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Abstract -Applications of rank-order-based methods to im-
age and signal analyses have primarily focused on filter-
ing. Classical median, min, and max filters have long been
part of standard image processing toolboxes. More recent
work has focused on more elaborate versions of such filters
and associated computational issues. However, the appli-
cation of these nonlinear methods to problems such as im-
age interpretation has been scarce. We attempt to show that
simple rank-order-based methods for coding image patches
provide informative and computationally efficient local im-
age descriptors.
Keywords: Coding, informative descriptors, microstruc-
ture, rank-ordering.

1. Introduction
This paper is about ordinal, rank-based coding of microim-
ages. Since this concept is not generally familiar in the
computer vision community, we begin with an informal
definition and an example. A coder or quantizer is a map-
ping F from n× n subimages to n× n integer-valued ma-
trices with entries in {0, 1, . . . , n2 −1}. Consider the 3×3
subimage s on the left-hand side of (1) below and suppose
a threshold or granularity t has been fixed in advance, say
t = 16. Then

s =
33 8 32
11 15 3
14 65 67

(F,t)
7→ c =

1 0 1
0 0 0
0 2 2

. (1)

The procedure can be easily explained (efficient implemen-
tations can differ significantly) as follows: The intensi-
ties of the subimage are first ranked: 3 ≤ 8 ≤ 11 ≤
14 ≤ 15 ¿ 32 ≤ 33 ¿ 65 ≤ 67, where ¿ indicates
a jump of magnitude above t = 16. We code this subimage
by assigning 0 to pixel(s) with the lowest intensity, hence
3(= s2,3) → 0(= c2,3), and proceed in the ascending
order, counting only the significant transitions, i.e., those
> t. Thus, 8, 11, 14, 15 are all coded by 0; 32, 33 by 1; and
65, 67 by 2. We will refer to this subimage coding scheme
(F, t) as an ordinal quantizer. Note that for any t, (F, t)
is photometrically invariant: the photometric translates of
a patch are coded identically. Another property of F that
holds independently of t is that F preserves relative bright-
ness: su ≤ sv ⇒ cu ≤ cv .

We will also refer to these matrix-valued codes as pat-
terns and the totality of possible codes as the codebook

C. Note that not every n × n matrix with entries from
{0, 1, . . . , n2 − 1} can be an (F, t) pattern, hence C is a
proper subset of the above matrices. Finally, when n is
very small, we refer to a subimage s and its pattern F (s)
as a “microimage” and a “micropattern”, respectively. The
“all zeros” pattern is special and represents small contrast
noise or clutter with respect to (F, t).

1.1. Previous Related Work

In image and signal analyses, applications of order statis-
tics [10] have primarily been to filtering “impulsive” noise
that would be too difficult to eliminate with linear filters
without over-smoothing useful structures. More recent
work has focused on associated computational issues [12],
more elaborate versions of such filters [11], and has also
extended these filters to detectors of simple objects [13] for
SAR imagery. Overall, however, the application of these
nonlinear methods to problems involving image interpreta-
tion has been scarce.

The general ordinal quantizers (F, t) and “microimage
codes” described earlier appear to have been originally in-
troduced in [3] in the context of natural image statistics.
At about the same time, [15] apply ”local binary patterns”
(LBP) obtained by an adaptive version of the uniform, pixel
independent quantization of patches, to texture segmenta-
tion. It is also argued in [3] that (F, t) can produce better
descriptors than patterns obtained via the uniform quanti-
zation.

Subimage quantizers F of [3] are apllied in [2] for regis-
tration of ultrasound breast images. Whereas acknowledg-
ing an improved performance in image registration relative
to using the image intensities directly, the authors in [2]
point out an undesirable sensitivity (at least in their appli-
cation) to local contrast variations. Here (in §5.2) we con-
sider general variable thresholds t, enabling F to adapt to
local contrast variations, explicitly “factoring out” the con-
trast from the descriptor (implicitly, some contrast informa-
tion can remain via statistical correlations). This approach
aims to allow the geometric (2D) information content of the
coder to be measured more accurately than, for example, if
the coder of [15] is used. (The latter coder is adapted to the
patch by setting the threshold to the intensity of a single
(central) pixel.)



