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Abstract

Viterbi Training (VT) provides a fast but inconsistent estimator of Hidden Markov Models
(HMM). The inconsistency is alleviated with little extra computation when we enable VT to asymp-
totically fix the true values of the parameters. This relies on infinite Viterbi alignments and associated
with them limiting probability distributions. First in a sequel, this paper is a proof of concept; it
focuses on mixture models, an important but special case of HMM where the limiting distributions
can be calculated exactly. A simulated Gaussian mixture shows that our central algorithm (VA1)
can significantly improve the accuracy of VT with little extra cost. Next in the sequel, we present
elsewhere a theory of the adjusted VT for the general HMMs, where the limiting distributions are
more challenging to find. Here, we also present another, more advanced correction to VT, verify its
fast convergence and high accuracy; its computational feasibility requires additional investigation.

Keywords: computational efficiency, consistency, EM, Hidden Markov Models, mixture
models, Viterbi Training

1 Introduction

Motivated by applications of the Viterbi Training (VT) algorithm to estimate parameters
of Hidden Markov Models in speech recognition (Huang et al. 1990, Ney et al. 1994, Ra-
biner and Juang 1993, Rabiner et al. 1986, Steinbiss et al. 1995, Ström et al. 1999), natural
language models (Ji and Bilmes 2006, Och and Ney 2000), image analysis (Li et al. 2000,
Joshi et al. 2006), bioinformatics (Ehret et al. 2001, Ohler et al. 2001), and gene discov-
ery via unsupervized learning (Lomsadze et al. 2005), we propose a new principled way
to improve accuracy of the VT estimators while preserving the essential computational
advantages of the baseline algorithm.

Let θl be the emission parameters of an HMM with states l ∈ S = {1, ..., K}. The
central method for computing θ = (θ1, . . . , θK) (and optionally the parameters of the
hidden chain) via likelihood maximization is the EM algorithm that in the HMM context
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is also known as the Baum-Welch or forward-backward algorithm (Baum and Petrie 1966,
Bilmes 1998, Huang et al. 1990, Jelinek 2001, Rabiner 1989, Rabiner and Juang 1993,
Young 2003). Since EM can in practice be computationally expensive, it is commonly
replaced by Viterbi Training. VT effectively replaces the computationally costly expec-
tation (E) step of EM by an appropriate maximization step that is computationally less
intensive. An important example of successful and elaborate application of VT in indus-
try is Philips speech recognition systems (Ney et al. 1994).

There are also variations of VT that use more than one best alignment, or several per-
turbations of the best alignment (Och and Ney 2000). The improvements that we explore
are, however, of a different nature: Roughly, we increase estimation accuracy by means
of analytic calculations and do not require computing more than one optimal alignment.

The message of our work is as follows: If an application relies on the computational
efficiency of VT, and in particular finds any of the efficient implementations of EM (e.g.
(Jank and Booth 2003, Wei and Tanner 1990)) still too intensive, such an application
might still benefit from our adjustment: The proposed accuracy improvement requires no
extra point-wise processing of the data.

Let us recall that VT can be inferior to EM in terms of accuracy because the VT
estimators need not be (local) maximum likelihood estimators (VT does not necessarily
increase the likelihood), leading to bias and inconsistency (§2).

Given current parameter values, VT first finds a Viterbi alignment that is a sequence
of hidden states maximizing the likelihood of the observed data. Observations assumed
to have been emitted from state l, are regarded as an i.i.d. sample from Pl, the corre-
sponding emission distribution. These observations produce P̂ n

l , the empirical version of
Pl, and ultimately µ̂l, a maximum likelihood estimate of θl. µ̂ is then used to find an
alignment in the next step, and so forth. It can be shown that in general this procedure
terminates in finitely many steps; moreover, it is usually much faster than EM.

In speech recognition, the same training procedure was already described by L. Rabiner
et al. in (Juang and Rabiner 1990, Rabiner et al. 1986) (see also (Rabiner 1989, Rabiner
and Juang 1993)) who considered his procedure as a variation of the Lloyd algorithm from
vector quantization, and referred to it as segmental K-means training. The analogy with
vector quantization is especially pronounced when the underlying chain is a sequence of
i.i.d. variables in which case the observations are simply an i.i.d. sample from a mixture
distribution (§3). For mixture models, Viterbi training was also described by R. Gray
et al. in (Chou et al. 1989), where the training algorithm was considered in the vector
quantization context under the name of entropy constrained vector quantization (ECVQ).
(See also (Gray et al. 2000) for more recent developments in this theory.) A better known
name for VT in the mixture case is Classification EM (CEM), (Celeux and Govaert 1992,
Fraley and Raftery 2002), stressing that instead of the mixture likelihood, CEM maxi-
mizes the Classification Likelihood (Celeux and Govaert 1992, Fraley and Raftery 2002,
McLachlan and Peel 2000). Also, for the uniform mixture of Gaussians with a common
covariance matrix of the form σ2I and unknown σ, VT, or CEM, is equivalent to the
k-means clustering (Celeux and Govaert 1992, Chou et al. 1989, Fraley and Raftery 2002,
Sabine and Gray 1986).

Our ultimate goal is to alleviate the inconsistency of the VT estimators in the general
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HMM case while preserving the fast execution and computational feasibility of the baseline
VT algorithm. First in a sequel, this paper introduces the main ideas of our approach and
provides an overall proof of their relevance to the goal. Thus, we begin by noticing that
θ∗, the true emission parameters, are asymptotically a fixed point of EM but not of VT
§2, §3. That significance of this observation extends beyond its mere mathematics might
be conjectured, for example, from that in the multivariate mixture models, EM typi-
cally produces improved partitions when started with reasonable ones (Fraley and Raftery
2002). This latter observation also leads us to expect the effect of the fixed point property
to be appreciable in the general HMM case, which is indeed verified via simulations in
(Koloydenko et al. 2007), the third part of the sequel. We therefore attempt to adjust

VT in order to restore this property, and we do so by studying asymptotics of P̂ n
l . Thus,

we study the existence of Ql, l ∈ S

P̂ n
l ⇒ Ql, l ∈ S a.s., (1)

first in the general HMM context – §2, and in much more detail in (Lember and Koloy-
denko 2007), and then in the special case of mixture models – §3. If such limiting mea-
sures exist, then under certain continuity assumptions, the estimators µ̂l will converge to
µl ((Koloydenko et al. 2007)), where

µl = arg max
θl

∫
ln fl(x; θl)Ql(dx), and fl(x; θl) is a p.d.f. of Pl.

