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Abstract

The uniqueness part of the problem of moments is concerned with whether a (multivariate) mea-

sure with finite (mixed) moments is uniquely determined by its moments. This work generalizes

the above question by considering families of measures that are invariant under finite groups of

(nonsingular) linear transformations. Uniqueness is then considered relative to a given family

of invariant measures, and the totality of mixed moments is then replaced by the corresponding

invariant polynomials. It is further shown how various sufficient conditions for (ordinary) deter-

minacy, such as, for example, the extended (multivariate) Carlman condition, can be adapted

to the new context via generators of the algebra of the invariant polynomials; that the number

of such generators is finite, is known from the theory of polynomial invariants of finite groups.

Several associated computational issues are discussed with a view toward model selection in

the presence of such symmetries. A distribution of minuscule subimages extracted from a large

database of natural images, along with generators for the relevant invariances, is discussed to

illustrate the above concepts.

1 Introduction

In its ordinary formulation, the uniqueness part of the problem of moments studies

whether or not a measure with finite (absolute) mixed moments is uniquely deter-

mined by its mixed moments, or simply determinate, [1], [2], [8], [11], [20], [21], [32],

[36].

Several sufficient conditions for determinacy ([1], [2], [8], [11], [32]) and indeter-

minacy ([32], [36]) are commonly known for measures on R or R+. For determinacy

of measures on Rm, [8] generalizes some of those conditions and gives several new

ones, including integral conditions. A somewhat novel, extended picture emerges if

we first think of each of these (multivariate) measures as being invariant under the

trivial group G of the identity transformation of Rm. Being invariant under a group of
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transformations simply means that the measure assigns the same mass to set B and

all of the transformed images gB of B, for all g ∈ G. Since invariance with respect

to a non-trivial G narrows down the class of G-invariant measures under investiga-

tion, we then propose to investigate the uniqueness question relative to this restricted

class. In particular, we expect only a subset of all the moments to be relevant for

unique identification of a G-invariant measure among all of its G-invariant siblings.

Naturally, this subset is expected to depend on G.

To give a formal treatment of the above idea, we introduce G-invariant moments

viaG-invariant polynomials inm indeterminates. The theory of polynomial invariants

[7], [9], [35] lends us minimal sets of generators {f1, . . . , fN} of the ring (algebra) of G-

invariant polynomials in m indeterminates, which allows us to formulate the notion

of determinacy of G-invariant measures by their G-invariant moments. Borrowing

the main results of [8] obtained for the case of ordinary determinacy, we state several

sufficient conditions for determinacy of G-invariant measures by their G-invariant

moments. These include the Extended Carleman Theorem for G-invariant moments,

and some integral conditions based on quasi-analytic weights. All of these results rely

on a one-to-one correspondence between the invariant measures on Rm and measures

on RN . Established via an extension of the multinomial map f = (f1, . . . , fN), this

injective embedding is therefore a technical underpinning of this work.

Evidently, to a large extent, symmetry has already been studied in connection

with the problem of moments. Thus, for instance, [21] studies the existence and

uniqueness of symmetric measures on R with given moments. Also, [8] generalizes

this case and studies determinacy of multivariate measures supported in the positive

cone (“C-determinacy”). In one dimension, the correspondence between symmetric

measures and measures on the nonnegative half-line is obvious and well-known [11].

Apparently, this correspondence generalizes easily to the multivariate setting (proof

of Theorem 5.1 of [8] and Example 1 of this work), also illustrating significance of

the aforementioned injective embedding of the G-invariant measures on Rm into the

measures on RN .

The symmetry with respect to the continuous group of the rotations on Rm is

discussed, for example, in [1], [2]. In this case all of the invariant functions are “gen-

erated” by a single invariant polynomial
∑m

i=1 x
2
i , which is a maximal invariant in the

language of equivariance theory. We, however, focus on finite subgroups of GL(m,R).

Note the difference between our theme and the related notion of equivariance in statis-
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tics [28], [34]. In the latter case it is entire (parametric) families of distributions and

not individual measures that are fixed by groups of transformations. Also, the rel-

evant groups in the equivariance theory are continuous. At the same time, there

appear to be not so many interesting examples (besides the one with the rotational

symmetry) of finite measures individually fixed by an infinite subgroup of GL(m,R).

An extensive account of symmetries in probability, statistics, and physics with

many examples and exercises appears in [38]. This work can complement [38] by

bringing in polynomial invariants of finite groups, the above connection of those to

the problem of moments, a certain information-theoretic flavor, and a significant

example from the natural image statistics.

In fact, this work has been motivated by modeling distributions of very small

square subimages of digital photographic images of natural scenes [15], [24], [25],

[27], [33]. In [24], a particular state space Ω ⊂ R4 is a set of 2 × 2 matrices with

suitably bounded integer entries, and is naturally associated with the square-base

cuboid. Apparently, Ω is symmetric with respect to the group of sixteen geometric

transformations of the square-base cuboid, and it is further revealed in [24] that the

microimage distributions themselves are nearly invariant under the same group.