In [3], the probability distribution of F -codes is reported
to vary insignificantly with the imaging domain, spatial
and intensity scales, in effect suggesting that this distribu-
tion can be used as a universal prior for higher-level visual
tasks. We shall return to the crucial issue of invariance in
§3.

In [4], large samples of 3× 3 subimages randomly sam-
pled from images of natural scenes are considered. The nat-
ural subimage signal S is observed to concentrate in very
“small” subspaces of its nine-dimensional ambient space.
Specifically, according to [4], the high-contrast component
of S washes out low-dimensional surfaces corresponding
to ideal primitive microstructure (e.g. edgelets, blobs, bars,
etc.). In the search for a compact description of the natural
microimage data, their analysis relies on advanced tech-
niques for sampling on nonlinear surfaces. Interestingly,
the set of microstructure descriptors obtained in [4] as sur-
face representations appear to correspond well with the
codebook C (with the zero pattern removed). Thus, for the
population of natural images, the simple (F, t) map can be
viewed as a discrete, coarse representation of a continuous
mapping of the microimage data to its principal surfaces.
Clearly, the optimality of such a discretization depends on
t; using a single t for coding many different locations of a
complex image is unlikely to perform best for any specific
purpose (see below). This provides another motivation to
investigate adaptations of t to the local and global image
contrasts.

Much has been learned about how biological visual pro-
cessing adapts to contrast variations in natural images, pre-
sumably in order to maintain efficiency ([6],[7]). In [8]
in particular, the authors show how the basic vision task of
contour integration might be adapted to local contour statis-
tics of natural images, and how this adaptation would then
allow integration to begin earlier in the process than pre-
viously believed. We are thus also motivated by the above
hypothesis that the functional architecture of an efficient
vision system might allow for almost simultaneous detec-
tion and integration of microscopic structure from natural
stimuli. Specifically, this leads us to assess (§3) suitability
of (F, t) codes for their efficient integration.

1.2. Contributions
In view of the current status of ordinal methods, work on
natural image statistics, and the somewhat isolated observa-
tions mentioned above, we attempt to integrate these ideas
and findings into a coherent assessment of the suitability of
ordinal microimage coders for investigating image content.

The information content, and perceptual distortions,
of coding microimage populations by (F, t) can be stud-
ied in the context of empirical probability distributions
{pF |I(c|i)}c∈C of F -codes within individual images i, or
even over whole imaging domains (with {pF (c)}c∈C be-

ing the domain average of {pF |I(c|i)}c∈C). Using 2× 2 as
the smallest non-trivial microimage configuration, we esti-
mate {pF (c)}c∈C and its entropy H(pF ) from thousands of
high resolution natural images. The estimates are reported
with simultaneous confidence intervals. Obtained at stan-
dard significance levels, these intervals appear rather tight,
which is not surprizing given the findings in [3] on stabil-
ity of the microimage distribution. (In fact, simultaneous
confidence intervals are used to estimate the pF probabil-
ity vector.) For F with adaptive thresholds, we additionally
estimate the mutual information M(S;F ) between S, the
original microimage signal, and its F coding. These and
other experimental results are presented in §5 and include
comparisons of different adaptive versions of F by mutual
information M(S;F ). In §6, we also suggest to measure
(average) perceptual distortions d(S, F ) for a more com-
plete comparison of such coders.

2. Ordinal Quantization
Putting aside computational efficiency, the F transforma-
tion of n × n subimages s ∈ R

n2

into codes is formally
described by the following steps:

1. Compute the ranks s(1) ≤ s(2) ≤ . . . ≤ s(n2).

2. Derive the (discrete) derivatives 0, s(2) − s(1), s(3) −
s(2), . . . , s(n2) − s(n2−1).

3. Binarize by thresholding with t:
0, I{s(2)−s(1)>t}, I{s(3)−s(2)>t}, . . . , I{s(n2)−s(n2−1)>t},
where IA stands for the indicator of set A.

4. Integrate the resulting derivative chain, producing (2)
below.

5. Compose the code matrix by placing these in their
proper original pixel locations.

0, I{s(2)−s(1)>t}, I{s(2)−s(1)>t} + I{s(3)−s(2)>t}, . . . ,
∑n2−1

j=1 I{s(j+1)−s(j)>t}. (2)

Summarizing:

Definition 1 Let L represent the number of pixels in patch
s ∈ R

L and let t > 0. The ordinal quantizer (F, t) : R
L →

R
L is defined component-wise by (3) below:

Fl(s) =

rl−1
∑

j=1

I{s(j+1)−s(j)>t}, (3)

where s(1), s(2), . . . , s(n2) are the (ascending) order statis-
tic of the intensities in patch s, and rl is the ascending order
rank of the lth pixel.