Taking into account the difference between µl and the true parameter, the appropriate
adjustment of the Viterbi training can now be defined (§2).

However, the asymptotic behavior of P̂ n
l is not in general straightforward and its anal-

ysis requires an extension of the definition of Viterbi alignment, or path, at infinitum
(Lember and Koloydenko 2005). Earlier attempts to consider convergence of Viterbi
paths appear in (Caliebe and Rösler 2002, Caliebe 2006) with a more general and more
complete treatment of the problem to be found in (Lember and Koloydenko 2005, 2007),
the second part of this sequel. Once the infinite alignment is properly defined, (Lember
and Koloydenko 2005, 2007) prove the existence of the limiting measures Ql (1), which is
essential for the general definition of the adjusted Viterbi training.

To implement these ideas in practice, a closed form of Ql (or µ̂l) as a function of the
true parameters is necessary. However, the measures Ql depend on the transition as well
as on the emission models, and computing Ql can be very difficult. In the special case
of mixture models §3, on the other hand, the measures Ql are easier to find. Although
mixture models are not our goal, we are in part motivated by the continuing interest
of others in computational efficiency and accuracy of parameter estimation in mixture
models (Dias and Wedel 2004, Lin et al. 2004). In §3, we describe the adjusted Viterbi
training (VA1) for the mixture case, which we view, however, only as a proof of con-
cept: VA1 recovers the asymptotic fixed point property and, since its adjustment function
does not depend on data, each iteration of VA1 enjoys the same order of computational
complexity (in terms of the sample size) as VT. Moreover, for commonly used mixtures,
such as, for example, mixtures of multivariate normal distributions with unknown means
and known covariances (Example 3.1), the adjustment function is available in a closed
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form requiring integration with the mixture densities. Depending on the dimension of
the emission variates and on the number of components, and on the available computa-
tional resources, one can vary the accuracy of the adjustment. We reiterate that, unlike
the computations of the E-step of EM, computations of the adjustment do not involve
evaluation and subsequent summation of the mixture density at individual data points.

We first introduce these ideas for the case of known mixture weights and then extend
them in §3.1 to the case of unknown weights. In terms of the general HMMs, the latter
case corresponds to the transition matrix of the hidden chain being unknown.

To test our theory, in §5 we simulate a mixture of two univariate normal distributions
with unit variance, unknown means, and unequal but comparable weights. The main goal
of our simulations is to compare the performances of VT, VA1, and EM in terms of the
accuracy, convergence, amount of computations per iteration, and the total amount of
computations. The simulations are performed with different types of initialization, and
with the weights assumed to be known, §5.1, and unknown, §5.2; the results (§5.3) are
consistently in favor of VA1. Similar simulations have been performed for mixtures of
multivariate Gaussians with known covariances, using stochastic approximations for the
adjustment and leading to similar conclusions, but details (except for the discussion of
Example 3.1) are omitted for conciseness.

In §4, we briefly introduce VA2, a more advanced correction to VT, presently merely
as a mathematical complement of our adjustment idea; we verify its fast convergence and
high accuracy on the simulated data in §5, but its computationally feasible implementa-
tions would require more investigation. A concluding summary is given in §6.

2 General HMMs

Let Y be a Markov chain with a finite state space S. We assume Y to be irreducible and
aperiodic with the transition matrix P = (pij) and the initial distribution π that is also
the stationary distribution of Y . To every state l ∈ S there corresponds an emission dis-
tribution Pl on (X ,B), a separable metric space and the corresponding Borel σ-algebra.
Let fl, the density of Pl with respect to some reference measure λ (for instance, the
Lebesgue measure), be known up to the parametrization fl(x; θl). When Y is in state l,
an observation according to Pl(θ

∗) and independent of everything else is emitted, with
θ∗ = (θ∗1, . . . , θ

∗
K) being the unknown true parameters.

Thus, for any y = y1, y2, . . ., a realization of Y , there corresponds a sequence of inde-
pendent random variables, X1, X2, . . ., where Xn has distribution Pyn . Note that we only
observe X = X1, X2, . . . and the realization y is unknown (Y is hidden).

The distribution of X is completely determined by the chain parameters (P, π) and
the emission distributions Pl, l ∈ S. The process X is also mixing and, therefore, ergodic.
We now recall the notions of Viterbi alignment and Training.

Let x1, . . . , xn be first n observations on X. Let Λ(q1, . . . , qn; x1, . . . , xn; θ) be the (com-
plete) likelihood function P(Yi = qi, i = 1, . . . , n)

∏n
i=1 fqi

(xi; θqi
), qi ∈ S.

The Viterbi alignment is any sequence of states q1, . . . , qn ∈ S that maximizes the like-
lihood of x1, . . . , xn, θ being fixed. Thus, for a fixed θ, the Viterbi alignment is the max-
imum (conditional) likelihood estimator of the realization of Y1, . . . , Yn given x1, . . . , xn.
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In the following, the Viterbi alignment will be referred to as the alignment. Since the
alignment need not be unique, for each n ≥ 1, let V denote the set of all state sequences
resulting in the alignment:

V(x1, . . . , xn; θ) = {v ∈ Sn : ∀w ∈ Sn Λ(v; x1, . . . , xn; θ) ≥ Λ(w; x1, . . . , xn; θ)}. (2)

Any map v : X n 7→ V(x1, . . . , xn; θ) will also be called an alignment. Further, unless
explicitly specified, vθ will denote an arbitrary element of V(x1, . . . , xn; θ).

Viterbi Training

1.) Choose an initial value θ0 = (θ0
1, . . . , θ

0
K).

2.) Given θj j ≥ 0, compute the alignment

vθj(x1, . . . , xn) = (v1, . . . , vn)

and partition x1, . . . , xn into (at most) K subsamples, with xk going to the lth sub-
sample if and only if vk = l. Equivalently, define (at most) K empirical measures in
accordance with (3) below:

P̂ n
l (A; θj) =

∑n
i=1 IA×l(xi, vi)∑n

i=1 Il(vi)
, A ∈ B, l ∈ S, (3)

where IA stands for the indicator function of set A.

3.) For every subsample find the MLE given by:

µ̂l(θ
j) = arg max

θl∈Θl

∫
ln fl(x; θl)P̂

n
l (dx; θj), (4)

and take θj+1
l = µ̂l(θ

j), l ∈ S. If for some l ∈ S, vi 6= l for any i = 1, . . . , n (lth

subsample is empty), then the empirical measure P̂ n
l is formally undefined, in which

case we take θj+1
l = θj

l . We omit this exceptional case in the ensuing discussion.

