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A constructive and implementation-aware proof of
the existence of Viterbi processes

Jüri Lember, Alexey Koloydenko

Abstract—Since the early days of digital communication, hid-
den Markov models (HMMs) have now been also routinely used
in speech recognition, processing of natural languages, images,
and in bioinformatics. In an HMM (Xt, Yt)t≥1, observations
X1, X2, . . . are assumed to be conditionally independent given
an “explanatory” Markov process Y1, Y2, . . ., which itself is not
observed; moreover, the conditional distribution of Xt depends
solely on Yt. Central to the theory and applications of HMM
is the Viterbi algorithm to find a maximum a posteriori (MAP)
estimate v(x1:T ) = (v1, v2, . . . , vT ) of Y1:T given observed data
x1:T . Maximum a posteriori paths are also known as Viterbi
paths, or alignments. Recently, attempts have been made to study
the behavior of Viterbi alignments when T → ∞. Thus, it has
been shown that in some special cases a well-defined limiting
Viterbi alignment exists. While innovative, these attempts have
relied on rather strong assumptions and involved proofs which
are existential. This work proves the existence of infinite Viterbi
alignments in a more constructive manner and for a very general
class of HMMs.

Index Terms—Asymptotic, HMM, maximum a posteriori path,
Viterbi algorithm, Viterbi extraction, Viterbi training.

I. INTRODUCTION

LET Y = (Yt)t≥1 be a Markov chain with state space
S = {1, . . . ,K}, K > 1, and transition matrix P =

(pij)i,j∈S . Suppose that Y is irreducible and aperiodic, hence
a unique stationary distribution π = πP exists; suppose further
that Yt ∼ π from time t = 1. To every state i ∈ S, let us assign
an emission distribution Pi on (X ,B), where X is usually Rd,
the d-dimensional Euclidean space for some d ≥ 1, and B is
the Borel σ-algebra of X . Let fi be the density of Pi with
respect to a suitable reference measure λ on (X ,B). Most
commonly, λ is either the Lebesgue measure (continuously
distributed Xt) or the counting measure (discretely distributed
Xt).

Definition 1.1: The stochastic process (X,Y ) is a hidden
Markov model if there is a (measurable) function g such that
for each t = 1, 2, . . ., Xt = g(Yt, ξt), where ξ1, ξ2, . . . are
i.i.d. and independent of Y .
Hence, the emission distribution Pi is the distribution of
g(i, ξ1). The distribution of X is completely determined by
P and the emission distributions Pi, i ∈ S. It can be
shown that X is also ergodic [1], [2], [3]. Let x1:T =
(x1, . . . , xT ) and y1:T = (y1, . . . , yT ) be fixed observed and
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unobserved realizations, respectively, of the HMM (Xt, Yt)t≥1

up to time T ≥ 1. Treating y1:T as missing data [4], or
parameters to be estimated, let Λ(y′1:T ;x1:T ) be the com-
plete likelihood function, henceforth simply the likelihood,
P(Y1:T = y′1:T )

∏T
t=1 fy′t

(xt) of y′1:T ∈ ST , and let V(x1:T )
be the set of the corresponding maximum likelihood estimates
v(x1:T ) ∈ ST of y1:T . The elements of V(x1:T ) are called
(Viterbi) alignments and are commonly computed by the
Viterbi algorithm [5], [4]. If P(Y1:T = y′1:T ) is thought of as
the prior distribution of Y1:T , then the v(x1:T ) also maximize
the probability mass function of the posterior distribution of
Y1:T , hence the term maximum a posteriori (MAP) paths.

At the same time, the Viterbi alignments differ, often sig-
nificantly, from the actual realization y1:T . Hence, the natural
question: Are these deviations “purely random”, or is there
anything systematic in their (asymptotic, i.e. as T → ∞)
behavior?

Besides their direct significance for prediction of Y from
X , the Viterbi alignments, or MAP paths, are also central
to the theory and applications of HMMs [6] in the more
general setting of model estimation. Namely, the emission
distributions Pi and the transition probabilities pij , i, j ∈ S
are usually parameterized in practice, and some, or all, of the
model parameters would be unknown and of interest. Thus, for
example, the commonly used Viterbi Training (VT), or extrac-
tion, algorithm (also known as the Baum-Viterbi algorithm)
[7] estimates the model parameters ignoring the discrepancies
between the alignment and y1:T . Hence the question about the
incurred bias, and, subsequently, significance of the asymptotic
behavior of the Viterbi alignments for the inference about the
unknown parameters [6], [8].

Attempts to gain insight into the asymptotics of the align-
ments might immediately stall as the formal definition of
v(x1:T ) does not automatically extend to the infinite sequence
x1:∞. Indeed, it is then not clear whether any limiting, infinite
Viterbi alignment v(x1:∞) exists at all. To appreciate that the
question of extending v(x1:T ) ad infinitum is not a trivial
one (even if the problem of non-uniqueness of v(x1:T ) is
disregarded), suffice it to say that an additional observation
xT+1 can in principle change the entire alignment based on
x1:T , i.e. v(x1:T ) and v(x1:T+1)1:T can disagree significantly,
if not fully. Fortunately, the situation is not hopeless and in
this paper we prove that in most HMMs the Viterbi alignments
can be consistently extended piecewise. Specifically, motifs of
(contiguous) observations z1:M , called barriers, are observed
with positive probability, forcing the Viterbi alignments based
on extended observations (x1:t, z1:M , xt+M+1:t+M+u) to sta-
bilize as follows: Roughly, ∀t, u ≥ 0 and for some τ such
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that t < τ ≤ t + M , and for all prefixes x1:t ∈ X t and all
extensions xt+M+1:t+M+u ∈ X u

v(x1:tz1:Mxt+M+1:t+M+u)1:τ = v(x1:τ ). (1)

To be more specific, a particular state l ∈ S and an element
zk ∈ X , 1 ≤ k ≤ M , called an l-node, can be found inside
the l-barrier z1:M , such that regardless of the observations
before and after z1:M , the alignment has to go through l at
time τ = t + k. The optimality principle then insures the
stabilization (1) and in particular vτ = l.

There are further benefits of barriers. Namely, suppose now
that x1:T contains N ≥ 1 l-barriers with nodes occurring at
times τ1 < · · · < τN ≤ T . Then the Viterbi alignment v(x1:T )
can be constructed piecewise as follows: Let v(x1:T ) =
(v1, v2, . . . , vN , vN+1), where v1 is the alignment based on
x1:τ1 and ending in l, and let vn, for n = 2, 3, . . . , N + 1,
be the conditional alignment based on xτn−1+1:τn

given that
Yτn−1 = l; note that the alignments vn, n = 2, 3, . . . , N
also end in l, which is determined by the type of the barrier
(node) being l. Now, if a new observation xT+1 is adjoined,
then the last segment vN+1 can change, but the segments
v1, . . . , vN remain intact. Suppose now that a realization x1:∞
contains infinitely many l-barriers, and hence also infinitely
many nodes. Then the (piecewise) infinite alignment v(x1:∞)
is defined naturally as the infinite succession of the segments
v1, v2, . . . .

In this paper, we prove that for any HMM from a very
wide class, there exists an integer M > 0, such that the
probability that X1:M emits a barrier, is positive. Since X
is ergodic, almost every realization x1:∞ has infinitely many
barriers and, therefore, the infinite piecewise alignment is well-
defined. Apparently, the piecewise alignment gives rise to a
decoding process v : X∞ 7→ S∞ via V1:∞ = v(X1:∞),
which we shall call the Viterbi alignment process. Thus, the
results of this paper ensure that, for a large class of HMMs the
Viterbi alignment process V exists. The piecewise construction
also ensures that V is regenerative and ergodic. Besides the
marginal process V , the joint processes (Y, V ) and (X,Y, V )
are also of interest as their asymptotic properties determine the
systematic behavior of the alignment, including the deviations
of the alignment V from the “truth” Y . Note also how this
piecewise construction naturally calls for a buffered on-line
implementation in which the memory used to store xτn−1:τn

can be released once vn has been computed.

A. Previous related work and contribution of this work

The problem of constructing infinite Viterbi processes has
been brought to the attention of the IEEE Information Theory
community fairly recently by [9] and [10]. Although the
piecewise structure of the Viterbi alignments was already
hinted at in [11] (‘merge phenomenon’) and acknowledged in
[12], to our best knowledge, the subject has been first seriously
considered in [9], [10]. In these latter works, the existence of
infinite alignments for certain special cases, such as K = 2 and
Markov chains with additive white Gaussian noise, has been
proved. In particular, in these cases the authors of [9], [10]
have proved the existence of ‘meeting times’ and ‘meeting

states’, which are a special (stronger) type of nodes. While
innovative, the main result of [9] (Theorem 2) makes several
restrictive assumptions and is proved in an existential manner,
which prevents its extension beyond the K = 2 case.

Independently of these works, [13], [8], [14] have developed
a more general theory to address the problem of estimat-
ing unknown parameters (usually consisting of the emission
parameters and the transition probabilities pij , i, j ∈ S).
Namely, the focus of this theory has been the Viterbi training
(VT) algorithm. Competing with EM-based procedures, this
algorithm provides computationally and intuitively appealing
estimates which, on the other hand, are biased, even in the
limit when T →∞. In order to reduce this bias, the adjusted
Viterbi training (VA) has been introduced in [13], [8], [14].
Naturally, VA relies on the existence of the infinite alignments
and their ergodic properties. Although the general theory has
been presented in [14], [8], some of the main results of the
theory (Lemma 3.1 and 3.2 of [8]) have appeared without
proof due to the limitations of scope and size. This paper
slightly refines these results, emphasizes their constructive
and implementation-aware character, places them in a wider
context of asymptotic (not necessarily Viterbi) alignments,
touches on some new machine learning aspects, and, most
importantly, presents the complete proofs of the main results.

Whereas the present results are formulated for general
HMMs (K ≥ 2), [15] has most recently considered in full
detail the special case of K = 2, generalizing similar results of
[9], [10]. Specifically, it has been proved in [15] that infinitely
many barriers (and hence the infinite Viterbi alignment) exist
for any aperiodic and irreducible 2-state HMM. Thus, the
results presented here extend the ones of [15] and [9], [10]
to K ≥ 2. It turns out that this extension is far from being
straightforward and requires a more advanced analysis and
tools, such as generalized, or higher order “weak” nodes
mentioned above (§I) and first introduced in [8]. This general-
ization is not absolute in the sense that when K > 2, certain
aperiodic and irreducible HMMs can still fail to have infinitely
many nodes, undermining the piecewise construction of the
infinite alignments for those models. Therefore, to guarantee
that the infinite alignments can be constructed piecewise,
certain assumptions, such as the cluster assumption in our
main result Lemma 3.1, are indeed needed when K > 2. While
the cluster condition can be further relaxed in obvious ways
(cf. discussion below), we believe that its present version is a
reasonable compromise between the generality of the Lemma
and technical complexity of the proof.

The “disappearance” of the nodes has to do with the fact
that an aperiodic and irreducible Markov chain can have zeros
in the transition matrix. If this possibility is excluded, as is
the case in [9], [10], then the ‘meeting times’ and ‘meeting
states’ of [9], [10] are sufficient to prove the existence of
infinite Viterbi alignments for many HMMs used in practice.
In their recent communication with us, the authors of [9], [10]
have corrected those statements in their aforementioned works
where the strict positivity of the transition matrix is implicitly
assumed but formally omitted (see [8] for details).

Models with forbidden transitions are indeed abundant in
practice, and thankfully for a large class of such models the
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generalized notion of nodes does effectively remove the limita-
tions of the ‘meeting times’ and ‘meeting states’. However, the
price (e.g. length of the presented proofs) for this achievement
has been rather high mostly due to the interfering issue of non-
uniqueness of the (finite) Viterbi alignments. Specifically, ties
in the Viterbi algorithm cause two complications. First, higher
order nodes need to be a sufficiently large (but fixed) distance
apart from each other. If they are not sufficiently separated,
then breaking a tie in favor of one node can make it impossible
to brake a tie involving another node in favor of that latter
node, implying that the alignment cannot go through the both
nodes. The separation of the nodes is not not an issue in [9],
[10], [15] since for the special cases treated there, special
(‘strong’ or 0th order) nodes are sufficient. Second, ties in
distinct segments should be broken consistently. This would
not be an issue if our goal were solely to have an infinite
alignment. However, we also require the obtained alignment
to be “proper” in the sense that the resulting Viterbi alignment
process be regenerative. This additional property is crucial
in the adjusted Viterbi training application ([8]) and should
also be helpful in future analysis of various alignment-based
statistics (e.g. barrier/node inter-arrival times). For a detailed
treatment of the piecewise construction of the proper infinite
alignment and regenerative Viterbi process in general HMMs,
and the role of the infinite Viterbi process for the adjusted
Viterbi training theory, we refer to the state-of-the-art article
[8].