Note that the assignment (3) is in fact independent of
possible ties in ranking and hence well-defined. Note also
that, for (unbounded) continuous intensities, all the maps F
have the same range C independently of t. Namely, if c is a
pattern under (F, t) for some t, than it is also a pattern for
all t > 0. However, in practice s is almost always discrete,
hence, depending on the initial intensity quantization, the
range of F for one value of t might be properly contained
in the range of F for t′ < t. Then, C corresponds to the
initial intensity quantization granularity (e.g. 1 for integer
gray levels), and its size can easily be calculated as follows:

|C| =

L
∑

m=1

∑

kl>0 1≤l≤m

k1+...+km=L

(

L

k1 k2 · · · km

)

, (4)

where m represents the number of distinct subregions com-
prising the patch. The index m is also the number of sub-
chains in the order statistic separated by significant jumps,
and can be thought of as a local estimate of the depth
of the image surface (§3). In the case of 2 × 2 patches
(n = 2, L = 4), for example, there are |C| = 75 micropat-
terns.

3. Relevance for Visual Processing
We show elsewhere that (F, t) coding emerges naturally as
satisfying a set of “perceptual axioms” based on the bright-
ness partial order relations on the subimage and pattern
sets. A central axiom is that F needs to commute with
pixel permutations σ: σ−1(F (σ(s))) = F (s). We find this
axiom sensible for “early vision”, thinking of the primitive
visual processor capable only of sorting out the received
luminance, and not equipped with a basis for direct estima-
tion of directional derivatives.

3.1. Invariance
An important issue here is that of invariance: Many subim-
ages may share a code c and there are both perceptual and
statistical relationships among subimages within one such
“fiber”.

When the semantic explanation of image structure is of
direct importance, a high level of photometric invariance
is desired and illumination is a nuisance parameter. Often,
this type of invariance is considered at the global, i.e. im-
age scale, requiring an operation to yield the same results
for image I as for its (constant) translates I + const. For
every t, F is clearly invariant to photometric translation:
F (s) = F (s + const). Additionally, if the same coding
(i.e. keeping t fixed) is carried out for every disjoint n × n
subimage(s) s of I (or a subset thereof), the collective result
clearly remains unchanged even if the individual subimages
were “brightened” unequally (by const(s)).

Photometric translation invariance simply means that, as
a coder of an isolated subimage, (F, t) conveys no infor-
mation about the absolute brightness of the coded patch.
However, when coding a population of subimages, some
of the original brightness information may be statistically
correlated with structure, and hence may still be preserved
indirectly.

In fact, the photometric shifts are only a subset of all
patch transformations that do not affect the F -codes. This
can, for example, be seen from Figure 1. It can also be seen
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Figure 1: Subimages that are mapped to the same right-
hand pattern of (1) by (F, 16) are rendered with 256 levels
of gray (top) and numerically transcribed (bottom).

(as mentioned earlier) that under (F, t), any two patches re-
ceive a common code if they answer the same way to all the
queries: “Is pixel u brighter than pixel v by more than t?”
At the same time, answering all such queries identically is
not necessary for two patches to be coded identically. Thus,
there is still more invariance than explained by aggregating
patches based on the binary queries above. This remain-
ing invariance can intuitively be described based on the
structure of the patch order statistic (see, for example, the
commentary to (1) above): In two patches with the same
code, a pair of pixels from a subchain enclosed by signifi-
cant jumps (¿) may respond differently to the same query.

Unlike the photometric shift invariance, the additional
modes of invariance above do depend on t, which might
be exploited in applications by applying F with variable t.
This latter possibility has largely motivated this work.

3.2. Information Content
We reiterate that, despite being defined purely based on
intensity ordering, the “non-flat” (F, t)-micropatterns do
carry primitive directional information as well as primitive
surface depth information. This can be seen from Figure 2.