VT can be interpreted as follows. Suppose that at step j, θj = θ∗ and hence vθj is ob-
tained using the true parameters. The training is then based on the assumption that
the alignment v(x1, . . . , xn) = (v1, . . . , vn) is correct, i.e., vi = Yi, i = 1, . . . , n. If this

assumption were true, the empirical measures P̂ n
l (θj), l ∈ S would be obtained from the

i.i.d. sample generated from Pl(θ
∗), and the MLE µ̂l(θ

∗) would be the natural estima-
tor to use. Clearly, under this assumption (and passing from x1, x2, . . . to X1, X2, . . .),

P̂ n
l (θ∗) ⇒ Pl(θ

∗) a.s. and, provided that {fl(·; θ) : θ ∈ Θl} is a Pl-Glivenko-Cantelli class
and Θl is equipped with some suitable metric, limn→∞ µ̂l(θ

∗) = θ∗l a.s. Hence, if n is

sufficiently large, then P̂ n
l ≈ Pl and θj+1

l = µ̂l(θ
∗) ≈ θ∗l = θj

l , ∀l i.e. θj = θ∗ would be
(approximately) a fixed point of the training algorithm.

A weak point of the previous argument is that the alignment in general is not cor-
rect even when the parameters used to find it are, i.e. generally vi 6= Yi. In particular,
this implies that the empirical measures P̂ n

l (θ∗) are not obtained from an i.i.d. sample

taken from Pl(θ
∗). Hence, we have no reason to believe that P̂ n

l (θ∗) ⇒ Pl(θ
∗) a.s. and
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limn→∞ µ̂l(θ
∗) = θ∗l a.s. Moreover, we do not even know whether the sequences of empir-

ical measures {P̂ n
l (θ∗)} and MLE estimators {µ̂l(θ

∗)} converge (a.s.) at all.
In (Lember and Koloydenko 2005), we prove the existence of limiting probability mea-

sures Ql(θ, θ
∗), l ∈ S, that depend on θ, the parameters used to find the alignment

vθ(x1, . . . , xn), and on θ∗, the true parameters with which the random samples are emit-
ted. Namely, Ql, l ∈ S are such that for every l

P̂ n
l (θ∗) ⇒ Ql(θ

∗, θ∗), a.s.. (5)

Suppose also that the parameter space Θl is equipped with some metric. Then, under
certain consistency assumptions on classes Fl = {fl(·; θl) : θl ∈ Θl}, the convergence

lim
n→∞

µ̂l(θ
∗) = µl(θ

∗, θ∗) a.s. (6)

can be deduced from (5), where

µl(θ, θ
∗) def

= arg max
θ′l∈Θl

∫
ln fl(x; θ′l)Ql(dx; θ, θ∗). (7)

We also show that in general, for the baseline Viterbi training Ql(θ
∗, θ∗) 6= Pl(θ

∗), implying
µl(θ

∗, θ∗) 6= θ∗l . In an attempt to reduce the bias θ∗l − µl(θ
∗, θ∗), we next propose the

adjusted Viterbi training. Suppose (5) and (6) hold. Based on (7), we now consider the
mapping

µl(θ) = µl(θ, θ), l = 1, . . . , K. (8)

Since this function is independent of the sample, we can define the following correction
for the bias:

∆l(θ) = θl − µl(θ), l = 1, . . . , K. (9)

VA1 – Adjusted Viterbi Training

1.) Choose an initial value θ0 = (θ0
1, . . . , θ

0
K).

2.) Given θj, perform the alignment and define K empirical measures P̂ n
l (θj) as in (3).

3.) For every P̂ n
l , find µ̂l(θ

j) as in (4) and for each l, define θj+1
l = µ̂l(θ

j) + ∆l(θ
j), where

∆l is defined ∀l ∈ S in (9).

Note that, as desired, for n sufficiently large, the adjusted training algorithm has θ∗ as
its (approximately) fixed point: Indeed, suppose θj = θ∗. From (6), µ̂l(θ

j) = µ̂l(θ
∗) ≈

µl(θ
∗) = µl(θ

j), for all l ∈ S. Hence,

θj+1
l = µ̂l(θ

∗) + ∆l(θ
∗) ≈ µl(θ

∗, θ∗) + ∆l(θ
∗) = θ∗l = θj, l ∈ S. (10)

3 Mixture models

In general, no closed form for the distribution Ql(θ
∗, θ∗) in (5) is available. Therefore, the

mapping (8) may be impossible to determine exactly and approximations of Ql should
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be used for the adjustments of Viterbi training (§2). However, in the case of the mixture
models, the distributions Ql are straightforward to find and the adjusted Viterbi training
can therefore be immediately given. In this model, Y , the underlying Markov chain, is
a sequence of i.i.d. discrete random variables with the state space S = {1, . . . , K} of
mixture components. Thus, the transition probabilities are pij = pj, i, j ∈ S, where pj are
mixture weights. To each component l ∈ S there corresponds a probability distribution
Pl(θ

∗) with density fl = fl(·; θ∗l ), where θ∗i are the true parameters. Unless explicitly
stated otherwise, the mixture weights pl will be assumed to be known. Such a model
produces observations x1, . . . , xn, that are regarded as an i.i.d. sample from the mixture
distribution P (θ∗) with density

K∑
i=1

pifi =
K∑

i=1

pifi(·; θ∗i ) = f(·; θ∗) = f. (11)

For any set of parameters θ = (θ1, . . . θK), the alignment vθ can be obtained via a Voronoi
partition S(θ) = {S1(θ), . . . , SK(θ)}, where

S1(θ) = {x : p1f1(x; θ1) ≥ pjfj(x; θj), ∀j ∈ S} (12)

Sl(θ) = {x : plfl(x; θl) ≥ pjfj(x; θj), ∀j ∈ S}\(S1 ∪ . . . ∪ Sl−1), l = 2, . . . , K. (13)

Now, the alignment can be defined as follows: vθ(x) = l if and only if x ∈ Sl(θ). In

particular, given the Voronoi partition S(θ) = {S1, . . . , Sl}, the empirical measures P̂ n
l

(3) are

P̂ n
l (A; θ) =

∑n
i=1 ISl(θ)∩A(xi)∑n

i=1 ISl(θ)(xi)
, A ∈ B, l ∈ S. (14)

Thus, given the same partition, µ̂l(θ) (4), the sub-sample MLE for component l, becomes

µ̂l(θ) = arg max
θ′l∈Θl

∫

Sl(θ)

ln fl(x; θ′l)P̂n(dx), (15)

where P̂n is the ordinary empirical measure associated with the given random sample.
The convergence (5) then follows immediately from (14). Indeed, for any θ, by virtue of
the Strong Law of Large Numbers we have

lim
n→∞

P̂ n
l (A; θ)

a.s.
=

P (A ∩ Sl(θ); θ
∗)

P (Sl(θ); θ∗)
=

∫
Sl(θ)∩A

f(x; θ∗)dλ(x)∫
Sl(θ)

f(x; θ∗)dλ(x)
=

∑
i pi

∫
Sl(θ)∩A

fi(x; θ∗i )dλ(x)
∑

i pi

∫
Sl(θ)

fi(x; θ∗i )dλ(x)
.