As far as we are aware, the presented constructive and
implementation-aware approach is the first of its kind, espe-
cially given the level of its generality. For example, to see why
it is problematic to extend the arguments of [9] to K > 2, note
that the proof of the main existence result there (Theorem 2)
is based on a contradiction. Namely, assuming that K = 2 and
two Viterbi paths never meet, can be shown to contradict the
Central Limit Theorem. The thereby exhibited meeting point
corresponds to what we call a node of order 0. Unfortunately,
that argument does not apply in the case K > 2, since for a
node of order 0 to occur, K > 2 previously non-intersecting
paths would have to coalesce at the same point. Moreover, in
the more general situation allowing for zeros in the transition
probabilities, a higher order node would be needed, requiring
in turn that all possible pairs of the K (previously non-
intersecting) paths meet in particular ways. Thus, the mere
fact that any two paths have to meet almost surely does not
any more guarantee the existence of the nodes.

By contrast the present approach is constructive and
implementation-aware. To appreciate the latter feature, note
that in order to determine whether an observation xτ is a node,
in general the entire history x1:τ would need to be processed,
which is, of course, not attractive in practice. At the same
time, the presented results and their proof guarantee that the
nodes encapsulated in the barriers are detectable by a sliding
window filter of fixed width M (which, of course, depends on
the HMM at hand). Presently, we do not set a goal to minimize
M or to maximize the probability of detection (cf. §IV-B); this
should of course be reconsidered in practice for any model
individually. Note also that if we were merely concerned with
the existence of the piecewise alignments, we would be content

with the fact that any infinite sequence of nodes contains
an infinite subsequence of separated nodes, and thus stop
after proving Lemma 3.1. However, we are also concerned
with applications, mainly the adjusted Viterbi training, and
implementing such construction efficiently online. For these
reasons, we make sure that the barrier detector does not
respond to a new barrier unless the node inside this barrier
is sufficiently separated from its predecessor. Surely, one can
simply be checking this condition dynamically by keeping
track of the distance from the most recently detected node
while suppressing any “premature” detection. Instead, we
propose to achieve node “anti-aliasing” by slightly adjusting
the barrier detecting filter and making it more selective. Hence,
Lemma 3.2 extends Lemma 3.1 by constructing ‘separated’
barriers. Besides the aesthetic advantage of “unconditional
sliding”, the separated barriers are also attractive since their
times, including inter-arrival ones, are more “stochastically
regular” and their analysis is somehow less complicated. In
particular, the separated barriers are essential if one wants
to stationarize the Viterbi process V (or the joint processes
(X,Y, V ), (X,V ), (Y, V )) by embedding these semi-infinite
processes into suitable doubly-infinite extensions. For the rea-
sons of size limitation, [8] instead of stationarization took an
overall shorter approach based on regenerativity in which the
separated barriers are not really necessary. At the same time,
unlike their purely regenerative counterparts, the stationary
versions of V and the joint processes would automatically
deliver the limiting measures needed for asymptotic inference
such as in the adjusted Viterbi training [8].

In summary, the presented proofs of Lemmas 3.1 and 3.2
give detailed instructions on how to construct a prototype of
an efficient online barrier/node detector for any HMM from a
very large class. The detector can then immediately be used
to parse a virtually infinite observation sequence and to output
the piecewise Viterbi alignment.

Note that in the context of pulse amplitude modulated
sequence detection, the possibility of online piecewise con-
struction of the Viterbi alignment was already noticed in [11].
In that work, the occurrence of special (0th order) nodes,
referred to as ‘merge phenomenon’, was briefly discussed and
possibly observed empirically. At the same time, the authors of
[11] remarked that “a merge is a random phenomenon and con-
sequently may be of limited value in practical applications”. It
is therefore not clear if the authors realized that almost every
realization of many HMMs used in practice exhibit infinitely
many merges. Several other points make us more optimistic
than the authors of [11] about the utility of merges. First, our
research shows that despite being non-determinisitic, merges
follow a certain stochastic pattern, hence can be studied
theoretically, and subsequently can be efficiently computed
(e.g. the fixed support barrier-based merge detectors discussed
above). Moreover, merges make it possible to define the
infinite alignments, which have several practical applications,
such as the adjusted Viterbi training [13], [8], [14], and
possibly more as discussed in §I-B below.

At the same time, the question “how often do merges
occur?” is not easy to answer. Indeed, the merge inter-arrival
times are, in general, neither independent nor identically
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distributed. (Note that these random times are not the same
as the renewal times on which regenerativity in [8] is based
and which are essentially i.i.d..) On the other hand, in i.i.d.
mixture models, which are a special case of HMMs, every
observation is a node. The degenerate case of HMMs with
the identity transition matrix is the opposite extreme in the
sense that nodes cannot occur in those models at all. Based
on these two extremes, one can loosely argue that the weaker
the dependence on the past, the more often the nodes occur.
It is also discussed in §4 of [8] how the expected barrier
inter-arrival time can be reasonably bounded from above. This,
obviously, also gives an upper bound on the expected merge
inter-arrival time. Since typically there can be several merges
between two consecutive barriers, the obtained bound might be
rather crude. At the same time, it is the nodes sitting inside the
barriers that we suggest to be of more interest, particularly for
applications, and their probability can be explicitly computed
based on the constructions below. However, without further
optimization, that probability generally might be very low (cf.
§IV-B for a numerical example).

B. Further motivation

The main motivation of this work is the frequent use of
the Viterbi alignment v(x1:T ) for prediction of the hidden
realization Y1:T , also known in this context as segmentation.
Examples of segmentation include HMM-based speech recog-
nition as well as DNA sequencing [16] (e.g. segmenting coding
regions from non-coding ones, or detecting CpG-islands) and
thus substantially depart from Viterbi’s original framework of
convolutional coding-decoding [5], [17]. As already pointed
out above, the Viterbi alignment is also at the core of the
Viterbi training algorithm that iteratively, and concurrently
with segmentation, estimates the unknown parameters of the
HMM.

Since the Viterbi alignment can deviate significantly from
the true hidden sequence, the Viterbi alignment is hardly
representative of a typical realization. Hence, using the Viterbi
alignment in further inference is conceptually problematic.
Indeed, when estimating, say, the probability of heads from
i.i.d. tosses of a biased coin, we naturally hope to observe
a typical realization and not the constant one of maximum
probability.

However, in models where the deviations between the
maximum likelihood (Viterbi-like) alignment and the true
sequence follow a distinct pattern, at least as T →∞, further
inference based on the alignment can be sometimes made more
accurate with little computational overhead. This has been the
rationale behind the adjusted Viterbi training and can possibly
be extended to other, i.e. non-Viterbi, types of alignments (see
below). If known — possibly estimated — these adjustments
might also be appreciated when the Viterbi paths are used
merely for prediction, or segmentation, of Y1:T . Indeed, in
segmentation of DNA sequences, the underlying chain Y has
few, often two, states (e.g. coding and non-coding regions, or
CpG islands and non-CpG regions) and the probabilities of
transitions between the states are very low. Therefore, the true
and predicted hidden paths tend to consist of long constant

blocks. At the same time, the predicted constant blocks tend
to be somewhat longer than what the chain parameters would
suggest. With the help of the infinite Viterbi process V1:∞ it is
now clear that this discrepancy is not simply due to the random
fluctuations but is systematic, does not vanish asymptotically,
and is a direct consequence of that the transition probabilities
of V1:∞ do indeed tend to underestimate the true ones. Note
that in these examples, unlike in the estimation of the HMM
emission parameters, the overall performance is directly linked
to the accuracy of the transition probability estimates. Thus,
finding the differences between the processes (X,Y ) and
(X,V ) in this case might help find better alignments.

The Viterbi alignment process V also makes it possible to
define the risk of (the Viterbi alignment based) segmentation.
Specifically, let L : S×S → R+ be a loss function, i.e. L(i, j)
measures the loss of classifying true state i as j. Perhaps the
most common loss-function is the symmetric one given below

L(i, j) =
{

0, if i = j;
1, if i 6= j.

Given a loss function L, quality of segmentation v(x1:T ) can
be naturally measured by the empirical risks given below

RT (x1:T , y1:T ) def=
1
T

T∑
t=1

L (yt, v (x1:T )t) ,

R(x1:∞, y1:∞) def= lim sup
T→∞

RT (x1:T , y1:T ). (2)

Since y1:T is usually hidden (unsupervised learning), the
empirical risk RT cannot be calculated. However, provided
that regenerative v(X1:∞) exists, it is not hard to show that
RT converges almost surely to R (i.e. lim sup in (2) can
be replaced by lim for almost every realization) where R
is (almost surely) a constant. The limit R will be called
the asymptotic risk of the Viterbi segmentation. Thus, for T
large, RT (X1:T , Y1:T ) ≈ R. (Note the difference with the
usual machine learning framework where the empirical risk is
used to approximate the unknown “true” risk R. Here, on the
contrary, the would-be known R is being used to approximate
the unknown empirical risk RT .) If L is symmetric, then RT

is simply the proportion of the misclassified states and R is the
asymptotic misclassification rate. It should be noted that RT

is not minimum over all possible segmentations. Indeed, given
x1:T , the empirical risk RT is minimized by the segmentation
s(x1:T ) ∈ ST given for each t = 1, 2, . . . , T below:

s(x1:T )t
def= arg min

j∈S

∑
i∈S

L(i, j)P (Yt = i|X1:T = x1:T ).

Therefore, for the symmetric loss

s(x1:T )t = arg max
j∈S

P (Yt = j|X1:T = x1:T ),

hence the segmentation s(x1:T ) returns an individually most
likely state (cf. [4] and also ‘optimal symbol-by-symbol detec-
tion’ in [11]). We will call the resulting alignment pointwise
MAP (PMAP). Since the PMAP alignment appears to be
the main alternative to the Viterbi alignment, it would be
interesting to know if an infinite PMAP alignment can be
defined and what asymptotic properties it would have. On
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one hand, the situation is similar to the Viterbi case since the
two algorithms share the forward-backward feature (the main
difference is that maximization used in the Viterbi algorithm
is now replaced by summation). Consequently, the concept of
nodes extends immediately to the PMAP case. In fact, the
condition (18) of [11] defines a PMAP node. A node xτ (in
the PMAP sense) fixes the PMAP alignment at time τ , i.e.
fixes a single optimal symbol vτ . However, since the dynamic
programming optimality no longer holds in the PMAP case,
this need not fix the PMAP alignment before τ . In fact, it is
not hard to find counterexamples where observations adjoined
after a node change the PMAP alignment before the node.
Thus, in the language of [11], in symbol-by-symbol detection,
the merge phenomenon appears to be of less value than in the
case of optimum sequence detection.

The existence of a well-defined infinite PMAP alignment
can be immediately established with the help of martin-
gale convergence theory. Indeed, the smoothing probabilities
P (Yt = i|X1:T ), i ∈ S, converge as T → ∞ [18]. However,
the existence of an infinite PMAP alignment with additional
properties such as regenerativity or stationarity, is, to the best
of our knowledge, an open question. Using the barriers as in
the present paper, one can possibly show that almost every re-
alization has infinitely many PMAP nodes. However, since the
nodes do not anymore fix the alignment, they cannot be used
for constructing a piecewise limiting alignment. Nonetheless,
if s1:∞ is an infinite PMAP alignment with suitable properties,
then the best possible empirical risk

R∗T (x1:T , y1:T ) def=
1
T

T∑
t=1

L(yt, st) ≤ RT (x1:T , y1:T )

can possibly be also shown to converge (almost surely) as
T → ∞ to some (constant) limit R∗ ≤ R, a generalization
of the Bayesian risk. Despite being inferior to the pointwise
MAP alignment in terms of risk based on the symmetric loss,
segmentation by the Viterbi alignment still seems to be popular
in practice. A commonly cited justification is that in certain
models with forbidden transitions the PMAP alignment may in
principle turn out to be also forbidden (i.e. of zero probability)
[4].

