefore, Ql � λ with the corresponding rela-
tion on the derivatives:

ql := dQl

dλ
≤

K∑
i=1

aifi, λ – a.s., where fi = fi(·; θ∗
i ).

Hence a function h is Ql-integrable if it is Pi -integrable for each i ∈ S.
Assumption (2) is both most important and most restrictive but can be replaced by the

following weaker conditions ([40]):

∀θ ′ ∈ � ∃δ > 0:
∫

sup
θ :‖θ−θ ′‖<δ

(
lnf (x, θ)

)+
Q(dx) < ∞, (24)

∃R > 0:
∫

sup
θ‖θ‖>R

(
lnf (x, θ)

)+
Q(dx) < ∞, (25)
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where a+ = max{0, a}. However, since Ql is a probability measure, the condition (2) holds,
for example, if the family {fl(·; θl) : θl ∈ �l} is uniformly bounded. This holds for many
models. Assumptions (3) and (4) are essentially determined by the parametrization of the
model. Assumption (3) is valid for most of the models in practice and guarantees that the
(uncountable) infima in the proof of Proposition 3.1 are measurable. Often, (3) is replaced
by the weaker upper-semicontinuity assumption. Assumption (4) guarantees boundedness of
μn and M. Note that for bounded �, the assumption (4) can be dropped, since then the set
� is already compact. If � is unbounded, then (4) is needed only to ensure the existence of
R0 such that (16) holds. Hence, one can replace (4) with (16), which is much more general.
The latter depends on usually unknown �, but it is implied, for example, by the following
condition

lim
R→∞

∫
sup

θ :‖θ‖>R

(
lnf (x, θ)

)+
Q(dx) = 0. (26)

Clearly (26) is weaker than (4) and also implies (25). Hence, for unbounded parameter
domains, the conditions (2) and (4) can be replaced by the more general (24) and (26).

Example 3.3 Consider a shift (location) parameter family. Let �l = X = R
d , l = 1, . . . ,K ,

and let λ be the Lebesgue measure. Suppose gl are continuous bounded strictly positive
densities on X , and consider the families fl(x; θl) = gl(x − θl), where θl is the location
parameter. Assumption (0) holds trivially; (1) holds, if there exists θl such that

∫ ∣∣lng(x − θl)
∣∣g(x − θ∗

i )λ(dx) < ∞

for every i = 1, . . . ,K . By boundedness of gl , assumption (2) holds. Assumption (3) holds
since gl is continuous and (4) holds, because θ is location parameter.

In particular, assumptions (1)–(4) are fulfilled by the families of Laplacian distributions and
the (multivariate) normal distributions with known covariance-matrices. These classes are
used in Philips speech recognition models [34, 45]. For these classes, M consists of one
element, only. Finally, Theorem 3.2 implies (3).

4 Simulations and Discussions

4.1 Simulations

We carry out simulations to demonstrate the discrepancy between P and Q-measures as well
as the improvement in performance of the Viterbi training algorithm due to the adjustment.
We consider a simple HHM, where the underlying MC has the following transition matrix

(
1 − ε ε

ε 1 − ε

)

ε ∈ (0,0.5], and the emission distributions are univariate normal with unit variance and
unknown means, P1 = N (θ1,1), P2 = N (θ2,1). In this model, there are two emission para-
meters, θ1 and θ2 and one regime parameter, ε. Without loss of generality, assume θ1 < θ2

and let a = 0.5(θ2 − θ1). With ε = 0.5, this model reduces to the i.i.d. (mixture) model
studied in [25].
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First, we study the measures Ql . In our model, the shape of (the density of) Ql depends
on the emission parameters through their difference a only. We therefore estimate the densi-
ties of Ql for several values of a and ε. Figures 1, 2, 3, 4 provide several such examples with
dashed and solid curves representing the Ql and Pl densities, respectively. The true means
θ∗
l as well as the (estimated) fixed points μl(θ

∗) are also marked, highlighting the correction
	l(θ

∗) = θ∗
l − μl(θ

∗).

Fig. 1 Densities of Ql , ε = 0.2, a = 0.5

Fig. 2 Densities of Ql , ε = 0.4, a = 0.5

Fig. 3 Densities of Ql , ε = 0.4, a = 1.0

Fig. 4 Densities of Ql , ε = 0.5, a = 1.0
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Since the shape of the density of Ql depends on θ = (θ1, θ2) through θ2 − θ1, then
μl(θ1 + c, θ2 + c) = μl(θ1, θ2) + c for all c ∈ R (8), and therefore 	 also depends on θ

only through θ2 − θ1, or a. Thus, to implement the VA algorithm, the correction function
	(a; ε) (a ∈ (0,∞), ε ∈ (0,0.5]) is needed. Except for ε = 0.5, however, this function is
not known analytically, hence needs to be approximated. To this effect, we use an (a, ε)

mesh with a = 0.1,0.2, . . . ,3.0 and ε = 0.08,0.09, . . . ,0.5 to simulate Ql via HMM sam-
ples of size 106 for each (a, ε) node of the mesh. Thus, we approximate (8), and ultimately
	(a), stochastically at every node of the mesh. Finally, for all other (a, ε) values, the cor-
rection function is obtained by linear interpolation. The results are presented in Fig. 5.