Most binary patterns are trivially associated with one
of the eight directions (on the π/4 angular scale). (The
“ridgelets” 01

10 and 10
01 can be associated with pairs of op-

posite directions, but occur at the microscopic scale less
frequently; see §5.) Any non-zero non-binary pattern c can
be “pulled back” up to the level of its coarser, binary an-
cestors (although non-uniquely) in order to “estimate” the



captured direction.
The uncertainty in simultaneous estimation of position

and direction is well-known to be generally inevitable. This
scheme provides a simple mechanism to exercise the trade-
off: Suppose, for instance, the pattern 01

00 is signaling the
same diagonal direction as 11

01 . In that case the two would
be each other’s translates along the normal to the signaled
direction. Lowering the granularity t, would then refine 01

00

to 12
01 .
A competing interpretation might link 01

00 to 11
00 , in which

case 01
00 would resolve into 12

00 . In general, under this
scheme, refining the interpretation of a code correspond-
ing to an internal node, requires lowering the granularity t.
Thus, a contour integrator might exercise this granularity
control, for example, in a feedback loop iteratively attempt-
ing to connect neighbors if their codes have compatible di-
rections. The directional ambiguity of the coarser codes
would then lead to more aggressive explorations of conti-
nuity, perhaps resulting in illusory contours. When, and if,
the number of contouring hypotheses reaches a predefined
limit, the codes of the more ambiguous junctions would be
refined. Any discovered misalignment would then result in
discarding the affected contours.

The depth of the code in the C hierarchy appears to pro-
vide rudimentary information about the depth of the coded
structure. We refer to this depth as m(c) (m = 1, . . . , 4
as determined by n = 2). There is certainly even more
ambiguity in interpreting the depth information than the di-
rectional one. However, short of real estimation of curva-
ture, the (F, t) scheme does appear to be sufficient in the
sense of providing the 2.5D primary sketch [9]. Parallel
implementations of this coding (with larger patches) might
then also allow for fast scene exploration and local contour
integration to develop simultaneously.
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Figure 2: A fragment of C for n = 2 illustrating, among
other features, how the direction and depth of the mi-
crostructure can be induced from the “brightness” order re-
lation on C preserved from the original such order on the
patch space.

Let us apply F to every distinct 2 × 2 microimage of
image in Figure 3. Figure 4 marks as white all the “flat”
(i.e. background) sites of image i, setting t = contr(i),
the spatial contrast of the image according to the following

Figure 3: A natural image (log intensities are used due to
the very large image size).

definition:

contr2(i) =
1

M(N − 1) + N(M − 1)

∑

k∼l

(ik − il)
2 (5)

where the summation is over all M(N − 1) + N(M − 1)
neighboring (vertical and horizontal but not diagonal) pairs
(k, l) of image sites. This definition of contrast is advo-
cated in [4], in particular for being (a discrete version of)
the only scale invariant norm on image spaces. Note that
contr2(i) is also the average of the (unit lag) vertical and
horizontal (sample) variograms. We also find this defini-
tion helpful in general for comparing intensity images pre-
sented on different intensity scales, and also for comparing
subimages within an image.

As shown in Figure 5, the unit contrast coincides (for
this image on the logarithmic intensity scale) with the 80-
th percentile of the empirical distribution of the (absolute)
differences between the horizontally and vertically neigh-
boring pixels. Let us denote by G the corresponding dis-
tribution function, and by G−1 - its inverse, the quantile
function.

4. Microimage and Micropattern Dis-
tributions and Information

The statistical context of our experiments requires some no-
tation. The reader familiar with information theory might
skip the latter parts of this section.

Let Q represent the original quantized intensity scale,
in our case Q = {0, . . . , 216 − 1}. Let I = QMN be
our image space for some positive image dimensions M
and N (M = 1024, N = 1536 in our experiments), and
let i refer to an individual image from I. The space of
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Figure 4: The background class (white) occupies 74% of
image in Figure 3, according to F with t = contr(I).

microimages s is denoted by Ω = Qn2

. We are going to
think of the microimage signal S as a random variable with
values in Ω distributed according to pS|I , the distribution of
the population of all the microimages s observed in image
i:

pS|I(s|i) =

∑

s′ I{s′=s}

(M − n + 1)(N − n + 1)
, (6)

where the summation is over all n × n subimages of i.
Let C be a finite set, image i be fixed and let F : Ω → C.