Interestingly, for alignments that admit infinite regenera-
tive extensions, such as the Viterbi alignments, it may be
possible to assess quality of their segmentation as function
of observable x ∈ X using, for example, regenerativity of
the three-dimensional process (X,Y, V ). Indeed, assume for
the moment that y1:T is known and split the sample x1:T

into two subsamples as follows: observation xt belongs to
subsample “correct” if vt = yt, and otherwise it belongs to
the subsample “incorrect”. The subsamples give rise to the
empirical measures P̂ correct

T and P̂ incorrect
T , i.e.:

P̂ correct
T (A) def=

∑T
t=1 IA×{0} (xt,L(vt, yt))∑T

t=1 I{0} (L(vt, yt))
∀A ∈ B,

where L is the symmetric loss function and IA is the indicator
function of set A. Again, in practice these measures would be
unknown, but using regenerativity, it is possible to show that

there exist certain limiting probability measures P (in)correct such
that

P̂ (in)correct
T ⇒

T→∞
P (in)correct almost surely,

where ‘⇒’ refers to weak convergence of probability mea-
sures, e.g. for every (Borel) set A∑T

t=1 IA×{0} (Xt,L(Vt, Yt))∑T
t=1 I{0} (L(Vt, Yt))

→
T→∞

P correct(A) almost surely.

(For a similar proof, see, for example, the proof of Theorem
4.1 in [8].) Thus, knowing the model, the measures P (in)correct

can in principle be found. Note that, with P =
∑

i∈S πiPi and
R being the law of Xt and the risk based on the symmetric
loss, respectively, it holds that

P = P correct(1−R) + P incorrectR.

Denoting by f (in)correct the densities of P (in)correct with respect
to λ, it follows that the ratio

P (incorrect|x) def=
f incorrect(x)R

f incorrect(x)R+ f correct(x)(1−R)

can be interpreted as the probability that the segmentation
at a given time is incorrect, given that x is observed at
that time. Again, P (incorrect|x) may not be easy to find
analytically, but, knowing the model, it can be estimated off-
line for a sufficiently dense mesh of X by simulations. A
possible use of P (incorrect|x) in practice can be in a flexible,
or “active”, semi-supervised learning regime in which for
some observations their hidden states can be also revealed,
say, at a very high cost (e.g. expert annotation of genetic
sequences). It then makes sense to consult the oracle for those
observations xt for which P (incorrect|xt) is relatively high.
For a trivial example, in the case of i.i.d. mixture models, this
would happen when xt falls in regions of significant overlaps
of the densities of competing states. With the “purchased”
additional information, the constrained Viterbi alignment can
be obtained which, in general, would lower the empirical risk
considerably. Thus, a trade-off between the cost of the revealed
states and alignment risk is conceivable. Finally, the function
P (incorrect|x) provides but one example for such type of a
learning scenario, and other, e.g. entropy-based functions, are
also conceivable.

Recall also that in Viterbi’s original context of convolu-
tional coding-decoding, decoders in practice would often force
suboptimal alignments after a certain fixed delay T which
is proportionate to the encoder memory [11], [17, §11.4].
Thus, one could consider the following block-stationary pro-
cess (v(x1:T ), v(xT+1:2T ), . . .) or its modification, which
can be made regenerative, and in which v(xnT+1:(n+1)T ),
n = 1, 2, . . . , are the conditional alignments given that
YnT = v(x(n−1)T+1:nT )T . Clearly, limiting (as n → ∞)
characteristics of these processes, such as risk R, or its
modification with Y1:∞ replaced by the Viterbi alignment
v(X1:∞), will depend on T . It might then be interesting to
examine this dependence in light of the practically employed
values of T between four and six multiples of the encoder
memory [17, §11.4].
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C. Organization of the rest of the paper

In §II we briefly outline the construction of the infinite
Viterbi alignments (cf. §II-B) based on the nodes (cf. §II-A)
and barriers (cf. §II-C) that were introduced in [8]. Next,
§III states Lemmas 3.1 and 3.2, our main results. In §IV, we
present a complete and detailed proof of the main results. In
particular, Lemma 3.1 is proved in §IV-A, followed in §IV-B
by an illustration of the central construction with a concrete
numerical example; §IV-C is the proof of Lemma 3.2. We
conclude in §V by explaining the technical assumptions of
the main results and indicating further generalizations.

II. CONSTRUCTION

A. Nodes

Let an observable realization x1:∞ ∈ X∞ be given. First,
for all j ∈ S and for any time t ≥ 1, consider the scores

δt(j)
def= max

y′1:t−1∈St−1
Λ

(
(y′1:t−1, j);x1:t

)
and (3)

the back-pointers

l(t, j) def= {l ∈ S : ∀i ∈ S δt(l)plj ≥ δt(i)pij}. (4)

Thus, δt(j) is the maximum of the likelihood of the paths
terminating at time t in state j. Note that δ1(j) = πjfj(x1)
and the recursion below

δt+1(j) = max
i∈S

(δt(i)pij)fj(xt+1) ∀ t ≥ 1,∀j ∈ S,

helps to verify that for any T ≥ 1, V(x1:T ), the set of all
the Viterbi alignments, can be written as follows: V(x1:T ) ={
v ∈ ST : ∀i ∈ S, δT (vT ) ≥ δT (i) and
∀t : 1 ≤ t < T, vt ∈ l(t, vt+1)}.

Next, we introduce p
(r)
ij (t), the maximum of the likeli-

hood realized along the paths connecting states i and j at
times t and t + r + 1, respectively. Thus, p(0)

ij (t) def= pij ,

and for all t ≥ 1 and for all r ≥ 1, let p
(r)
ij (t) def=

max
y′1:r∈Sr

piy′1
fy′1

(xt+1)py′1y′2
fy′2

(xt+2)py′2y′3
· · ·

· · · py′
r−1y′r

fy′r (xt+r)py′rj . (5)

Note also that

δt+1(j) = max
i∈S

{
δt−r(i)p

(r)
ij (t− r)

}
fj(xt+1) ∀r < t,

p
(r)
ij (t) = max

l∈S
p
(r−1)
il (t)fl(xt+r)plj . (6)

Definition 2.1: Let ρ ≥ 0 and τ ≥ 1 be integers, and let
l ∈ S. Given x1:∞ ∈ X∞, xτ is said to be an l-node of order
ρ if

δτ (l)p(r)
lj (τ) ≥ δτ (i)p(r)

ij (τ) ∀i, j ∈ S. (7)

Also, xτ is said to be a node of order ρ if it is an l-node
of order ρ for some l ∈ S; xτ is said to be a strong node
of order ρ if the inequalities in (7) are strict for every i, j ∈
S, i 6= l. Certainly, only the starting subsequence x1:τ+ρ of
x1:∞ determines whether xτ is a node of order ρ. 1 Let x1:∞

1Note that if xτ is a node of order ρ, it is then also a node of any order
higher than ρ. Hence, the order of a node is defined to be the minimum such
ρ.

be such that xτn
is an ln-node of order ρn, 1 ≤ n ≤ N , for

some, possibly infinite, N , and assume that τn+1 > τn+ρn for
all n = 1, 2, . . . , N − 1. Such nodes are said to be separated.

B. Piecewise alignment

Suppose x1:T is indeed such that xτ1 , xτ2 , . . . xτN
are

separated nodes of type l ∈ S and order ρ ≥ 0. It follows
then easily from the definition of the node that there exists a
Viterbi alignment v(x1:T ) ∈ V(x1:T ) that goes through l at
τn (i.e. vτn

= l) for each n = 1, 2, . . . , N (see [8]). It is not
difficult to verify that such v(x1:T ) can actually be computed
as follows: Obtain v1, a path that is optimal among all those
that end at τ1 in l. (Note that unless the order of the node xτ1

is 0, v1 need not be in V(x1:τ1).) Given xτ1+1:τ2 , continue on
by taking v2 to be a maximum likelihood path from l back to
l. That is, v2 maximizes the constrained likelihood under the
initial distribution (pl·)

def= (plj)j∈S (instead of the stationary
π) and the constraint v2

τ2−τ1
= l. Now, (v1, v2) maximizes the

likelihood given x1:τ2 over all paths ending with l. Similarly,
we define the pieces v3, . . . , vN . Finally, vN+1 is chosen to
maximize the (unconstrained) likelihood given xτN+1:T under
the initial distribution (pl·).

Obviously, the separated nodes assumption τn+1 > τn + ρ,
1 ≤ n < N , is not restrictive at all since it is always possible
to choose an infinite subsequence of separated nodes from
any infinite sequence of nodes. The reason for including this
requirement has to do with the non-uniqueness of alignments
and is as follows. The fact that xτn is an l-node of order ρ
guarantees that when backtracking from τn + ρ down to τn,
ties (if any) can be broken in such a way that, regardless of the
values of xτn+ρ+1:T and how ties are broken in between T and
τn + ρ, the alignment goes through l at τn. At the same time,
segment τn, . . . , τn + ρ is “delicate”, that is, unless xτn is a
strong node, breaking the ties arbitrarily within τn, . . . , τn +ρ
can result in vτn

6= l. Hence, when neither xτn
nor xτn+1 is

strong and τn+1 ≤ τn + ρ, breaking the ties in favor of xτn

can result in vτn+1 6= l. Clearly, such a pathological situation
is impossible if ρ = 0 and might also be rare in practice even
for ρ > 0.

To formalize the piecewise construction, let

W l(x1:T ) def= {y′1:T ∈ ST : y′T = l

Λ(y′1:T ;x1:T ) ≥ Λ(y′′1:T ;x1:T ) ∀y′′1:T ∈ ST : y′′T = l},

V l(x1:T ) def= {y′1:T ∈ V(x1:T ) : y′T = l} be the set of
maximizers of the constrained likelihood, and the subset of
maximizers of the (unconstrained) likelihood, respectively,
all elements of which go through l at T . Note that unlike
W l(x1:T ), V l(x1:T ) might be empty. It can be shown that
V l(x1:T ) 6= ∅ ⇒ V l(x1:T ) = W l(x1:T ). Also, let the
subscript (i), i ∈ S, in W l

(i)(x1:T ) and V(i)(x1:T ) refer to
the (pi·) being used as the initial distribution in place of π.
With these notations, the piecewise alignment is v(x1:T ) =
(v1(x1:τ1), . . . , v

N+1(xτN+1:T )) ∈ V(x1:T ), where

v1(x1:τ1) ∈ W l(x1:τ1), v
N+1(xτN+1:T ) ∈ V(l)(xτN+1:T )

vi(xτn−1+1:τn
) ∈ W l

(l)(xτn−1+1:τn
), 2 ≤ n ≤ N. (8)
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Moreover, for n = 1, 2, . . . , N , the partial paths w(n) def=
(v1(x1:τ1), . . . , v

n(xτn−1+1:τn)) ∈ W l(x1:τn), where τ0
def= 0.

If x1:∞ has infinitely many (separated) nodes {xτn
}n≥1

then v(x1:∞), an infinite piecewise alignment based on the
node times {τn(x1:∞)}n≥1 can be defined as follows: If the
sets W l

(l)(xτn−1+1:τn
), n = 2, 3 . . . , as well as W l(x1:τ1)

are singletons, then (8) immediately defines a unique infinite
alignment v(x1:∞) = (v1(x1:τ1), v

2(xτ1+1:τ2), . . .). Other-
wise, ties must be broken. If we want our infinite alignment
process V to be regenerative (see [8]), a natural consistency
condition must be imposed on rules to select unique v(x1:T )
from W l(x1:τ1)×W l

(l)(xτ1+1:τ2)×· · ·×W l
(l)(xτN−1+1:τN

)×
V(l)(xτN+1:T ). In [8], resulting infinite alignments, as well as
decoding v : X∞ → S∞ based on such alignments, are called
proper. This condition is, perhaps, best understood by the fol-
lowing example. Suppose for some x1:5 ∈ X 5, W1

(2)(x1:5) =
{12211, 11211}, and suppose the tie is broken in favor of
11211. Now, whenever W1

(l)(x
′
1:4) contains {1221, 1121}, we

naturally require that 1221 not be selected. In particular, if for
some x′1:4 ∈ X 4 W1

(1)(x
′
1:4) = {1221, 1121}, we would select

1121 from W1
(1)(x

′
1:4). Subsequently, 112 would be selected

from W2
(1)(x

′′
1:3) = {122, 112}, and so on. It can be shown

that a decoding by piecewise alignment (8) with ties broken in
favor of min (or max) under the reverse lexicographic ordering
of ST , T ∈ N, is a proper decoding.