Since X is separable, it follows that P̂ n
l ⇒ Ql a.s., where

ql(x; θ, θ∗) ∝ f(x; θ∗)ISl(θ) =

(∑
i

pifi(x; θ∗)

)
ISl(θ), l = 1, . . . , K

are the densities of respective Ql(θ, θ
∗)’s.

Now it is clear that even when the partition S(θ∗) is obtained using the true param-
eters θ∗, Ql(θ

∗, θ∗), the limiting distribution (with density ql(x; θ∗, θ∗)), can be different
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from Pl(θ
∗), the desired distribution (with density fl(x; θ∗)). Likewise, µl(θ

∗) (8) can be
different from

θ∗l = arg max
θ′l∈Θl

∫
ln fl(x; θ′l)fl(x; θ∗l )dλ(x).

In order to see this, note that (7) and (8) in the context of the mixture model specialize
to

µl(θ, θ
∗) = arg max

θ′l∈Θl

∫

Sl(θ)

ln fl(x; θ′l)f(x; θ∗)dλ(x) (16)

µl(θ) = arg max
θ′l∈Θl

∫

Sl(θ)

ln fl(x; θ′l)
(∑

i

pifi(x; θi)
)
dλ(x), (17)

respectively. We also emphasize that ∆ can be significant which justifies the adjustment.

Example 3.1 Let

f(x; θ∗) =
1

K

K∑

l=1

φ(x; θ∗l ),

where φ(x; θ∗l ) is the density of the d-variate normal distribution with identity covariance
matrix and vector of means θ∗l ∈ Rd = Θl for l = 1, 2, . . . , K. In this case, for each
K-tuple of parameters θ = (θ1, . . . , θK), the decision-rule for the alignment is essentially
as follows (disregarding possible ties): vθ(x) = i if and only if ‖x − θi‖ ≤ minj ‖x − θj‖.
Thus, the decision regions in this case correspond to the Voronoi partition in its original
sense, justifying our generalization of this term. Now, it can be easily seen that for all
m = 1, . . . , d:

(µl(θ))m =

∑K
i=1

∫
Sl(θ)

xmφ(x; θi)dx1 · · · dxd∑K
i=1

∫
Sl(θ)

φ(x; θi)dx1 · · · dxd

. (18)

Although the functions µl are data independent, the exact integration in (18) can require
intensive computations when d and K are large. If this becomes an issue, one may be
interested in approximations of (18). Even when approximated, the adjustment can still
asymptotically reduce the bias provided, of course, that the approximation error is smaller
than ∆l. In the context of the above example, one might think of the following directions
of approximating ∆l(θ) = θl − µl(θ):

1.) Approximate
( ∑

i φ(x; θi)
)
ISl(θ) in (18) by φ(x; θl)ISl(θ), so

(µl(θ))m ≈
∫

Sl(θ)
xmφ(x; θl)dx1 · · · dxd∫

Sl(θ)
φ(x; θl)dx1 · · · dxd

. (19)

This approximation is motivated by the limiting case when the components are “in-
finitely” far from each other.

2.) If K > d, then some components are fully surrounded by others, and the partition
cells corresponding to such internal components are bounded (Figure 1). It is then
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Figure 1: An eight region Voronoi partition. True parameters θ∗ and (hypothetical) µ(θ∗) are marked
with solid and open dots, respectively. For l = 1, ∆j

l (θ
∗), hypothetical individual correction components,

are indicated to illustrate the ideas of Approximations 3) and 4). Similarly, for l = 2, a “significant”
component of the correction is indicated. Neglecting the corrections for the estimators corresponding to
the bounded Voronoi regions appears reasonable as discussed in Approximation 2).
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conceivable that ∆l’s that correspond to the bounded cells are less significant than the
others, in which case one might correct only the estimators of the outer components.
This approach seems to be particularly appealing for speech recognition. In speech
recognition, a phoneme is often modelled by a mixture of Gaussians or Laplace densi-
ties (Ney et al. 1994). One significant difficulty in the acoustic-phonetic modelling is
determining the boundaries of the phonemes (in the appropriate feature space). The
boundaries depend mostly on the outer components. If the mixture parameters are
estimated by Viterbi training, then the external components tend to be too far from
their means (see Figure 1), resulting in less accurate boundaries and an overall im-
precision of the model estimation. Thus, correcting only the outer components might
improve the entire acoustic-phonetic model.

3.) Note that ∆l =
∑

j ∆j
l where

∆j
l (θ) =

∫
Sl(θ)

(θl − x)φ(x; θj)dx1 · · · dxd∑K
i=1

∫
Sl(θ)

φ(x; θi)dx1 · · · dxd

.

It may be reasonable for each l to replace ∆l by its ”leading component”, i.e. ∆j
l

with largest ‖∆j
l ‖. Alternatively, instead of choosing the leading component, a single

random component can be taken.

4.) There are several motivations to approximate the denominator of (18) by 1. First,
as in Approximation 1), this is reasonable when all of the centers are very far apart.
Also note that when K = 2, the denominator of (18) is equal to 1 exactly. Now,
note that every Voronoi cell is determined by several hyperplanes. Suppose cell l
is determined by hyperplanes Hq

l for q in some I l ⊂ {1, . . . , K}, namely, it is the
intersection of halfplanes HP q

l , q ∈ I l. Since integrating over Sl(θ) is the same as
integrating over entire Rd and subtracting the integral over SC

l (θ), the complement of

Sl(θ), we note that ∆l ≈ θl − (θl −
∑K

i=1

∫
SC

l (θ)
xφ(x; θi)dx) =

∑K
i=1

∫
SC

l (θ)
xφ(x; θi)dx.