Note that generally 	 decreases as a increases (vanishing as the two density curves move
infinitely far apart). Except for the case of independent mixtures (ε = 0.5), however, there
appears to be a range of near-zero a values (i.e. almost identical parameter values) with the
opposite behavior, which might be interesting to investigate in more detail.

To assess precision of our approximation, at least for ε = 0.5, in Fig. 6 we compare the
approximation with the analytic result which is immediately available for this case:

	(a;0.5) = 2
(
φ(a) − a�(−a)

)
,

where φ and � are the density and cumulative distribution function of the standard normal
distribution, respectively. Clearly, the difference between analytic and approximate 	 is
insignificant in this case.

Based on the 	 function obtained above, we apply the adjusted Viterbi training and
compare it with the VT and EM algorithms. Tables 1, 2, 3 present simulation results obtained

Fig. 5 Estimated correction function 	(a, ε)
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Fig. 6 The absolute difference between estimated and analytic functions 	(a;0.5)

Table 1 Performance analysis.
ε = 0.2, a = 0.2, starting from
1st and 3rd quartiles

EM VT VA

Step 0 (−0.689,0.687) (−0.689,0.687) (−0.689,0.687)

Step 1 (−0.477,0.475) (−0.537,0.536) (−0.460,0.459)

Step 2 (−0.385,0.384) (−0.474,0.474) (−0.359,0.358)

Step 3 (−0.335,0.333) (−0.445,0.445) (−0.305,0.307)

Step 4 (−0.303,0.301) (−0.429,0.430) (−0.273,0.274)

Step 5 (−0.281,0.279) (−0.420,0.422) (−0.252,0.254)

Step 6 (−0.265,0.264) (−0.239,0.241)

Step 7 (−0.253,0.252) (−0.229,0.232)

Step 8 (−0.244,0.243)

L1 error 0.087 0.442 0.061

L2 error 0.061 0.312 0.043

L∞ error 0.044 0.222 0.032

Table 2 Performance analysis.
ε = 0.4, a = 0.5, starting from
1st and 3rd quartiles

EM VT VA

Step 0 (−0.763,0.764) (−0.763,0.764) (−0.763,0.764)

Step 1 (−0.632,0.633) (−0.854,0.856) (−0.632,0.634)

Step 2 (−0.575,0.575) (−0.860,0.864) (−0.572,0.575)

Step 3 (−0.545,0.545) (−0.541,0.543)

Step 4 (−0.528,0.528) (−0.521,0.525)

Step 5 (−0.517,0.518) (−0.511,0.515)

Step 6 (−0.511,0.511)

L1 error 0.022 0.724 0.026

L2 error 0.016 0.512 0.019

L∞ error 0.011 0.364 0.015

from samples of size 106. The parameters are initialized to the first and third quartiles and the
stopping rule is for the L∞-distance between successive updates to fall below 0.01. Viterbi
training is seen to be quickest to terminate, but its estimates are evidently biased. On the
other hand, accuracy of adjusted Viterbi training is comparable to that of the EM algorithm,
while VA terminates somewhat more rapidly than EM. Given the fact that each step of EM
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Table 3 Performance analysis.
ε = 0.5, a = 1.0, starting from
1st and 3rd quartiles

EM VT VA

Step 0 (−1.050,1.053) (−1.050,1.053) (−1.050,1.053)

Step 1 (−1.013,1.015) (−1.166,1.169) (−1.014,1.016)

Step 2 (−1.003,1.005) (−1.165,1.169) (−1.004,1.006)

L1 error 0.008 0.334 0.010

L2 error 0.006 0.236 0.007

L∞ error 0.005 0.169 0.006

Table 4 Performance analysis.
ε = 0.2, a = 0.2, true initial
parameters

EM VT VA

Step 0 (−0.200,0.200) (−0.200,0.200) (−0.200,0.200)

Step 1 (−0.198,0.202) (−0.252,0.254) (−0.198,0.200)

Step 2 (−0.298,0.302)

Step 3 (−0.333,0.339)

Step 4 (−0.357,0.367)

Step 5 (−0.373,0.386)

Step 6 (−0.383,0.399)

Step 7 (−0.387,0.408)

L1 error 0.003 0.396 0.002

L2 error 0.002 0.280 0.002

L∞ error 0.002 0.208 0.002

Table 5 Performance analysis.
ε = 0.4, a = 0.5, true initial
parameters

EM VT VA

Step 0 (−0.500,0.500) (−0.500,0.500) (−0.500,0.500)

Step 1 (−0.501,0.500) (−0.812,0.814) (−0.497,0.499)

Step 2 (−0.857,0.861)

Step 3 (−0.860,0.865)

L1 error 0.001 0.725 0.004

L2 error 0.001 0.513 0.003

L∞ error 0.001 0.365 0.003

requires significantly more intensive computations, one should expect the overall run time
of VA to be appreciably less than that of EM.