Note also that we break ties locally, i.e. within individual
intervals τn−1 +1, . . . , τn, n ≥ 2, enclosed by adjacent nodes.
This is in contrast to global ordering of V(x1:T ), an approach
taken in [9], [10]. Since a global order need not respect the
decomposition (8), it can fail to produce an infinite alignment
going through infinitely many nodes unless the nodes are
strong.

C. Barriers

Recall (Definition 2.1) that nodes are defined relative to the
entire realization x1:∞ and, what is actually inconvenient is
that whether xτ is a node (of order ρ) or not, depends, in
principle, on the entire sequence x1:τ+ρ, and in particular on
all the observations up to the time τ .

We show below that typically a block z1:M ∈ XM (M >
ρ ≥ 0) can be found such that for any realization x1:∞
containing z1:M , i.e. xt−M+1:t = z1:M for some t ≥M , xt−ρ

is a node of order ρ. Sequences z1:M that ensure existence of
such persistent nodes are called barriers in [8]. Specifically,

Definition 2.2: Given l ∈ S, z1:M ∈ XM is called an
(strong) l-barrier of order ρ ≥ 0 and length M > ρ, if, for
any x1:∞ ∈ X∞ with xt−M+1:t = z1:M for some t ≥ M ,
xt−ρ is an (strong) l-node of order ρ.

III. EXISTENCE

A. Clusters and main results

For each i ∈ S, let

Gi
def= {x ∈ X : fi(x) > 0}

be the support of fi.

Definition 3.1: We call a nonempty subset C ⊂ S a cluster
if the following conditions are satisfied:

min
j∈C

Pj(∩i∈CGi) > 0, and

either C = S or max
j 6∈C

Pj(∩i∈CGi) = 0.

Hence, a cluster is a maximal subset of states such that GC
def=

∩i∈CGi, the intersection of the supports of the corresponding
emission densities, is ‘detectable’. Distinct clusters need not
be disjoint and a cluster can consist of a single state. In this
latter case such a state is not hidden, since it is exposed by
any observation it emits. When K = 2, S is the only cluster
possible, since otherwise all observations would expose their
states and the underlying Markov chain would cease to be
hidden. In practice, many HMMs have the entirety of S as
their (necessarily unique) cluster.

Before stating the main results, let us define for every state
j ∈ S

p∗j = max
i∈S

pij . (9)

Lemma 3.1: Assume that for each state j ∈ S,

Pj

({
x ∈ X : fj(x)p∗j > max

i∈S, i 6=j
fi(x)p∗i

})
> 0. (10)

Moreover, assume that there exists a cluster C ⊂ S and
a positive integer m such that the mth power of the sub-
stochastic matrix Q = (pij)i,j∈C is strictly positive. Then,
for some integers M and ρ, M > ρ ≥ 0, there exist a set
B = B1×· · ·×BM ⊂ XM , an M -tuple of states y1:M ∈ SM

and a state l ∈ S, such that every z1:M ∈ B is an l-barrier of
order ρ (and length M ), yM−ρ = l and

P (X1:M ∈ B, Y1:M = y1:M ) > 0.

Lemma 3.1 implies that P(X1:M ∈ B) > 0. Also, since
every element of B is a barrier of order ρ, the ergodicity
of X therefore guarantees that almost every realization of X
contains infinitely many l-barriers of order ρ. Hence, almost
every realization of X also has infinitely many l-nodes of order
ρ.

Note that since in two-state HMMs S is the only cluster,
we thus have that Q = P. The irreducibility and ape-
riodicity in this case imply strict positivity of P2. Thus,
the only condition to be verified is (10), which in this
case writes as P1 ({x ∈ X : f1(x)p∗1 > f2(x)p∗2}) > 0 and
P2 ({x ∈ X : f2(x)p∗2 > f1(x)p∗1}) > 0. In [15], it is shown
that in the case of two-state HMMs, one of these two positivity
conditions is always met, which, in fact, turns out to be
sufficient for the existence of infinitely many strong barriers in
this (K = 2) case. Thus, any two-state HMM with irreducible
and aperiodic Y has infinitely many strong barriers. We return
to the discussion of the hypotheses of Lemma 3.1 in §V.

Recall (§I-A) that in order to make our barrier detectors
useful for online construction of the piecewise alignments
that can be made stationary, we need to make those detectors
selective, i.e. to insure that they do not respond to nodes which
are not sufficiently separated. Thus, instead of simply asserting
that any infinite sequence of nodes (such as those guaranteed
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by Lemma 3.1) contains an infinite subsequences of separated
nodes, we achieve node separation by adjusting the notion of
barriers. Namely, note that (given a realization x1:∞) two l-
barriers xt−M+1:t and xu−M+1:u of order ρ might be in B
with t < u ≤ t + ρ, implying that the associated nodes xt−ρ

and xu−ρ are not separated. In order to prevent this, we require
B to be such that for any x1:∞ ∈ X∞ it holds that

xt−M+1:t, xu−M+1:u ∈ B for some t, u ≥M, t 6= u (11)
⇒ |u− t| > ρ,

where xt−M+1:t and xu−M+1:u are l-barriers of order ρ (and
length M ). If (11) holds, we say that the barriers in B ⊂ XM

are separated. This is often easy to achieve by a simple
extension of B as shown in the following example. Suppose
there exists x ∈ X such that x 6∈ Bm, for all m = 1, 2, . . . ,M .
All elements of B∗ def= {x} × B are evidently barriers, and
moreover, they are now separated. The following Lemma
incorporates a more general version of the above example.

Lemma 3.2: Suppose the assumptions of Lemma 3.1 are
satisfied. Then, for some integers M and ρ, M > ρ ≥ 0, there
exist B = B1×· · ·×BM ⊂ XM , y1:M ∈ SM , and l ∈ S, such
that every z1:M ∈ B is a separated l-barrier of order ρ (and
length M ), yM−ρ = l, and P (X1:M ∈ B, Y1:M = y1:M ) >
0.

IV. PROOF OF THE MAIN RESULTS

A. Proof of Lemma 3.1

The proof below is a rather direct construction which is,
however, technically involved. A key ingredient of the proof
is a prototype of y1:M , termed the “s-path”. The central idea
of the Lemma and its proof is then to exhibit (a cylinder subset
of the) observations such that once emitted along the s-path,
these observations would trap the Viterbi backtracking so that
the latter winds up on the s-path. That will guarantee that
an observation corresponding to the middle of the s-path is a
node.

In order to facilitate the exposition of this proof, we have
divided it into 17 short parts as outlined below:

I. Construction of
(§IV-A1) emission subsets Xi ∈ X , i ∈ S (12);
(§IV-A2) a special set Z ⊂ X , (14), (15);
(§IV-A3) auxiliary sequences s, a, and b of states in S;
(§IV-A4) k, the number of s cycles inside the s-path;
(§IV-A5) the s-path (21), the core of y1:M ;
(§IV-A6) the required barrier (22).

II. Proving the barrier construction (22):
(§IV-A7) α, β, γ, η, φ, ψ-notation for commonly used
maximal partial likelihoods;
(§IV-A8) a bound (27) on β;
(§IV-A9) bounds (28), (29), (30), and (31) on common
likelihood ratios;
(§IV-A10) γj ≤ const× γ1;
(§IV-A11) further bounds (47), (48) on likelihoods;
(§IV-A12) ηj ≤ const× η1;
(§IV-A13) a special representation of η1 (50);

(§IV-A14) an implication of (46) and (50): ∀N ∈
{k, k+1, . . . , 2k}, ∃ a realization of φ1(eNL) that goes
through state 1 ∀n ∈ {k, k + 1, . . . , N};
(§IV-A15) inequality (57) implies that xu−ρ is a 1-node
of order ρ = kL+m+ P ;
(§IV-A16) proof of the inequality (57);

III. (§IV-A17) Completion of the s-path to y1:M .
1) Xi ⊂ X , i ∈ S: It follows from the assumption (10)

and finiteness of S that there exists an ε > 0 such that for all
i ∈ S Pi(Xi) > 0, where

Xi
def=

{
x ∈ X : max

j∈S, j 6=i
p∗jfj(x) < (1− ε)p∗i fi(x)

}
. (12)

(Note that p∗i > 0 for all i ∈ S by irreducibility of Y .) Also
note that Xi, i ∈ S are disjoint and have positive reference
measure λ(Xi) > 0.

2) Z ⊂ X and δ−∆ bounds on cluster densities fi, i ∈ C:
Let C be a cluster as in the assumptions of the Lemma. The
existence of C implies the existence of a set Ẑ ⊂ ∩i∈CGi

and δ > 0, such that λ(Ẑ) > 0, and ∀z ∈ Ẑ , the following
statements hold:

(i) mini∈C fi(z) > δ;
(ii) maxj 6∈C fj(z) = 0.

Indeed, minj∈C Pj(∩i∈CGi) > 0 implies (and indeed is
equivalent to) λ(∩i∈CGi) > 0. The latter implies the exis-
tence of Ẑ ⊂ ∩i∈CGi with positive λ-measure and δ > 0
such that (i) holds. Since λ(∩i∈CGi) > 0, the condition
Pj(∩i∈CGi) = 0 for j 6∈ C implies (is equivalent to) fj = 0
λ-almost everywhere on ∩i∈CGi. Thus, maxj 6∈C fj = 0 λ-
almost everywhere on ∩i∈CGi, which implies (ii) for any
z ∈ Ẑ .

Evidently, ∆ > δ can be chosen sufficiently large to make
λ({z ∈ X : fi(z) ≥ ∆}) arbitrarily small, and in particular, to
guarantee that for all i ∈ C λ({z ∈ X : fi(z) ≥ ∆}) < λ(Ẑ)

|C| ,

where |C| is the size of C. Clearly then, redefining Ẑ def=
Ẑ ∩ {z ∈ X : fi(z) < ∆, ∀ i ∈ C} preserves λ(Ẑ) > 0.
Thus, in summary, Ẑ is a subset of the emission space X such
that for all z ∈ Ẑ δ < fi(z) < ∆ for all i ∈ C and fi(z) = 0
for all i 6∈ C.

The next modification of Ẑ will actually be needed in §IV-C,
the proof of Lemma 3.2. Consider

λ(Ẑ\(∪i∈SXi)). (13)

If (13) is positive, then define

Z def= Ẑ\(∪i∈SXi). (14)

If (13) is zero, then there must be s ∈ C such that

λ(Ẑ ∩ Xs) > 0

and in this case, let

Z def= Ẑ ∩ Xs. (15)

Such s ∈ S must clearly exist since λ(Ẑ) > 0 but
λ(Ẑ\(∪i∈SXi)) = 0. To see that s must necessarily be inside
the cluster C, note that ∀s 6∈ C, we have that fs(z) = 0
∀z ∈ Ẑ , which implies that Ẑ ∩ Xs = ∅.
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3) Sequences s, a, and b of states in S: Let us define an
auxiliary sequence of states h1, h2, and so on, as follows: If
(13) is zero, that is, if Z = Ẑ ∩ Xs for some s ∈ C, then
define h1 = s, otherwise let h1 be an arbitrary state in C.
Let h2 be a state with maximal probability of transition to
h1, i.e.: ph2 h1 = p∗h1

Suppose h2 6= h1. Then find h3 with
ph3 h2 = p∗h2

. If h3 6∈ {h1, h2}, find h4 : ph4 h3 = p∗h3
, and so

on. Let U be the first index such that hU ∈ {h1, . . . , hU−1},
that is, hU = hT for some T < U . This means that there
exists a sequence of states {hT , . . . , hU} such that
• hT = hU

• phT+n hT+n−1 = p∗hT+n−1
, n = 1, . . . , U − T.

To simplify the notation and without loss of generality, assume
hU = 1. Reorder and rename the states as follows:

s1
def= hU−1, s2

def= hU−2, . . . , sn
def= hU−n, . . . ,

sL
def= hT = 1 n = 1, . . . , L def= U − T,

a1
def= hT−1, a2

def= hT−2, . . . , aP
def= h1,

where P def= T − 1. Hence,

{h1, . . . , hT−1, hT , hT+1, . . . , hU−1, hU} =
{aP , . . . , a1, 1, sL−1, . . . , s1, 1}.