Suppose the defining hyperplanes are somehow ordered I l = {q1, . . . , q|Il|} and note

that SC
l (θ) is the union of the halfplanes O1, . . . , O|Il| opposite to HP q1

l , . . . , HP
q|Il|
l ,

respectively. Let us make this union into a disjoint one as follows: SC
l (θ) = ∪|Il|

j=1Aj,

where A1 = O1, A2 = O2 \ O1, . . . , A|Il| = O|Il| \ ∪|I
l|−1

j=1 Oj. Therefore, ∆l ≈
∑

∆j
l ,

where ∆j
l =

∑K
i=1

∫
Aj

xφ(x; θi)dx. It then can be sensible to replace ∆l by a single

component ∆j
l of significant contribution.

5.) The integrals (18) are very easy to compute by Monte-Carlo (or quasi Monte-Carlo)
methods (Ripley 1987, Sobol 1973). This leads to the stochastically adjusted Viterbi
training (SAV1) that modifies step 3 of VA1 as follows:

a) Generate a sample x1, . . . , xn from
∑K

l=1 plfl(·; θj
l ).

b) Based on the sample and Voronoi partition S(θj), approximate µl(θ
j) (18) by

µ̂MC
l (θj), an appropriate Monte-Carlo estimate.
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c) Use the following estimate for the correction:

∆̂MC
l (θj) = θj

l − µ̂MC
l (θj), l = 1, . . . , K.

The additional sampling step in SAV1 obviously jeopardizes the computational attrac-
tiveness of VA1. However, there are many ways to control the Monte-Carlo integration
in order to keep the overall complexity of SAV1 lower than that of EM. A great advan-
tage of SAV1 is that it is easy to implement even in very complex settings (including
that of HMM). In (Kolde 2005), SAV1 is implemented for 2-dimensional Gaussian
mixtures. The simulations showed that in terms of precision, SAV1 is comparable
with VA1 and EM, and strongly outperforms VT. Moreover, in this 2-dimensional
setting, SAV1 and VA1 outperform VT even in terms of the number of iterations.

Remark 3.2 In Example 3.1, the decision regions correspond to the Voronoi partition
in its original sense. Moreover, it is easy to see that in this particular case, the Viterbi
training is none other than the well-known (generalized) Lloyd algorithm designed for
finding vector quantizers, which in this case are also called K-means (see, e.g. (Sabine and
Gray 1986)). In this case, the estimators obtained by the Viterbi training are empirical
K-means. These latter estimators enjoy certain desirable properties, and in particular
they are consistent with respect to the population K-means (Pollard 1981). However, they
need not be consistent with respect to θ∗, our parameters of interest. In the mixture case,
the Viterbi training can always be considered as the (generalized) Lloyd algorithm, and
the estimators obtained by Viterbi training can be regarded as (generalized) empirical K-
means (Chou et al. 1989). This observation links the study of Viterbi Training and related
algorithms to the theory of vector quantization.

3.1 Unknown weights

We consider the case when the mixture weights pl are unknown, which corresponds to the
case of the unknown transition parameters (P, π) in the general HMM context.

The Voronoi partition depends on the weight-vector p = (p1, . . . , pK) as well as on θ.
Hence, S(θ, p) and the vector p should be re-estimated at each step along with θ. Given
a Voronoi partition S = {S1, . . . , SK}, the simplest way to estimate the weights pl is to

take pl = P̂n(Sl), the empirical measure of Sl. Hence all the algorithms considered so far
can be modified accordingly to include the weight estimation as in (20) below:

pj+1
l = P̂n(Sl(θ

j, pj)), l = 1, . . . , K. (20)

Taking into account the asymptotics, it is easy to correct the estimators pj+1 as well.
Indeed, suppose θj = θ∗ and pj = p, i.e. S(θj, pj) = S(θ∗, p) = S∗. If n →∞, then

P̂n

(
Sl(θ

∗, p)
)

a.s.→ P
(
Sl(θ

∗, p)
)
=

∫

Sl(θ∗,p)

f(x; θ∗)dλ =
∑

i

pi

∫

Sl(θ∗,p)

fi(x; θ∗i )dλ. (21)

In general the latter differs from pl. The difference is pl−P
(
Sl(θ

∗, p)
)
. Hence, by analogy

with (9), we can define the weight correction D(θ, p) = (D1(θ, p), . . . , DK(θ, p)) as follows:

Dl(θ, p) = pl −
∑

i

pi

∫

Sl(θ,p)

fi(x; θi)dλ, (22)
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which is also data independent. We now summarize the above by giving a formal definition
of the adjusted Viterbi training with the weight correction. The Viterbi training with p
unknown can be defined similarly.

VA1 with the weight correction

1.) Choose θ0 = (θ0
1, . . . , θ

0
K) and p0 = (p0

1, . . . p
0
K)

2.) Given θj = (θj
1, . . . , θ

j
K) and pj = (pj

1, . . . p
j
K) define the Voronoi partition S(θj, pj) =

{S1, . . . , SK} as in (12) and (13), and the empirical measures P̂ n
l (θj, pj) as in (14).

3.) Put θj+1 = µ̂j(θj) + ∆(θj), where µ̂j is defined in (17).

4.) Put pj+1 = P̂n(Sl(θ
j, pj)) + D(θj, pj).

4 VA2 – A more advanced adjustment

The adjusted Viterbi training is designed to asymptotically fix the true parameter θ∗,
returning approximately the correct solution given this solution as the initial guess and
given an infinitely large data sample: VA1(θ∗) ≈ θ∗. VA2 goes further and attempts to
maximally expand {θ : VA1(θ) ≈ θ∗}, the set of parameter values that are asymptotically
mapped to the true ones, to {θ : VA2(θ) ≈ θ∗}. Specifically, if the algorithm ever arrives
at S(θ∗), the Voronoi partition corresponding to the true parameters θ∗, then we would
like to coerce the adjusted estimates to return θ∗. Let us explain these ideas in more
detail.