Definition 2 The F -microcode distribution of image i
(over codebook C) is the distribution of the population of
all the micropatterns F (s) observed in i:

pF |I(c|i) =

∑

s I{F (s)=c}

(M − n + 1)(N − n + 1)
. (7)

Given a probability distribution P on I, the expectations

pS(s) =

∫

I

pS|I(s|i)dP (i), pF (c) =

∫

I

pF |I(c|i)dP (i)

are the mean microimage and microcode distributions, re-
spectively.

Similarly defined are pS,F |I(s, c|i) and pS,F (s, c), the
joint distributions of the microimage signal S and its F -
coding within a single image i, and averaged with respect
to the image distribution P , respectively. The entropy of
the random variables S and F (within image i) are writ-
ten as H(S|I = i) and H(F |I = i), respectively. (For
a comprehensive reference on information theory, see [1].)
The corresponding conditional entropies are also given by
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Figure 5: Cumulative distribution functions G for the pop-
ulation of the (absolute) differences between the horizontal
and vertical neighbor pixels of image in Figure 3 (top), and
other 50 random images (below) from the same data set
(§5.3). The x-values are scaled to unit contrast (5)

H(S|I) =
∫

I H(S|I = i)dP (i) H(F |I) =
∫

I H(F |I =
i)dP (i), respectively, where the random image I is as-
sumed to follow P .

Finally, given i ∈ I, the mutual information between
the microimage signal S and its F -coding is defined in (8)
below:

M(S;F |I = i) = (8)
∑

s∈Ω,c∈C

pS,F |I(s, c|i) log
pS,F |I(s, c|i)

pS|I(s|i)pF |I(c|i)

and the conditional information (relative to P ) is then

M(S;F |I) =

∫

I

M(S;F |I = i)dP (i). (9)

5. Experiments
We are interested in estimating probability distributions of
(F, t) codes for various methods of defining t. In particu-
lar, we are interested in assessing variations of these esti-
mates from image to image. We are also interested in es-
timating the corresponding information measures (H(F |I)



Figure 6: A random sample of 2×2 subimages from image
in Figure 3.

and M(S;F |I)) in view of their dependence on the t se-
lection. Finally, we would like to assess these coders per-
ceptually, similarly to how Figure 4 explicates the notion of
microstructure according to a particular t-selection method.

5.1. Data
Our test images come from the popular van Hateren’s col-
lection of 4167 still natural stimuli: 1024 × 1536, two
bytes/pixel, raw images of natural and urban landscapes
obtained with a Kodak DCS420 camera, “linearized with
the lookup table generated by the camera for each image”
[5]. We have used both the truly linear version as well as
the PSF-corrected (”deblurred”) version, but present here
only the results for the latter, ”deblurred” images. We have
also excluded 49 irregular images (42 of which appear ex-
tremely blurred, with the other seven being incorrectly ori-
ented), arriving at the image sample size of Nim = 4118.
Thus, we assume that i1, i2, . . . , iNim

are i.i.d. random im-
ages distributed according to a hypothetical natural image
distribution P on I.

5.2. Adaptive Ordinal Quantization
We have considered two categories of methods of adapta-
tion of (F, t) coders to contrast variations within image i.
First, the coder can be adapted globally, i.e. t is computed
based on some global image function. E.g. t = γ ·contr(i),
a fraction of the spatial contrast, or t = G−1(γ), the

γ · 100%-th percentile of the distribution of the pairwise
absolute differences. Note that in any of these cases every
instance of configuration s in the image receives the same
code F (s) (M(S;F |I = i) = H(F |I = i)).

Second, (F, t) coders can be adapted locally. For in-
stance, t can be set to γ · contr(Ns) or G−1

Ns
(γ), where Ns

is some neighborhood of the coded patch s. Note that in
this case, it is possible for two identical patches s = s′ ex-
tracted from different locations in the image to be coded
differently F (s) 6= F (s′) (M(S;F |I = i) = H(F |I =
i) −H(F |S, I = i) < H(F |I = i)).