Note that if T = 1, then P = 0 and
{h1, . . . , . . . , hU−1, hU} = {1, sL−1, . . . , s1, 1}. We have
thus introduced special sequences a = (a1, a2, . . . , aP ) and
s = (s1, s2, . . . , sL−1, 1). Clearly,

psn−1 sn
=p∗sn

, n = 2, . . . , L, p∗s1
= p1 s1

pan−1 an
=p∗an

, n = 2, . . . , P, p∗a1
= sL = 1. (16)

Next, we are going to exhibit b = (b0, b1, . . . , bR), another
auxiliary sequence for some R ≥ 1, characterized as follows:

(i) bR = 1;
(ii) b0 ∈ C such that pb0 b1pb1 b2 · · · pbR−1 bR

> 0;
(iii) if R > 1, then br−1 6= br for every r = 1, . . . , R.
Thus, the path b1:R connects cluster C to state 1 in R steps.
Clearly such b does exist due to irreducibility of Y . Let us
also require that the selected path be as short as possible, i.e.
R ≤ K−1 is the minimal number of steps needed to connect
C to 1 in the above sense. Note then that minimality of R
guarantees (iii) (in the special case of R = 1 it may happen
that b1 = 1 ∈ C and p1 1 > 0, in which case b0 can be taken
to be also 1).

4) Determining k: Let Qm be the mth power of the sub-
stochastic matrix Q = (pij)i,j∈C ; let qij be the entries of
Qm. By the hypothesis of the Lemma, qij > 0 ∀i, j ∈ C.
This means that for every i, j ∈ C, there exists a positive
probability path from i to j, which is entirely inside C, and
has length m. Let q∗ij be the maximum of the probability
of transition from i to j along all such paths. Also, let
c1:m−1(i, j), or simply c1:m−1 in the absence of ambiguity, be
some such maximum probability path, i.e. c1, . . . , cm−1 ∈ C
are such that

pic1pc1c2 · · · pcm−1cm−1pcm−1j = q∗ij > 0. (17)

Let us define

q = min
i,j∈C

q∗ij > 0, and (18)

A = max
i∈S

max
j∈S

{
p∗i
pji

: pji > 0
}
, (19)

where p∗i are as defined in (9). Choose k sufficiently large for
the following to hold:

(1− ε)k−1 < q2
(
δ

∆

)2m

A−R, (20)

where ε is as in (12) and δ and ∆ are as introduced in §IV-A2.
5) The s-path: We now fix the state sequence

b0, b1, . . . , bR, s1, s2, . . . , s2kL, a1, . . . , aP , (21)

where sNL+n = sn, N = 1, . . . , 2k − 1, n = 1, . . . , L, (and
in particular sNL = 1, N = 1, . . . , 2k). The sequence in (21)
will be called the s-path. The s-path is a concatenation of
2k s cycles s1:L, the beginning and the end of which are
connected to the cluster C via positive probability paths b and
a, respectively (recall that aP = h1 ∈ C and bR = 1 by con-
struction). Additionally, the bR, s1, s2, . . . , s2kL, a1, . . . , aP -
segment of the s-path (21) has the important property (16),
i.e. every consecutive transition along this segment occurs with
the maximal transition probability given its destination state.
(However, b, the beginning of the s-path, need not satisfy
this property.) The s-path is almost ready to serve as y1:M
promised by the Lemma and its completion to y1:M will be
acomplished in §IV-A17.

6) The barrier: Let M = 2m+ 2kL+ P +R+ 1, and let
ρ = kL+ P +m and l = 1. Let

B = B1 ×B2 × · · · ×BM , where
Bn = Z, 1 ≤ n ≤ m+ 1;

Bm+1+n = Xbn , 1 ≤ n ≤ R;
Bm+1+R+n+NL = Xsn , 1 ≤ N < 2k, 1 ≤ n ≤ L;
Bm+1+R+2kL+n = Xan , 1 ≤ n ≤ P ;

Bm+1+R+2kL+P+n = Z, 1 ≤ n ≤ m, (22)

and let z1:M be any sequence from B. We now need to prove
that z1:M is a 1-barrier of order ρ as promised by the Lemma.
To do this, it might be helpful to give distinct names to some
of the key subsequences of z1:M as follows:

z1:M = (z1:m+1, e
′
1:R−1, e0:2kL, e

′′
1:P , z

′
1:m),

and also write B more explicitly as follows:

B = Zm+1 ×Xb1 × · · · × XbR−1 ×X1 ×Xs1×
· · · × Xs2kL−1 ×X1 ×Xa1 × · · · × XaP

×Zm.

Thus,

zm+1, zn, z
′
n ∈ Z, n = 1, . . . ,m;

e′r ∈ Xbr , r = 1, . . . , R− 1;
e0 ∈ X1, eNL+n ∈ Xsn , N = 1, . . . , 2k − 1, n = 1, . . . , L
e′′n ∈ Xan , n = 1, . . . , P.
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Next, let x1:∞ ∈ X∞ be any sequence of observations that
contains the subsequence z1:M (22), i.e. xu−M+1:u = z1:M
for some u ≥ M . Henceforth and throughout §IV-A15, we
shall be proving that xu−ρ, otherwise referred to as ekL, is a
1-node of order ρ = kL + m + P , implying that z1:M is a
1-barrier of the same order.

7) α, β, γ, η, φ, ψ: Recall the definition of the scores
δt(j) (3) and the maximum partial likelihoods p(r)

ij (t) (5) for
t = 1, 2, . . ., i, j ∈ S, and r ≥ 0. Now, we need to introduce
the following aliases. For any i, j ∈ S and for any r ≥ 0, let

φi(et)
def= δu−P−m−2kL+t(i) ∀t : 0 ≤ t ≤ 2kL

ψ
(r)
ij (et)

def= p
(r)
ij (u− P −m− 2kL+ t), (23)

ψ
(r)
ij (e′t)

def= p
(r)
ij (u− P −m− 2kL−R+ t) ∀t :

1 ≤ t ≤ R− 1,

φi(zt)
def= δu−2kL−2m−P−R+t(i) ∀t : 1 ≤ t ≤ m+ 1,

ψ
(r)
ij (zt)

def= p
(r)
ij (u− 2kL− 2m− P −R+ t),

φi(z′t)
def= δu−m+t(i) ∀t : 1 ≤ t ≤ m,

ψ
(r)
ij (z′t)

def= p
(r)
ij (u−m+ t).

Surely, it is only the index t that is variable in the arguments
et, e′t, zt, and z′t in the left hand sides of the above aliases,
whereas the corresponding elements of z1:M are still fixed.
However, we hope that the above redundancy helps to keep
track of the individual subsequences z1:m+1, e′1:R−1, e0:2kL,
etc.

Also, we will be frequently using the scores corresponding
to z1, zm+1, e0, and ekL. Hence the following abbreviations:

αi
def= φi(z1), βi

def= φi(zm+1), γi
def= φi(e0), ηi

def= φi(ekL).

Note that ∀j 6∈ C, fj(zm+1) = fj(z′t) = fj(zt) = 0, t =
1, . . . ,m by the construction of Z (§IV-A2). Hence, αj =
βj = 0 ∀j 6∈ C, and a more general implication is that for
every j ∈ S

βj = max
i∈C

αiψ
(m−1)
ij (z1)fj(zm+1) (24)

= αiβ(j)ψ
(m−1)
iβ(j) j (z1)fj(zm+1) for some iβ(j) ∈ C;

γj = max
i∈C

βiψ
(R−1)
ij (zm+1)fj(e0) (25)

= βiγ(j)ψ
(R−1)
iγ(j) j (zm+1)fj(e0) for some iγ(j) ∈ C.

Similarly, we will use the following representation of ηj , j ∈
S, in terms of γi for some i ∈ S which generally depends on
j:

ηj = max
i∈S

γiψ
(kL−1)
ij (e0)fj(ekL) (26)

= γiη(j)ψ
(kL−1)
iη(j) j (e0)fj(ekL) for some iη(j) ∈ S.

8) Bounds on β: Recall (§IV-A3) that b0 ∈ C. We show
that for every j ∈ S

βj < q−1
(∆
δ

)m

βb0 . (27)

Fix j ∈ S and consider αiβ(j) from (24). Let
h1:m−1 be a path that realizes ψ

(m−1)
iβ(j) j (z1). Then βj =

αiβ(j)piβ(j) h1fh1(z2)ph1 h2fh2(z3) · · · phm−1 jfj(zm+1) <
αiβ(j)∆m. (Recall that ∆ was introduced in §IV-A2.) Let
c1:m−1 be a maximum probability path in the sense of (17)
from iβ(j) to b0. Thus,

βb0 ≥αiβ(j)ψ
(m−1)
iβ(j) b0

(z1)fb0(zm+1)

≥αiβ(j)piβ(j) c1fc1(z2)pc1 c2fc2(z3) · · ·
· · · pcm−1 b0fb0(zm+1) ≥ αiβ(j)qδ

m.

(Again, recall that δ > 0 was introduced in §IV-A2.) Since
q > 0 (18), we thus obtain:

βj < αiβ(j)∆m ≤ βb0

qδm
∆m,

as required.
9) Likelihood ratio bounds: We next prove the following

claims

ψ
(L−1)
i1 (eNL) ≤ ψ

(L−1)
1 1 (eNL)

∀i ∈ S ∀N = 0, . . . , 2k − 1, (28)

ψ
(L−1)
ij (eNL)fj(e(N+1)L)

ψ
(L−1)
1 1 (eNL)f1(e(N+1)L)

< 1− ε

∀i, j ∈ S, j 6= 1,∀N : 0 ≤ N ≤ 2k − 1, (29)

ψ
(R−1)
ij (zm+1)fj(e0) ≤ ARψ

(R−1)
b0 1 (zm+1)f1(e0)

∀i, j ∈ S, (30)

ψ
(m+P−1)
ij (e2kL)

ψ
(m+P−1)
1j (e2kL)

≤ q−1
(∆
δ

)m−1

∀i ∈ S,∀j ∈ C. (31)

If L = 1, then (28) becomes pi 1 ≤ p1 1 for all i ∈ S, which
is true by the assumption p∗1 = p1 1 made in the course of
constructing the s sequence (§IV-A3). If L = 1, then also (29)
becomes

pijfj(eN+1)
p1 1f1(eN+1)

< 1− ε ∀i, j ∈ S, j 6= 1,

and thus, since eN+1 ∈ X1, 0 ≤ N < 2k in this case,
(29) is true by the definition of X1 (§IV-A1) (and the fact
that p∗1 = p1 1). Let us next prove (28) and (29) for the
case L > 1. Fix i, j ∈ S and j 6= 1, and consider any
N ∈ {0, 1, . . . , 2k−1}. Note that the definitions of the s-path
(21) and the fact that eNL+n ∈ Xsn

for 1 ≤ n < L imply that
for the given observations eNL+1:(N+1)L−1, the path s1:L−1

realizes the maximum in ψ(L−1)
1 1 (eNL), i.e.

ψ
(L−1)
1 1 (eNL) =p1 s1fs1(eNL+1)ps1 s2 · · · (32)

· · · psL−2 sL−1fsL−1(e(N+1)L−1)psL−1 1.

(Indeed, p1 s1fs1(eNL+1)ps1 s2 · · ·

· · · psL−2 sL−1fsL−1(e(N+1)L−1)psL−1 1 =
p∗s1

fs1(eNL+1)p∗s2
· · · p∗sL−1

fsL−1(e(N+1)L−1)p∗1,

and for n = 1, 2, . . . , L−1, p∗sn
fsn

(eNL+n) ≥ pchfh(eNL+n)
for any c, h ∈ S.) Suppose now that h1:L−1 realizes
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ψ
(L−1)
ij (eNL), i.e.

ψ
(L−1)
ij (eNL) =pi h1fh1(eNL+1)ph1 h2 · · · (33)

· · · phL−2 hL−1fhL−1(e(N+1)L−1)phL−1 j .

Hence, with h0 and hL standing for i and j, respectively (and
s0 = sL = 1), the left-hand side of (29) becomes(ph0 h1fh1(eNL+1)
ps0 s1fs1(eNL+1)

)(ph1 h2fh2(eNL+2)
ps1 s2fs2(eNL+2)

)
· · · (34)(phL−2 hL−1fhL−1(e(N+1)L−1)

psL−2 sL−1fsL−1(e(N+1)L−1)

)(phL−1 hL
fhL

(e(N+1)L)
psL−1 sL

f1(e(N+1)L)

)
.