Let S∗ stand for S(θ∗), the true Voronoi partition (that also coincides with the Bayes
decision boundary). The mapping θ 7→ S(θ) is generally many-to-one, hence the set
Θ(S∗) = {θ : S(θ) = S∗} generally contains more than one element. (This also means
that guessing S∗, i.e. guessing any element from Θ(S∗), is generally easier than guessing
θ∗.) We now introduce VA2:

Note first that µl(θ, θ
∗) in (16), as well as the estimate µ̂l(θ) in (15), depends on θ

through S(θ) only. However, the correction ∆l(θ) = θl−µl(θ, θ) does depend on θ fully and
hence would not generally work (in the sense of (10)) for an arbitrary θj ∈ Θ(S∗) unless
θj = θ∗. We now attempt to improve the first type of adjustment that is based on adding
∆(θj) to µ̂(θj). Namely, we propose the following iterative update for l = 1, . . . , K: First,
define µl,Θ(S(θ0))(θ) (as function of θ only) to be the restriction of µl(θ

0, θ) to Θ(S(θ0)),
and write µl,θ0(θ) in place of the more cumbersome µl,Θ(S(θ0))(θ). Let

θj+1
l =

{
µ−1

l,θj(µ̂l(θ
j)), if a unique µ−1

l,θj(µ̂l(θ
j)) exists

µ̂l(θ
j) + ∆l(θ

j) otherwise.
(23)

For any θj and θ∗, the event that µ̂(θj, θ∗) belongs to the range of µ(θj, θ) as a function of
θ ∈ Θ(S(θj)) is of zero probability, as Example 4.1 illustrates. Hence, the introduction of
the individual inverses µ−1

l,θj l = 1, . . . , K is essential, although still not always effective: In

some mixture models (a mixture of normal distributions with unequal weights is one such
example), for a fixed l, the event that µ̂l(θ

j) belongs to the range of µl(θ
j, θ) (as function
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of θ ∈ Θ(S(θj))) need not occur with probability one for all θj and θ∗. This, and also
the fact that the inverses in general need not have a closed form, or may require intensive
computations, may reduce the attractiveness of the suggested method. Further discussion
of the computational issues related to this method is outside the scope of this paper, except
for mentioning the possibility of various, e.g. linear or quadratic, approximations of the
above functions µ−1

l,θ .

In order to better understand the meaning of the new adjustment, imagine that θj ∈
Θ(S∗). We would then expect for l = 1, . . . , K:

θj+1
l = µ−1

l,θj(µ̂l(θ
j)) = µ−1

l,θ∗(µ̂l(θ
∗)) ≈ µ−1

l,θ∗(µl(θ
∗, θ∗)) = θ∗l .

The above argument, of course, also depends on the regularity of the above inverses at
µl(θ

∗, θ∗) l = 1, . . . , K, and in this regard our experiments in §5 provide encouraging
results for an important model similar to the model in the following example:

Example 4.1 Let f(x; θ∗) = 1
2
φ(x − θ∗1) + 1

2
φ(x − θ∗2), where φ is the density of the

standard normal distribution. In this case any Voronoi partition is specified by a single
parameter t = 0.5(θ1+θ2) solving φ(t−θ1) = φ(t−θ2) (ties are evidently inessential in this
context). The true Voronoi partition corresponds to t∗ = 0.5(θ∗1 + θ∗2). Given a Voronoi
partition S(t(θ)), Θ(t) = {(t−a), (t+a) : a ∈ R+}. Hence, restricted to Θ(t), the function
µS(t)(θ) = (µ1,S(t)(θ), µ2,S(t)(θ)) depends on one parameter only: Let a be this parameter
and define µS(t)(θ(a)) = (µ1(a), µ2(a)) as follows: µ1(a) = −a(1− 2Φ(−a))− 2φ(−a) + t,
µ2(a) = 2t−µ1(a), where Φ is the distribution function of the standard normal distribution.
After calculating µ̂1 < µ̂2 from the data, the inversion equations of (23) become

t− [a(1− 2Φ(−a)) + 2φ(a)] = µ̂1, t + [a(1− 2Φ(−a)) + 2φ(a)] = µ̂2. (24)

Obviously (24) has a (unique) solution if and only if µ̂1, µ̂2 are symmetric with respect to
t and the probability of this latter event is clearly zero under the model. Thus, as suggested
in (23), we consider the equations separately:

a(1− 2Φ(−a)) + 2φ(a) = t− µ̂1 (25)

a(1− 2Φ(−a)) + 2φ(a) = µ̂2 − t. (26)

It can be shown that (25) and (26) have unique solutions, let us denote the latter by a1

and a2, respectively. The points t − a1 and t + a2 will be now taken as the estimators of
θ∗1 and θ∗2 for the next step of iterations.

VA2

1.) Choose θ0 = (θ0
1, . . . , θ

0
K).

2.) Given θj, find S(θj) and define empirical measures P̂ n
l (θj) as in (14).

3.) For every P̂ n
l , find µ̂l(θ

j, θ∗) as in (15).

4.) Update θj+1 in accordance with (23).

VA2 with p unknown can be defined by analogy with §3.1.
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5 Simulation studies

In order to support our theory of adjusted Viterbi Training we simulate 1000 i.i.d. random
samples of size 1000 according to the following mixture:

1√
2π

(pe−
(x−θ1)2

2 + (1− p)e−
(x−θ2)2

2 ).

The true parameters in our experiments are θ∗ = (−2.5, 0) and (p, 1−p) = (0.7, 0.3). The
corresponding density is plotted in Figure 2. Note that for all such mixtures with p > 0.5

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4
0

0.05

0.1

0.15

0.2

0.25

Figure 2: 1√
2π

(0.7e−
(x+2.5)2

2 + 0.3e−
x2
2 ). The dashed vertical lines indicate the means of the individual

components, the dotted line marks the mean of the mixture.

and θ1 < θ2, θ2 − θ1 <
√

2p/(1− p) (= 2.1602 in our case) implies that the both means
fall on one side of the decision boundary, which makes detection of the second component
particularly difficult as is already becoming the case in our setting with θ∗2 − θ∗1 = 2.5.

Our main goal is to compare the performances of VT, VA1, and EM in terms of the
accuracy, convergence, amount of computations per iteration, and the total amount of
computations. We implement these algorithms in Matlab (The MathWorks, Inc.), pro-
viding a fair comparison of their computational intensities based on their execution times.
Our code is available for the reader’s perusal (Koloydenko and Lember 2003) and is fully-
optimized for speed in the case of VT and EM. Consequently, our simulations possibly
only overestimate the execution times for VA1.

Additionally, we compare VA2 with the above algorithms by the accuracy and con-
vergence. We use a numerical solver to compute the adjustment function of VA2 and
presently make no effort to replace this by a computationally efficient approximation.
Hence, we do not discuss the computational intensity of VA2 in this work.

In our experiments, the algorithms are instructed to terminate as soon as the L2 dis-
tance between consecutive θ updates falls below 0.001. We also provide a high precision
MLE computed with a built-in matlab optimization function. The cases of known and un-
known weights (§3.1) are considered in §5.1 and §5.2, respectively. We report the following
statistics for each of the algorithms in the form: average±one standard deviation.