Graphs in Figure 8 show dependence of the coded in-
formation on the level γ with t = G−1(γ), using global
(F∞) and local (F8 - 8 × 8 neighborhoods) adaptations.
The estimates are obtained for K = 16 levels of γ and are
presented along with their 90% simultaneous confidence
intervals computed according to (10) below, using the mul-
tivariate normal asymptotic ([14]):

Mγ(S;F ) = Mγ(S;F ) ± sγ

√

KFK,Nim−K(α)

Nim − K
,

where Mγ(S;F ) = 1
Nim

∑

i M(S;F |I = i) and s2
γ =

1
Nim

∑

i(Mγ(S;F |I = i) − Mγ(S;F ))2 are the sam-
ple mean and variance of the Mγ(S;F ), respectively, and
FK,Nim−K(α) is the (1 − α) × 100-percentile of the F -
distribution with K and Nim − K degrees of freedom;
α = 0.1.

5.3. Estimation of pF

Recall (4) that with n = 2, we have |C| = 75 patterns. We
compute the 75-dimensional probability vectors pF |I(·) for
every image in the data set, and for several (F, t) coders
distinguished by the threshold selection method, and we es-
timate the corresponding means pF (·) (over the natural im-
age ensemble) with simultaneous confidence intervals sim-
ilar to the ones in (10) (replacing K by |C|−1). In Figure 9,
pF is estimated when F is adapted to 8× 8 contexts N via
t = contr(N ).

6. Summary and Conclusions
We have discussed a class of ordinal, nonlinear methods
for coding microscopic structure in intensity images with
a view toward image interpretation. Our goal has been to
collect theoretical and empirical evidence in order to as-
sess practical suitability of these methods. Our extensive
statistical analysis allows us to conclude that the consid-
ered coders capture microscopic structure in various natural
domains, and with different image preprocessing, consis-
tently: High frequency patterns in any one such domain, or
with any one particular intensity scale, remain comparably
frequent in other domains and with other intensity scales
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Figure 9: Local adaptation, t = contr(N ) with 8 × 8 con-
texts N . Principal masses (i.e. 50 most frequent out of 75
total patterns) total to ≈ 99%.



and under variable preprocessing regimes. The information
content of these coders is consequently stable with respect
to the above conditions.

Additional adaptations have been introduced in order to
emphasize flexibility of the quantization methods as well
as to estimate H(F |S), the coding uncertainty due to the
local contrast variations.

The presented comparisons of information contents
M(S;F ) and M(S;F ′) of coders F and F ′ can certainly
be expanded. For example, in addition to a global percep-
tual analysis, a distortion measure d(s, c) can be introduced
to relate micro- and macroscopic perceptual losses, simi-
larly to the rate distortion analysis ([1]). For instance, the
considered (F, t) coders preserve relative brightness. How-
ever, this might become an undesirable constraint in the
face of a plausible competition with spatial continuity (in
larger patches). Thus, coders with M(S;F ) = M(S;F ′)
but of different (suitably defined) distortions d(S, F (S)) 6=
d(S, F ′(S)) might need to be compared. There are several
relevant choices for such measures ([1]), with (10) being
but one example:

d(s, c) =
2

n(n − 1)

∑

k 6=l

G((sk − sl)
+)I{ck≤cl}, (10)

where G is as before the cdf of the population of the (abso-
lute) difference between horizontal or vertical neighbors in
a given image;(sk − sl)

+ = max(0, sk − sl). This scales
the distortion of the relative brightness between two pixels
to [0, 1].

Computing these codes efficiently is no less important
for applications, and the necessity of executing many sort-
ings, however optimally [12], might still be unattractive for
applications. The fact that the set of answers to all binary
queries su − sv > t within patch s uniquely identifies the
code of s appears crucial: For a given subimage, a small
subset of these answers might be sufficient. Depending
on the subimage population (i.e. on the joint distribution
of the query bitstrings and the F -codes), different subim-
ages would generally require different subsets of queries
for computational efficiency in the sense of minimizing the
average number of the queries evaluated in determining
the code. For this purpose, a suboptimal tree-based Vec-
tor Quantizer based on the above queries at internal nodes
and the F -codes at terminal nodes might be learned from
the training subimage data; for instance, one may use the
same strategy as in building decision trees, namely greedy
entropy reduction. Regarding the internal nodes as approx-
imate, yet more invariant, F -codes might also be a viable
option for generating a coarse-to-fine hierarchy of local im-
age features for object recognition and classification. Such
VQ trees are but one example of defining local image fea-
tures based on ordinal methods.
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