Note that for any n ∈ {1, 2, . . . , L} such that hn 6= sn,

phn−1 hn
fhn

(eNL+n)
psn−1 sn

fsn
(eNL+n)

< 1− ε, since eNL+n ∈ Xsn
. (35)

For all other n ∈ {1, 2, . . . , L}, hn = sn and therefore, the
left-hand side of (35) becomes

phn−1 hn

psn−1 sn
=

phn−1 sn

p∗sn

≤ 1 (by
the property (16)). Since the last term of the product (34)
above does satisfy (35) (j 6= 1), (29) is thus proved. Suppose
next that h1:L−1 instead realizes ψ(L−1)

i1 (eNL). With s0 = 1
and h0 = i, similarly to the previous arguments, we have

ψ
(L−1)
i 1 (eNL)

ψ
(L−1)
1 1 (eNL)

=
L−1∏
n=1

(phn−1 hn
fhn

(eNL+n)
psn−1 sn

fsn
(eNL+n)

)phL−1 1

psL−1 1
≤ 1,

implying (28).

Let us now prove (30). To that end, note that for all
states i, j, h ∈ S such that pjh > 0, it follows from the
definitions (9) and (19) that

pih

pjh
≤ p∗h
pjh

≤ A. (36)

If R = 1, then (30) becomes

pijfj(e0) ≤ Apb0 1f1(e0).

By the definition of X1 (recall that e0 ∈ X1), we have that for
every i, j ∈ S pijfj(e0) ≤ p∗1f1(e0). Using (36) with h = 1
and j = b0, we get that p∗1f1(e0) ≤ Apb0 1f1(e0) (pb0 1 > 0
by the construction of b §IV-A3). Putting these all together,
we obtain

pijfj(e0) < p∗1f1(e0) ≤ Apb0 1f1(e0), as required.

Consider the case R > 1. Let h1:R−1 be a path that achieves
ψ

(R−1)
ij (zm+1), i.e. ψ(R−1)

ij (zm+1) =

pi h1fh1(e
′
1)ph1 h2fh2(e

′
2) · · · phR−2 hR−1fhR−1(e

′
R−1)phR−1j .

By the definition of the Xi (§IV-A1) and the facts that e′r ∈
Xbr

, r = 1, 2, . . . , R− 1, and e0 ∈ X1, we have that

ψ
(R−1)
ij (zm+1)fj(e0) ≤ p∗b1fb1(e

′
1)p

∗
b2fb2(e

′
2) · · ·

p∗bR−1
fbR−1(e

′
R−1)p

∗
1f1(e0). (37)

Now, by the construction of b (§IV-A3), pbr−1 br > 0 for
r = 1, . . . , R, (bR = 1). Thus, the argument behind (36) also

applies here to bound the right-hand side of (37) from above
by

Apb0 b1fb1(e
′
1)Apb1 b2fb2(e

′
2) · · ·

ApbR−2 bR−1fbR−1(e
′
R−1)ApbR−1 1f1(e0) =

ARψ
(R−1)
b0 1 (zm+1)f1(e0), as required.

Let us now prove (31). If m = 1 then (31) becomes

ψ
(P )
ij (e2kL) ≤ ψ

(P )
1j (e2kL)q−1 ∀i ∈ S, ∀j ∈ C. (38)

If P = 0, then (38) reduces to pij ≤ p1jq
−1 which is true,

because in this case the state h1 = hT = 1 belongs to C
(§IV-A3) and p1jq

−1 ≥ 1 ((17), (18) with m = 1). To see
why (38) is also true with P ≥ 1, note that by the same
argument as used for proving (28) and (29), we now get that
∀i, j ∈ S

ψ
(P−1)
1 aP

(e2kL)faP
(e′′P ) ≥ ψ

(P−1)
ij (e2kL)fj(e′′P ). (39)

Also, since aP ∈ C (§IV-A3), we have that paP jq
−1 ≥ 1

((17), (18) with m = 1). Thus, for any i ∈ S and for any
j ∈ C, ψ(P )

ij (e2kL) =

by (6)
= max

c∈S
ψ

(P−1)
i c (e2kL)fc(e′′P )pc j

by (39)
≤ ψ

(P−1)
1 aP

(e2kL)faP
(e′′P ) max

c∈S
pc j

≤ ψ
(P−1)
1 aP

(e2kL)faP
(e′′P )

≤ ψ
(P−1)
1 aP

(e2kL)faP
(e′′P )paP jq

−1
by (6)
≤ ψ

(P )
1 j (e2kL)q−1.

Now, assume that m > 1 and let i and j be any states in S and
C, respectively. Also, let h be any state in S and let h1:m−1

be a path realizing ψ(m−1)
hj (e′′P ). Thus, ψ(m−1)

hj (e′′P ) =

= ph h1fh1(z
′
1)ph1 h2fh2(z

′
2) · · · fhm−1(z

′
m−1)phm−1 j

< ∆m−1. (40)

(This is true since z′n ∈ Z for n = 1, 2, . . . ,m − 1
(§IV-A2) and thus, for ψ

(m−1)
hj (e′′P ) to be positive it is

necessary that hn ∈ C, n = 1, . . . ,m − 1, implying
also that fhn

(z′n) < ∆.) Now, let h1:m−1 instead real-
ize ψ

(m−1)
aP j (e′′P ), which is clearly positive, with hn ∈ C,

n = 1, . . . ,m − 1 (z′n ∈ Z for n = 1, 2, . . . ,m − 1),
and aP , j ∈ C (recall the positivity assumption on Qm,
§IV-A4). Also, let c1:m−1 ∈ Cm−1 be a path realizing q∗aP j

in the sense of (17). We then have that ψ(m−1)
aP j (e′′P ) =

paP h1fh1(z
′
1)ph1 h2fh2(z

′
2) · · · fhm−1(z

′
m−1)phm−1 j ≥

≥ q∗aP jfc1(z
′
1)fc2(z

′
2) · · · fcm−1(z

′
m−1) > qδm−1, (41)

where the last inequality follows from the definition of q (18)
and condition (i) of §IV-A2. Combining the bounds of (40)
and (41) (q > 0, (18)), we obtain for any h ∈ S:

ψ
(m−1)
hj (e′′P ) < ψ

(m−1)
aP j (e′′P )

(
∆
δ

)m−1 /
q. (42)
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Finally, we have that ψ(P+m−1)
ij (e2kL) =

by (6)
= max

h∈S
ψ

(P−1)
ih (e2kL)fh(e′′P )ψ(m−1)

hj (e′′P )

by (39), (42)
< ψ

(P−1)
1 aP

(e2kL)faP
(e′′P )ψ(m−1)

aP j (e′′P )
(

∆
δ

)m−1 /
q

by (6)
≤ ψ

(P+m−1)
1 j (e2kL)

(
∆
δ

)m−1 /
q as required by (31).

10) γj ≤ const× γ1: Combining (25), (27), and (30), we
see that for every state j ∈ S,

γj
by (25)

= βiγ(j)ψ
(R−1)
iγ(j) j (zm+1)fj(e0)

by (30)
≤ βiγ(j)ψ

(R−1)
b0 1 (zm+1)f1(e0)AR

by (27)
≤ q−1

(∆
δ

)m

ARβb0ψ
(R−1)
b0 1 (zm+1)f1(e0)

≤W max
i∈S

βiψ
(R−1)
i 1 (zm+1)f1(e0)

by (25)
= Wγ1,

where
W

def= q−1
(∆
δ

)m

AR. (43)

Hence
γj ≤Wγ1 ∀j ∈ S. (44)

11) Further bounds on likelihoods: Let N ≥ 0 and n > 0
be integers such that N + n ≤ 2k but arbitrary otherwise.
Expanding ψ

(nL−1)
1 1 (eNL) recursively according to (6), we

obtain

ψ
(nL−1)
1 1 (eNL) = max

i1:n−1∈Sn−1
ψ

(L−1)
1 i1

(eNL)fi1(e(N+1)L)×

×ψ(L−1)
i1 i2

(e(N+1)L)fi2(e(N+2)L) · · ·ψ(L−1)
in−2 in−1

(e(N+n−2)L)×

× fin−1(e(l+n−1)L)ψ(L−1)
in−1 1(e(N+n−1)L). (45)

Since it follows from (29) that for any i1 ∈ S,
ψ

(L−1)
1 i1

(eNL)fi1(e(N+1)L) ≤ ψ
(L−1)
1 1 (eNL)f1(e(N+1)L), as

well as

ψ
(L−1)
ir−1 ir

(e(N+r−1)L)fir
(e(N+r)L)

by (29)
≤

ψ
(L−1)
1 1 (e(N+r−1)L)f1(e(N+r)L), r = 2, . . . , n− 1,

and since for any in−1 ∈ S

ψ
(L−1)
in−1 1(e(N+n−1)L)

by (28)
≤ ψ

(L−1)
1 1 (e(N+n−1)L),

maximization (45) above is achieved as stated in (46) below:

ψ
(nL−1)
1 1 (eNL) = (46)

ψ
(L−1)
1 1 (eNL)f1(e(N+1)L)ψ(L−1)

1 1 (e(N+1)L)f1(e(N+2)L) · · ·
· · ·ψ(L−1)

1 1 (e(N+n−2)L)f1(e(N+n−1)L)ψ(L−1)
1 1 (e(N+n−1)L).

Now, we replace state 1 by generic states i, j ∈ S on the both
ends of the paths in (45) and repeat the above arguments. Thus,
also using (46), we arrive at the bound (47) below:

ψ
(nL−1)
ij (eNL)fj(e(N+n)L) ≤

N+n∏
t=N+1

ψ
(L−1)
1 1 (e(t−1)L)f1(etL)

by (46)
=

ψ
(nL−1)
1 1 (eNL)f1(e(N+n)L) ∀i, j ∈ S. (47)

With n = N = k in particular, (47) states that ∀i, j ∈ S

ψ
(kL−1)
ij (e0)fj(ekL) ≤ ψ

(kL−1)
1 1 (e0)f1(ekL). (48)

12) ηj ≤ const× η1: In order to see that

ηj ≤Wη1 ∀j ∈ S, (49)

note: ηj
(26)= max

i∈S
γiψ

(kL−1)
ij (e0)fj(ekL)

by (48)
≤ max

i∈S
γiψ

(kL−1)
1 1 (e0)f1(ekL)

by (44)
≤

by (44)
≤ Wγ1ψ

(kL−1)
1 1 (e0)f1(ekL)

by (26)
≤ Wη1.

13) A representation of η1(= φ1(ekL)): Recall that k, the
number of cycles in the s-path, was chosen sufficiently large
for (20) to hold (in particular, k > 1). We now prove that there
exists κ ∈ {1, . . . , k − 1} such that

η1 = φ1(eκL)ψ((k−κ)L−1)
1 1 (eκL)f1(ekL). (50)

The relation (50) states that a maximum-likelihood path from
time 1 (observation x1) to time u− ρ (observation ekL) goes
through state 1 at time u−ρ−(k−κ)L = u−m−P−2kL+κL,
that is when eκL is observed.

To see this, suppose no such κ existed. Then, applying (6)
to (26) and recalling that φ1(eκL) was introduced in (23), we
would have

η1 = γjη(1)ψ
(L−1)
jη(1) j1

(e0)fj1(eL)ψ(L−1)
j1 j2

(eL)×

× fj2(e2L)ψ(L−1)
j2 j3

(e2L) · · ·ψ(L−1)
jk−1 1(e(k−1)L)f1(ekL)

for some j1 6= 1, . . . , jk−1 6= 1. Furthermore, this would imply
η1 <

by (29), (28)
< γjη(1)(1− ε)k−1

k∏
n=1

ψ
(L−1)
1 1 (e(n−1)L)f1(enL)

by (20)
< γjη(1)q

2

(
δ

∆

)2m

A−R
k∏

n=1

ψ
(L−1)
1 1 (e(n−1)L)f1(enL)

by (44)
≤ γ1Wq2

(
δ

∆

)2m

A−R
k∏

n=1

ψ
(L−1)
1 1 (e(n−1)L)f1(enL)

by (43)
= γ1q

(
δ

∆

)m k∏
n=1

ψ
(L−1)
1 1 (e(n−1)L)f1(enL)

< γ1

k∏
n=1

ψ
(L−1)
1 1 (e(n−1)L)f1(enL). (51)

(The last inequality follows from q ≤ 1 (18) and
δ < ∆, §IV-A2.) On the other hand, by the defini-
tion (26) (and k − 1-fold application of (6)), η1 ≥
γ1

∏k
n=1 ψ

(L−1)
1 1 (e(n−1)L)f1(enL), which evidently contra-

dicts (51) above. Therefore, κ satisfying (50) and 1 ≤ κ < k,
does exist.
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14) An implication of (46) and (50) for φ1(eNL): Clearly,
the arguments of the previous step (§IV-A13) are valid if k
is replaced by any N ∈ {k, . . . , 2k}. Hence the following
generalization of (50): For some κ(N) < N

φ1(eNL) = φ1(eκ(N)L)ψ((N−κ(N))L−1)
1 1 (eκ(N)L)f1(eNL).