• θ = (θ1, θ2) - the estimates of the means;
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• p - the estimate of the weight of the first component;

• ||θ − θ∗||1,2 - L1- and L2-normed distances between θ and the true parameters;

• n - number of steps used by the algorithm;

• T - total time in milliseconds to execute the entire algorithm;

• t - time in milliseconds to execute one iteration of the algorithm;

5.1 Known weights

It is often the case in practice, e.g. speech recognition models, that the weights are as-
sumed known, hence we start with this case.

First, consider (−1, 2) as an “arbitrary” initial guess for θ. Table 1 presents the per-
formance statistics based on the 1000 samples. The baseline Viterbi method terminates
quickly (on average in 9.04 steps), outperformed only by VA2, but is the least accurate
among the considered methods. As expected, VT also requires least amount of compu-
tations: 0.2 ms per iteration and 1.85 ms total. Ranked from low to high, accuracies of
VA1, VA2, and EM appear similar, and are about three times superior to that of VT. In
units of the VT execution time, EM compares to VA1 as 16.85:6.7 per iteration, and as
20.43:7.59 by the total execution times. In order to illustrate the asymptotic fixed point

Table 1: “Arbitrary” initial guess.

VT VA1 VA2 EM MEL
θ1 -2.4869±0.0497 -2.4952±0.0500 -2.4959±0.0498 -2.4970±0.0456 -2.4973±0.0456
θ2 0.2880±0.0732 0.0099±0.0917 0.0082±0.0916 0.0030±0.0757 0.0024±0.0757

||θ − θ∗||1 0.3291±0.0844 0.1138±0.0681 0.1133±0.0678 0.0958±0.0562 0.0958±0.0562
||θ − θ∗||2 0.2927±0.0727 0.0902±0.0537 0.0899±0.0536 0.0761±0.0451 0.0761±0.0451

n 9.04±1.55 10.49±1.61 7.84±1.59 11.20±0.42 N/A
t 0.20±0.05 1.34±0.19 39.24±1.56 3.37±0.07 N/A
T 1.85±0.55 14.04±2.95 308.57±68.63 37.79±1.56 N/A

Table 2: Correct initial guess.

VT VA1 VA2 EM MLE
θ1 -2.4904±0.0495 -2.4973±0.0488 -2.4973±0.0490 -2.4973±0.0455 -2.4973±0.0456
θ2 0.2820±0.0729 0.0051±0.0880 0.0052±0.0892 0.0024±0.0753 0.0024±0.0757

||θ − θ∗||1 0.3223±0.0829 0.1087±0.0661 0.1102±0.0664 0.0953±0.0561 0.0958±0.0562
||θ − θ∗||2 0.2867±0.0721 0.0861±0.0523 0.0874±0.0525 0.0756±0.0450 0.0761±0.0451

n 5.56±1.72 5.06±1.57 4.73±1.55 5.69±1.29 N/A
t 0.22±0.02 1.37±0.05 42.23±0.94 3.42±0.08 N/A
T 1.21±0.31 6.91±2.05 199.52±65.67 19.39±4.28 N/A

property, we initialize the algorithms to (−2.5, 0), the true value of the parameters, see
Table 2. In this case, as expected, both VA1 and VA2 take noticeably fewer steps than
VT and EM, are comparable in accuracy to EM, and are about three times more accurate
than VT. Unlike VA1, VA2 or EM, the baseline algorithm, as predicted, disturbs the
correct initial guess, resulting in an appreciable bias. The times per iteration of VA1 and
EM are similar to as before, and their total times are (in units of the VT time) 5.71 and
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16.03, respectively.
In order to illustrate the idea of the second type of adjustment, we now initialize the

algorithms to (−3.1229, 0.8771), which produces the same decision boundary t = −0.9111
as θ∗ = (−2.5, 0), the true values. Table 3 collects these results. Note that since VT
and VA2 depend on the initial guess only via the decision boundary, they produce in this
case exactly the same results (disregarding a small rounding error) as in the case of the
correct initial guess (Table 2). As expected, VA2 now terminates significantly faster than
its competitors, and accuracy-wise is only slightly superior to VA1 and slightly inferior
to EM. The times per iteration of VA1 and EM are similar to as before, and their total
times are 7.84 and 20.83, respectively.

5.2 Unknown weights

Assume now that the weights are unknown (§3.1) and hence need to be estimated along
with the means. We use the same data and the same three types of conditions as in the
case of known weights: Arbitrary initialization to (−1, 2) (Table 4), initialization to the
correct values (−2.5, 0) (Table 5), and initialization to (−3.1229, 0.8771), an arbitrary
point giving rise to the correct inter-component boundary (Table 6). The initial weights
are equal (i.e. p = 0.5) for all the experiments. VT and the adjusted algorithms VA1 and
VA2 in this case are implemented with the asymptotic correction (22). (The maximization

Table 3: Correct decision boundary.

VT VA1 VA2 EM MLE
θ1 -2.4904±0.0495 -2.4954±0.0497 -2.4973±0.0490 -2.4971±0.0456 -2.4973±0.0456
θ2 0.2820±0.0729 0.0094±0.0909 0.0052±0.0892 0.0030±0.0757 0.0024±0.0757

||θ − θ∗||1 0.3223±0.0829 0.1131±0.0668 0.1102±0.0664 0.0958±0.0562 0.0958±0.0562
||θ − θ∗||2 0.2867±0.0721 0.0897±0.0528 0.0874±0.0525 0.0761±0.0450 0.0761±0.0451

n 5.56±1.72 7.09±1.38 4.72±1.56 7.44±0.94 N/A
t 0.22±0.03 1.35±0.05 42.37±1.12 3.42±0.08 N/A
T 1.22±0.31 9.56±1.81 200.24±66.30 25.41±3.19 N/A

Table 4: Unknown weights. “Arbitrary” guess.