We also test the three algorithms for the fixed point property (using the same stopping
rule as before). It is evident from Tables 4, 5, 6 that both EM and VA do approximately
satisfy this property, whereas VT moves the true parameters to a notably different location.

4.2 Discussion

The simulations above, as well as those in [22, 25], show that the proposed adjustment
typically improves precision of the Viterbi training estimators. Moreover, accuracy of VA is
already comparable with that of EM. Since the introduced correction does not depend on the
data, the adjustment does not increase the amount of computations per data point. As also
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Table 6 Performance analysis.
ε = 0.5, a = 1.0, true initial
parameters

EM VT VA

Step 0 (−1.000,1.000) (−1.000,1.000) (−1.000,1.000)

Step 1 (−0.998,1.000) (−1.165,1.167) (−0.998,1.000)

Step 2 (−1.165,1.167)

L1 error 0.002 0.332 0.002

L2 error 0.002 0.235 0.002

L∞ error 0.002 0.167 0.002

shown by the simulations, in most cases of replacing VT by VA, the number of iterations
does not increase drastically either. However, in implementing VA, the central issue is the
availability of the correction function (8). In the special case of the i.i.d. mixture model,
function (8) is essentially available analytically. Even in the high-dimensional setting with
many components, when the required expressions might become unattractive, reasonable
work-arounds can still be found [25].

Apart from the i.i.d. case, exact theoretical calculations of the correction function are
generally impossible since the measures Ql are not known analytically. Hence, the cor-
rection function should be computed approximately, perhaps in a stochastic manner. Here
(Sect. 4.1), we estimate this function on the regular rectangular grid using linear interpo-
lation. Since our point estimates at the grid nodes are precise, and the grid is sufficiently
dense, the obtained approximation is rather accurate. Although such a procedure requires a
significant effort, we point out that all the computations are done off-line and can be reused
with the same model (regime and emission parameter values).

Another, computationally less demanding approach, is the so called stochastically ad-
justed Viterbi training (SVA) proposed in [22]. Instead of estimating the correction at every
point as in the previous approach, SVA estimates the correction at every iteration (by sim-
ulations) and, therefore, only at the points visited by the algorithm. Clearly, if the number
of iterations is relatively small, this method should overall require less computation. On the
other hand, if a model is to be used repeatedly, estimating the correction function off-line as
above, might still be preferable.

Thus far, we have primarily discussed estimation of the emission parameters. Under a
complicated regime model with unknown regime parameters, one promising approach to
estimating the emission parameters can be called independent training. In this approach,
the data are treated as if they were generated by an i.i.d. mixture. The justification of this
approach is as follows. If the regime is a stationary process with marginal probabilities πi

(as in the present paper), then the data x1, . . . , xn are a sample from the mixture distribution∑K

l=1 πlfl(x; θ∗). Pretending to be dealing with an i.i.d. sample, one looses all the informa-
tion about the dependence structure (regime) but not about the emission distribution. Hence,
the corresponding estimators of the emission parameters need not deteriorate, and, for some
applications, might actually be sufficiently accurate. At the same time, training in the i.i.d.
case is usually significantly easier. Note, in particular, that the transition matrix under in-
dependent training is fully determined by the stationary distribution π . Even if π is not (or
partly) known, one can still train the model assuming i.i.d. mixtures with unknown weights.
Let us reiterate that VA is also easily applied for mixtures with unknown weights. The sim-
ulations in [25] clearly show that in this case VA terminates more rapidly than EM. Hence,
independent training is applicable even with little knowledge about the transition structure,
and can also be extended to settings that are more general than HMM.
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All in all, however, estimation of the mixture parameters (in the i.i.d. case) remains to be
an important issue, with MLE being a natural choice. In this case MLE is also known as the
maximum likelihood independent estimator, or MLIE. The properties of MLIE are studied
by Lindgren [29], who shows that it is consistent and asymptotically normal. Lindgren also
compares accuracy of MLIE with that of MLE based on the full Markov model (both com-
puted via EM). He concludes that, unless dependence is very strong, MLIE performs as well
as MLE. His results are generalized by Ryden [40], who introduces a more general version
of independent training. Again, although the EM algorithm is a natural procedure for com-
puting MLIE, cheap alternatives such as Viterbi training, are also appreciated. To this end,
note the following observation supported by the presented simulations. The adjustment of
the mixture VT toward MLIE is more significant than the adjustment of the full VT (for the
actual HMM) toward the true MLE. Hence, the adjusted Viterbi training is worth to consider
for independent training as well.
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