(52)
We now apply the existence assertion of the previous step
(§IV-A13) to (52) recursively, starting with κ(0) def= N and
obtaining (the existence of) κ(1) def= κ(N) < N . If κ(1) ≤ k,
we stop, otherwise we substitute κ(1) for N in (52), and obtain
κ(2) def= κ(κ(1)) < κ(1), and so on, until κ(r) ≤ k for some
r > 0. Thus, φ1(eNL) =

= φ1(eκ(r)L)ψ((κ(r−1)−κ(r))L−1)
1 1 (eκ(r)L)f1(eκ(r−1)L) · · ·

ψ
((N−κ(1))L−1)
1 1 (eκ(1)L)f1(eNL). (53)

Applying (46) to the appropriate factors of the right-hand side
of (53) above, we obtain:

φ1(eNL) = φ1(eκ(r)L)ψ(L−1)
1 1 (eκ(r)L)f1(e(κ(r)+1)L) · · ·

ψ
(L−1)
1 1 (e(k−1)L)f1(ekL) · · ·ψ(L−1)

1 1 (ekL)f1(e(k+1)L) · · ·
ψ

(L−1)
1 1 (e(κ(r−1)−1)L)f1(eκ(r−1)L) · · ·

ψ
(L−1)
1 1 (e(κ(1)−1)L)f1(eκ(1)L) · · ·

ψ
(L−1)
1 1 (e(N−1)L)f1(eNL). (54)

Also, according to (46),

φ1(eκ(r)L)ψ(L−1)
1 1 (eκ(r)L)f1(e(κ(r)+1)L) · · ·

ψ
(L−1)
1 1 (e(k−1)L) = φ1(eκ(r)L)ψ((k−κ(r))L−1)

1 1 (eκ(r)L).

At the same time,

φ1(eκ(r)L)ψ((k−κ(r))L−1)
1 1 (eκ(r)L)f1(ekL)

by (6)
≤ η1. (55)

However, we cannot have the strict inequality in (55) above
since that, by virtue of (54), would contradict maximal-
ity of φ1(eNL). We have thus arrived at φ1(eNL) =
η1ψ

(L−1)
1 1 (ekL)f1(e(k+1)L) · · ·

· · ·ψ(L−1)
1 1 (e(N−1)L)f1(eNL). (56)

In summary, for any N ∈ {k, . . . , 2k}, there exists a
realization of φ1(eNL) that goes through state 1 as the enL,
n = k, . . . , N , are observed.

15) xu−ρ (=ekL) is a 1-node of order ρ: In §IV-A16, we
will prove that for any i ∈ S and any j ∈ C,

ηiψ
(kL+m+P−1)
ij (ekL) ≤ η1ψ

(kL+m+P−1)
1j (ekL), (57)

which implies that xu−ρ is a 1-node of order ρ = kL+m+P .
Indeed, let h ∈ S be arbitrary. Recall (§IV-A6) that we have
been considering x1:∞ ∈ X∞ to be any sequence that contains
the subsequence z1:M (22), i.e. xu−M+1:u = z1:M for some
u ≥ M . Recall also that it is this latter subsequence z1:M
which we are proving to be a 1-barrier of order ρ = kL +
m+P . Since fj(z′m) = 0 for every j ∈ S \C, any maximum

likelihood path to state h at time u+1 must go through a state
in C at time u (observation xu = z′m.) Formally,

ηiψ
(kL+m+P )
ih (ekL) =

= max
j∈S

ηiψ
(kL+m+P−1)
ij (ekL)fj(z′m)pjh

= max
j∈C

ηiψ
(kL+m+P−1)
ij (ekL)fj(z′m)pjh

by (57)
≤ max

j∈C
η1ψ

(kL+m+P−1)
1j (ekL)fj(z′m)pjh

by (6)
= η1ψ

(kL+m+P )
1h (ekL).

Therefore, by Definition 2.1 ekL is a 1-node of order kL +
m+ P .

16) Proof of (57): Let us write ν(i, j) for
ψ

(kL−1)
ij (ekL)fj(e2kL), i, j ∈ S. Let i ∈ S and j ∈ C

be arbitrary and let state j∗ ∈ S be such that

ψ
(kL+m+P−1)
ij (ekL) = ν(i, j∗)ψ(m+P−1)

j∗ j (e2kL). (58)

We consider the following two cases separately:

1. There exists a path realizing ψ
(kL−1)
ij∗ (ekL) and going

through state 1 at the time of observing eNL for some
N ∈ {k, . . . , 2k}. That is, ψ(kL−1)

ij∗ (ekL) =

ψ
((N−k)L−1)
i 1 (ekL)f1(eNL)ψ((2k−N)L−1)

1 j∗ (eNL). (59)

Equation (59) above together with the fundamental recur-
sion (6) yields the following:

ηiψ
(kL−1)
ij∗ (ekL) =
by (59)

= ηiψ
((N−k)L−1)
i 1 (ekL)f1(eNL)ψ((2k−N)L−1)

1 j∗ (eNL)
by (23), (6)

≤ φ1(eNL)ψ((2k−N)L−1)
1 j∗ (eNL). (60)

At the same time, the right hand-side of (60) can be
expressed as follows:

φ1(eNL)ψ((2k−N)L−1)
1 j∗ (eNL)

by (56)
= η1ψ

((N−k)L−1)
1 1 (ekL)f1(eNL)ψ((2k−N)L−1)

1 j∗

by (46)
= η1ψ

(kL−1)
1 j∗ (ekL). (61)

Therefore, if there exists N ∈ {k, . . . , 2k} such that
(59) holds, we have by virtue of (60) and (61) that
ηiψ

(kL−1)
i j∗ (ekL) ≤ η1ψ

(kL−1)
1 j∗ (ekL), and, multiplying both

sides by fj∗(e2kL), that

ηiν(i, j∗) ≤ η1ν(1, j∗). (62)

Hence, ηiψ
(kL+m+P−1)
ij (ekL) =

by (58)
= ηiν(i, j∗)ψ

(m+P−1)
j∗j (e2kL)

by (62)
≤ η1ν(1, j∗)ψ

(m+P−1)
j∗ j (e2kL)

by (6)
≤ η1ψ

(kL+m+P−1)
1 j (ekL)

and (57) holds.
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2. Assume now that no path exists to satisfy (59). Argue as
for (51) to obtain that

ν(i, j∗) < (1−ε)k−1
2k∏

n=k+1

ψ
(L−1)
1 1 (e(n−1)L)f1(enL). (63)

By (46), the (partial likelihood) product in the right-hand
side of (63) equals ν(1, 1). Thus,

ηiν(i, j∗)ψ
(m+P−1)
j∗j (e2kL) <

by (63)
< ηi(1− ε)k−1ν(1, 1)ψ(m+P−1)

j∗j (e2kL)

by (20)
< ηiq

2

(
δ

∆

)2m

A−Rν(1, 1)ψ(m+P−1)
j∗j (e2kL)

by (43), (49)
≤ η1q

(
δ

∆

)m

ν(1, 1)ψ(m+P−1)
j∗j (e2kL)

by (31)
≤ η1

(
δ

∆

)
ν(1, 1)ψ(m+P−1)

1 j (e2kL)

< η1ν(1, 1)ψ(m+P−1)
1 j (e2kL)

by (6)
≤ η1ψ

(kL+m+P−1)
1 j (ekL),

which, by the way the state j∗ is defined in (58), yields
(57). (It was also used above that ∆ > δ > 0, cf. §IV-A2.)

17) Completion of the s-path to y1:M and conclusion:
Recall from §IV-A3 that b0 ∈ C. Since all the entries of
Qm are positive, there exists a path c0:m−1 ∈ Cm such that
pci ci+1 > 0, i = 0, 1, . . . ,m− 2, and pcm−1b0 > 0. Similarly,
there must exist a path o1:m ∈ Cm such that poi oi+1 > 0,
i = 1, . . . ,m−1, and paP o1 > 0 (recall that aP ∈ C). Hence,
by these, and the constructions of §IV-A5, all of the transitions
of the sequence y1:M given in (64) below occur with positive
probabilities.

y1:M
def= (c0:m−1, b0:R, s1:2kL, a1:P , o1:m). (64)

Clearly, the actual probability of observing y1:M is positive,
as required. By the constructions of §§IV-A1-IV-A3, the
conditional probability of B (22), given Y1:M = y1:M , is
evidently positive, as required. Finally, since the sequence
z1:M = (z1:m+1, e

′
1:R−1, e0:2kL, e

′′
1:P , z

′
1:m) (22) was chosen

from B arbitrarily (cf. §IV-A6) and has been shown to be a
barrier, this completes the proof of the Lemma.

B. Illustration of the construction

Most of the above proof trivializes in the case of K = 2
where strong (and generally short) barriers of sensible prob-
ability can be easily constructed following the adapted proof
in [15].

Here, we illustrate the above construction in a more chal-
lenging setting which in particular has a large proportion of
forbidden transitions and continuous emissions. Once again,
we do not attempt here to optimize the probability P(X1:M ∈
B) of barriers or their length M , or order ρ, but simply
illustrate the steps of the construction.

Example 4.1: Thus, let

P =


1/4 1/4 0 1/2
1/4 1/4 1/2 0
1/2 0 1/2 0
0 1/2 0 1/2


and let f1(x) = exp(−x)x≥0, f2(x) = 2 exp(−2x)x≥0, and
f3(x) = exp(x)x≤0, f4(x) = 2 exp(2x)x≤0. Note that C1

def=
{1, 2} is a cluster which (unlike cluster C2

def= {3, 4}) satisfies
the assumptions of the Lemma.

Take ε, δ, and ∆ to be 0.1, 0.9, and 2, respectively. Thus
obtain

Xi =


(log(20/9),∞) if i = 1
(0, log(1.8)) if i = 2
(−∞,− log(20/9)) if i = 3
(− log(1.8), 0) if i = 4

,

and Ẑ = (0, log(10/9)) and Z = Ẑ ∩ X2 = Ẑ , i.e. s = 2,
and so we have to take h1 to be 2. Note then that h2 = 4 and
p∗4 = p4 4, hence choose h3 to be also 4. Since h2 = h3, U =
3, T = 2, P = L = 1, a1 ≡ aP = 2 and s1 ≡ sL = 4 (we
do not rename 4 into 1 here). We also obtain here b = (1, 4),
i.e. b0 = 1 ∈ C1 and R = 1.

To determine k, half the number of the s-cycles, note that
since m = 1, we have q∗ij = qij for all i, j ∈ C1. Hence,
q = 1/4. Also, A = max{2, 2, 1, 1} = 2. Thus, k must be (at
least) 50. Therefore, the s-path is given by

(1, 4, . . . , 4︸ ︷︷ ︸
101 times

, 2),

and we can take y1:M to be

(1, 1, 4, . . . , 4︸ ︷︷ ︸
101 times

, 2, 2),

where evidently M = 105, and the type and order of the
obtained barriers/nodes are l = 4 and ρ = 52, respectively.
Also,

B = Z × Z × X4 × · · · × X4︸ ︷︷ ︸
101 times

×X2 ×Z.

Since X4 and Z are disjoint, the barriers in B are already
separated.

Note that the stationary distribution π here is uniform, and
that there are only eight (out of the total of 4105) paths of
length M and of positive probability, which can “emit B”!
Since the probability of each of those paths is 2−108, the
probability P(X1:M ∈ B) of encountering a barrier from B
is extremely low, i.e. less than 2−105. Certainly, if one wanted
to achieve sensible values for P(X1:M ∈ B), a critical point
for optimization would be bound (20).