VT VA1 VA2 EM MLE
p 0.747 ±0.031 0.703 ±0.028 0.702 ±0.028 0.700 ±0.024 0.699 ±0.024
θ1 -2.4299 ±0.0753 -2.4919 ±0.0596 -2.4930 ±0.0594 -2.4976 ±0.0531 -2.4992 ±0.0532
θ2 0.3944 ±0.1178 0.0194 ±0.1099 0.0173 ±0.1094 0.0070 ±0.0944 0.0039 ±0.0947

||θ − θ∗||1 0.4775 ±0.1653 0.1382 ±0.0851 0.1372 ±0.0846 0.1179 ±0.0708 0.1179 ±0.0710
||θ − θ∗||2 0.4058 ±0.1237 0.1084 ±0.0657 0.1076 ±0.0653 0.0931 ±0.0558 0.0931 ±0.0560

n 14.16 ±3.60 13.85 ±3.25 12.23 ±2.86 24.90 ±2.60 N/A
t 0.72 ±0.15 1.32 ±0.09 39.01 ±1.26 3.52 ±0.35 N/A
T 10.13 ±3.01 18.25 ±4.27 478.19 ±117.67 87.67 ±12.98 N/A

in the high precision MLE is now performed in the three variables.)
The adjusted algorithms now take 1.7 (VA1) and 2 (VA2) fewer steps than EM, and,

what is more remarkable, VA1 and VA2 require fewer steps than VT. The per iteration
times of VA1 and EM compare as about 1.8:4.8 for all the initializations, and the total
times – as 1.8:8.7 (arbitrary guess), 1.3:6.67 (true values), and 1.73:7.64 (true boundary),

16



all in units of the VT time. VA1 and VA2 are again at least three times more accurate
than VT in θ estimation and about one standard deviation more accurate than VT in the
weight estimation. They are also comparable in accuracy to EM.

Table 5: Unknown weights. Correct guess.

VT VA1 VA2 EM MLE
p 0.737 ±0.030 0.699 ±0.026 0.699 ±0.026 0.699 ±0.023 0.699 ±0.024
θ1 -2.4526 ±0.0700 -2.4987 ±0.0555 -2.4987 ±0.0557 -2.4991 ±0.0522 -2.4992 ±0.0532
θ2 0.3537 ±0.1114 0.0058 ±0.1007 0.0060 ±0.1021 0.0038 ±0.0925 0.0039 ±0.0947

||θ − θ∗||1 0.4212 ±0.1467 0.1244 ±0.0782 0.1263 ±0.0782 0.1149 ±0.0701 0.1179 ±0.0710
||θ − θ∗||2 0.3626 ±0.1146 0.0978 ±0.0607 0.0994 ±0.0607 0.0907 ±0.0553 0.0931 ±0.0560

n 8.53 ±3.47 6.01 ±2.44 6.27 ±2.40 11.89 ±4.24 N/A
t 0.74 ±0.04 1.36 ±0.05 41.01 ±1.24 3.53 ±0.06 N/A
T 6.27 ±2.42 8.13 ±3.19 257.35 ±99.70 41.84 ±14.81 N/A

Table 6: Unknown weights. Correct boundary.

VT VA1 VA2 EM MLE
p 0.737 ±0.029 0.702 ±0.026 0.700 ±0.026 0.700 ±0.023 0.699 ±0.024
θ1 -2.4517 ±0.0689 -2.4941 ±0.0573 -2.4972 ±0.0556 -2.4981 ±0.0526 -2.4992 ±0.0532
θ2 0.3549 ±0.1096 0.0148 ±0.1050 0.0087 ±0.1024 0.0059 ±0.0930 0.0039 ±0.0947

||θ − θ∗||1 0.4218 ±0.1459 0.1327 ±0.0779 0.1271 ±0.0780 0.1164 ±0.0694 0.1179 ±0.0710
||θ − θ∗||2 0.3637 ±0.1132 0.1043 ±0.0606 0.0999 ±0.0606 0.0919 ±0.0548 0.0931 ±0.0560

n 8.16 ±3.40 7.74 ±2.58 6.54 ±2.22 12.98 ±4.22 N/A
t 0.74 ±0.04 1.34 ±0.04 41.12 ±1.74 3.52 ±0.05 N/A
T 5.97 ±2.36 10.32 ±3.35 268.96 ±91.44 45.59 ±14.69 N/A

5.3 Summary of the results

VA1 is consistently close in accuracy to EM which is always superior to Viterbi Training:
Specifically, in estimating the means, the gain in accuracy is about three-fold as measured
by L1- and L2-distances, and in estimating the weights, it is about one standard deviation.

VA1 always converges almost as fast as VT and noticeably (by 30% in the case of
unknown weights) faster than EM.

When the weights are known, an iteration of VA1 is about six times longer than that
of VT and is more than twice as fast as that of EM. By total execution, VA1 is at most
eight times slower than VT and is more than two and a half times faster than EM.

When the weights are unknown, VA1 is at most twice slower than VT and more than
two and a half times faster than EM, per iteration. It is also about 50% slower than VT
and more than four times faster than EM in total times.

Accuracy of VA2 is consistently between those of VA1 and EM, and VA2 additionally
converges faster than VA1.

6 Conclusion

We have considered the problem of parameter estimation of the emission distribution
in Hidden Markov Models using the two most relevant estimation principles: Viterbi
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Training and MLE. We have identified the sources of bias, or inconsistency, in the VT al-
gorithm, contrasting this with the EM algorithm that is generally used to compute MLE:
Trading the EM’s accuracy for the VT’s ease of computations, one in particular loses the
asymptotic fixed point property. Namely, VT no longer fixes the true parameter values,
not even asymptotically. We have proposed to restore this property, and consequently
increase accuracy of Viterbi Training. Specifically, we have proposed two types of ana-
lytic adjustments to the baseline Viterbi Training algorithm, neither requiring additional
point-wise processing of the data. In particular, our correction functions are independent
of the data size. Our first adjustment, VA1, simply restores the asymptotic fixed point
property, whereas the second one, VA2, additionally ensures that asymptotically the true
parameters are returned as soon as the algorithm finds the true alignment (i.e. Voronoi
partition). To our knowledge, these kinds of consistency corrections for Viterbi Training
have not been proposed elsewhere in the literature.

This paper has also shown that in the case of mixture models (a special and impor-
tant case of HMM), the VA1 correction is always available, either in a closed form or via
integration that can be suitably approximated. We have also explained why providing
the VA1 correction in the general HMM case is more challenging, and present our general
theory elsewhere.

This work has also presented evidence that, at least in the case of mixture models,
the actual amount of extra computations of VA1 relative to Viterbi Training can be very
reasonable. For this special case, we have provided simulation studies based on 1000 large
random samples which illustrate the key features of the adjusted algorithms in contrast
with baseline Viterbi Training and EM. In our simulations, VA1 demonstrates a signifi-
cant increase of accuracy (three-fold and one standard deviation in estimating the mixture
means and weights, respectively) relative to VT. In fact, the accuracy of VA1 is already
comparable to that of EM. In terms of computation, VA1 in our studies is still several
factors faster than EM.

Due to the more sophisticated nature of the VA2 correction, its computationally feasi-
ble implementations require more work.

Certainly, the final decision as to which algorithm to use remains application depen-
dent.
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