C. Proof of Lemma 3.2

Proof: We use the notation of the previous proof in
§IV-A and consider the following two distinct situations: In
the first one (§IV-C1), all the barriers from B as constructed
in the proof of Lemma 3.1 are already separated. In the other,
complimentary situation, a simple extension will immediately
ensure separation (§IV-C2).
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1) All z1:M ∈ B are already separated: Recall the defini-
tion of Z from §IV-A2. Consider the two cases in the definition
separately. First, suppose Z = Ẑ\(∪i∈SXi), in which case Z
and Xi are disjoint for every i ∈ S. This implies that every
barrier (22) is already separated. Indeed, for any r, 1 ≤ r ≤ ρ,
and for any z1:M ∈ B, the fact that zM−max(m,r), for example,
is not in Z , makes it impossible for (e′1:r, z1:M−r) to be in B
for any e′1:r ∈ X r. Consider now the case when Z = Ẑ ∩ Xs

for some s ∈ C, and s = aP . Then

B = Xm+1
s ×Xb1 × · · · × XbR−1 ×X1 ×Xs1 × · · ·
Xs2kL−1 ×X1 ×Xa1 × · · · × XaP−1 ×Xm+1

s . (65)

Let z1:M ∈ B be arbitrary. Assume first L > 1. By
construction (§IV-A3), the states s1, . . . , sL are all distinct.
We now show that (e′1:r, z1:M−r) 6∈ B for any e′1:r ∈ X r

when 1 ≤ r ≤ ρ. Note that y1:M was chosen such that in the
sequence

ym+2:m+R+2kL+P+1 = (b1:R−1, 1, s1:2kL−1, 1, a1:P−1, s)

no two consecutive states are equal. It is straightforward to
verify that there exist index n, 0 ≤ n ≤ m−1, such that, when
shifted r positions to the right, the pair zn+1:n+2 ∈ X 2

s would
at the same time have to belong to Xyn+1+r × Xyn+2+r with
m+1 ≤ n+1+r < n+2+r ≤ m+R+2kL+1+P . This is
clearly a contradiction since Xyn+1+r

and Xyn+2+r
are disjoint

for that range of indices n. A verification of the above fact
simply amounts to verifying that the inequality max(0,m −
r) ≤ n ≤ min(m−1,m+R+2kL−1+P − r) is consistent
for any r from the admissible range:

i.) When 0 ≥ m− r, m− 1 ≤ m+R + 2kL− 1 + P − r
(m ≤ r ≤ min(kL + P +m,R + 2kL + P )), 0 ≤ n ≤
m− 1 is evidently consistent.

ii.) When 0 ≥ m− r, m− 1 > m+R + 2kL− 1 + P − r
(max(m,R + 2kL + P ) ≤ r ≤ ρ), 0 ≤ n ≤ m + R +
2kL−1+P −r is also consistent since ρ = kL+P +m
and m+R+ 2kL− 1 + P − ρ = R+ kL− 1 ≥ 0.

iii.) When 0 < m− r, m− 1 ≤ m+R + 2kL− 1 + P − r
(1 ≤ r ≤ min(m−1, R+2kL+P )), m−r ≤ n ≤ m−1
is consistent since r ≥ 1.

iv.) When 0 < m− r, m− 1 > m+R + 2kL− 1 + P − r
(max(1, R+2kL+P −1) ≤ r < m), m−r ≤ n ≤ m+
R+2kL−1+P −r is consistent since R+2kL−1 ≥ 0.

Next consider the case of L = 1 but s 6= 1 (that is, P > 0).
Then B = Xm+1

s ×Xb1 × · · ·

×XbR−1 ×X 2k+1
1 ×Xa1 × · · · × XaP−1 ×Xm+1

s .

Since s 6= 1, then also br 6= 1, r = 1, . . . , R−1 (by minimality
of R), and ar 6= 1, r = 1, . . . , P − 1. To see that z1:M is
separated in this case, simply note that zM−max(r,m+1) 6∈ Xs

for any admissible r.
2) Barriers z1:M ∈ B need not be separated: Finally, we

consider the case when L = 1 and s = 1, where s ∈ C is
such that Z = Ẑ ∩ Xs. Note that in this case, P = 0, 1 ∈ C,
and p1 1 > 0, which in turn implies that R = 1, and

B ⊂ Xm+1
1 ×X 2k+1

1 ×Xm+1
1 = X 2m+2k+3

1 .

Fig. 1. Violation of condition (10) for states j = 2 and j = 3 (K = 3).
To help interpret this situation, suppose Y is an i.i.d. mixture model, hence
p∗i = πi, i = 1, 2, 3, and the Viterbi alignment v = (1, 1, . . .) does not
“see” the hidden states 2 and 3 at all.

Clearly, the barriers from B need not be, and in fact are
not separated. It is, however, easy to extend them to achieve
separation. Indeed, let y0 6= 1 be such that py0 1 > 0
and redefine B

def= Xy0 × B. Evidently, any shift of any
z1:M+1 ∈ B by r (1 ≤ r ≤ ρ) positions to the right makes
it impossible for z1 to be simultaneously in Xy0 and in X1

(since the latter sets are disjoint, §IV-A1).

V. CONCLUSION

We conclude by discussing briefly the assumptions under
which Lemmas 3.1 and 3.2 are presently proved.

Condition (10) simply requires that state j ∈ S be “de-
tectable”. (See Figure 1 for an example of possible violation of
this condition.) Namely, there must be a subset of the emission
space such that

{
x ∈ X : fj(x)p∗j > maxi∈S,i 6=j fi(x)p∗i

}
is

of positive λ-measure. Presently, we require that this condition
holds for every state j ∈ S. If the emission space X is finite
and has fewer than K symbols, then certainly (10) will be
violated for at least K − |X | states (where |X | is the size
of X ). While it is not difficult to accommodate formally for
such violations (see discussion below), it might actually be
more meaningful in practice to redefine the model by either
discarding some of the offending states or aggregating them
in a suitable manner. After all, some such states may simply
never appear in the Viterbi alignment. In short, we are not
aware of practical situations where this requirement would
cause an obstacle. Moreover, for many models (e.g. K = 2)
it is actually sufficient for proving the existence of barriers
that (10) holds for at least one state j ∈ S. Clearly, provided
that the emission distributions Pi, i ∈ S, are all distinct, (10)
does indeed hold for at least one state j ∈ S for any (general)
setting of the transition probabilities when K = 2 (K ≥ 2). In
[8], a stronger version of (10) [8, equation (3.6)] is discussed
as it appears in the hypotheses of Theorems 1 and 3 of [9]
and [10], respectively. Specifically, under the assumption that
[8, equation (3.6)] holds for at least one state in S, Theorem 1
of [9] establishes the existence of infinite Viterbi alignments.
It is shown in [8] that under the same condition the claims



TRANSACTIONS ON INFORMATION THEORY 16

of Lemmas 3.1 and 3.2, i.e. the occurrence of barriers, follow
immediately. At the same time, [8] also demonstrates how that
assumption (despite being made for a single state) can be too
restrictive in practice. Hence the need for weaker conditions,
such as those based on (10).

One can certainly relax the requirement that (10) holds for
all j ∈ S without introducing any additional assumptions (such
as strict positivity of the transition probabilities or K = 2).
Specifically, note that in the above proofs, (10) is used only
along the s-path (cf. §IV-A5), which in turn depends on the
cluster C. Thus, one can immediately generalize the present
results by requiring that (10) hold at least for the relevant
subset of states.

Of course, if we consider the broader problem of parameter
estimation in HMMs, the parameter space might need to be
suitably restricted to insure (10) does not reach the boundary
(i.e. equality in place of the inequalities) for the relevant states.
Note that restricting (emission or transition) parameters is done
routinely in that context due to possible unboundedness of the
likelihood, lack of identifiability, or exclusion of prescribed
transitions.

The condition on C in Lemma 3.1 might seem even more
technical if not redundant. We next give an example of an
HMM where this cluster condition is not met and no node
(barrier) can occur. (Curiously, this example appears to be also
useful in other contexts [6].) Then, we will modify the example
to enforce the cluster condition and consequently gain barriers.

Example 5.1: Let K = 4 and consider an ergodic Markov
chain with transition matrix

P =


1/2 0 0 1/2
0 1/2 1/2 0

1/2 0 1/2 0
0 1/2 0 1/2

 .

Let the emission distributions be such that (10) is satisfied (say,
for entire S) and G1 = G2 and G3 = G4 and G1 ∩G3 = ∅.
To be concrete, take the emission distributions from Example
4.1 in §IV-B above. Hence, there are two disjoint clusters,
C1 = {1, 2} and C2 = {3, 4}. The matrices Qi corresponding
to Ci, i = 1, 2 are

Q1 = Q2 =
(

1/2 0
0 1/2

)
.

Evidently, the cluster assumption of Lemma 3.1 is not satisfied.
Note also that the Viterbi alignment cannot change (in one
step) its state to the opposite one within the same cluster, i.e.
transitions 1 ↔ 2 or 3 ↔ 4 do not occur. Since the supports
G1,2 and G3,4 are disjoint, any observation exposes the
corresponding cluster. In effect, any sequence of observations
x1:T is partitioned by the alignment v1:T into blocks x1:t1 ,
xt1+1:t2 , . . . , xtN+1,T (for some N ≤ T ) where the alignment
inside each block stays constant, e.g. v1 = v2 = . . . = vt1 ,
but no two neighboring blocks can be emitted from the same
cluster, e.g. if v1 = v2 = . . . = vt1 = 1 then it must be that
vt1+1 = vt1+2 = . . . = vt2 ∈ C2. It can then be shown that
in this case no xt can be a node (of any order) (cf. Example
3.11 in [19]).

Let us modify the HMM in Example 5.1 to ensure the
assumptions of Lemma 3.1.

Example 5.2: Let ε be such that 0 < ε < 1
2 and let us

replace P by the following transition matrix
1/2− ε ε 0 1/2

ε 1/2− ε 1/2 0
1/2 0 1/2 0
0 1/2 0 1/2

 .

Let the emission distributions be as discussed in the previous
example. In this case, the cluster C1 satisfies the assumption of
Lemma 3.1. As previously, every observation exposes its clus-
ter. Lemma 3.1 now applies to guarantee barriers and nodes.
To be more concrete, take again the emission distributions
from Example 4.1 of §IV-B, and let ε = 1/4, i.e. P also as
in Example 4.1. It can then be verified that if x1:3 = (1, 1, 1)
then x1 is a 1-node of order 2. Indeed, in that case any element
of B = (0,+∞)× (log(2),+∞)× (0,+∞) is a 1-barrier of
order 2.

Another way to modify the HMM in Example 5.1 to
enforce the assumptions of Lemma 3.1 is to change the
emission probabilities. Namely, assume that the supports Gi,
i = 1, . . . , 4 are such that Pj(∩4

i=1Gi) > 0 for all j ∈ S,
and (10) holds (for all j ∈ S). Now, S = {1, . . . , 4} is the
only cluster. Since all entries of the matrix P2 are positive, the
conditions of Lemma 3.1 are now satisfied and barriers can
now be constructed.

Thus, the cluster condition is essential. We need to clar-
ify that this is all that we meant in [8] where instead of
“essential”, “necessary” was used loosely. Indeed, to see
that the present formulation of the cluster condition can be
relaxed, consider the following simple example with K = 4
and X = {a, b, c, d}. Similarly to Examples 5.1 and 5.2,
assume that G1 = G2 is disjoint from G3 = G4, say,
G1 = G2 = {a, b}, and G3 = G4 = {c, d}. Let

P =


1/4 1/4 1/4 1/4
0 1/3 1/3 1/3

1/4 1/4 1/4 1/4
1/3 1/3 0 1/3

 .

so that we still have two clusters, C1 = {1, 2} and C2 =
{3, 4}, which do not satisfy the cluster condition in its present
form. It is not difficult to specify the emission probabilities in
ways that would ensure the existence of barriers. For example,
let f1(a) = f2(b) = f3(c) = f4(d) = 3/4, and note that (c, a)
is a 1-barrier of order ρ = 0, i.e. x2 = a is a 1-node (of order
0) for any realization containing x1:2 = (c, a) (y1:2 can be
taken to be either (3, 1) or (4, 1)). We actually conjecture that
with some effort, the present proofs can be modified to prove
the same results under the following relaxed cluster condition:
There must exist m ≥ 1 and state i ∈ C such that any j ∈ C
can be reached from i via a positive probability path of length
m that is also in C.
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