The above example also illustrates certain abstract and concrete computational

issues associated with the above modes of invariance for general G and Ω ⊂ Rm (Ω

being always fixed by G). For instance, in this work we state a simple, yet illustrative,

result on closedness of the G-invariant measures under the weak convergence via a

progressive matching of their G-invariant moments. Namely, we generalize the fact

that a determinate probability measure P can be approximated arbitrarily well by

progressively matching all of its moments. The one-dimensional version of the latter

result is casually used for density estimation in, for example, solid state and quantum

physics [30] and econometrics [16], [39] within the maximum entropy framework with

(not necessarily algebraic) moment constraints. This leads to our further, more con-

crete, example where the progressive moment matching is enforced by the constrained

maximum entropy (or, the equivalent exponential family) framework [4], [6], [20], [26],

[29], [40], [43] with (algebraic and eventually G-invariant) moment constraints. Recall

that according with the maximum entropy principle, the knowledge of the distribu-

tion to be modeled is formulated by a finite set of (consistent) constraints of the form

EPφ(X) = νφ. Among all distributions P that satisfy the constraints, one chooses

P ′ that maximizes the Shannon entropy H(P ) that represents an intuitive notion of
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distributional uncertainty. Equivalently, such P maximizes the likelihood under the

exponential family of distributions for which φ’s are a sufficient statistics (in the case

of algebraic moment constraints, φ(X) = Xα, α ∈ A ⊂ NN).

One key observation there is that entropy maximization forces the resulting dis-

tributions to inherit G-invariance of the constraining functions φ(X) (which is im-

mediately evident from the exponential representation of the maximum entropy dis-

tribution). Apparently, maximum likelihood estimation relative to the family of G-

invariant probability distributions (with no additional constraints) is achieved by

linear ”G-symmetrization” of the empirical measure, and the corresponding linear

operator bears the name of Reynolds [7], [9], [35], [37] in computational algebraic

geometry. We also show a simple fact that such averaging increases the entropy by

no more than log2 |G| bits, where |G| is the order of G.

Several further computational issues emerge once we note that in the multivariate

case, there are many ways to order the (mixed) moments. Hence, with a view toward

modeling (multivariate) G-invariant probability distributions via moments, we touch

on a moment selection issue nested within the larger framework of model selection

with G-invariant predictors. Namely, we borrow from the computational algebraic ge-

ometry [7] the notion of monomial orderings and, mostly for the sake of completeness

of this exposition, give a greedy strategy for augmenting the sets A of active moment

constraints. Following its original application to texture modeling [41], [42], [43], we

also call this strategy “adaptive minimax learning”. In our context, “minimax learn-

ing” of an unknown distribution P refers to an incremental model construction, in

which at each step l the entropy maximization problem is solved with one new con-

straint added at a time. As in its original formulation, the l-th constraint is chosen

from a suitable set of functions, in our case - G-invariant polynomials, to minimize the

Kullback-Leibler divergence of the candidate maximum entropy distribution (with l

constraints) from the target distribution (taken in practice to be the empirical version

of P ).

Thus, unlike in, for example, related works of [16], [20], [30], [39] on maximum

entropy problems with moment constraints, our moment matching, or pursuit, is

multidimensional, adaptive, and, most importantly, G-invariant.

Alternatively, we could have used altogether the framework of linear models with

G-invariant designs, along with, say, forward stepwise selection of (in this case, G-

invariant) predictors [18] in order to substantiate our main message, which appears
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similar to the main message of [38], and is as follows: Invariances with respect to finite

subgroups of GL(m,R) present a distinct, practically relevant situation for probabil-

ity theory and statistics, which can be effectively handled by combining the standard

probabilistic, statistical, and information-theoretic tools with the appropriate tools of

computational algebraic geometry, and in particular, polynomial invariants of finite

groups.

1.1 Organization of the Paper

To assist the reader not very familiar with the relevant algebraic concepts, §2 starts by

reviewing basic notions of group action and associated invariance. The same section

then introduces sets MG and MG
∗ of G-invariant measures and G-invariant measures

with finite moments, respectively, and minimal sets of generators {f1, . . . , fN} of the

ring (algebra) of G-invariant polynomials in m indeterminates. Also introduced there

are the Reynolds operators R and R∗ that linearly average functions and measures,

respectively, over the orbits of the G action. Finally, Proposition 15 establishes

sufficiency of f = (f1, . . . , fN) to represent any G-invariant function on Rm. Relevant

proofs appear in Appendix A.

We continue in §3 by defining G-invariant moments and formulating the notion

of determinacy of G-invariant measures by their G-invariant moments. Theorem 19,

the Extended Carleman Theorem for G-invariant moments, is given and proved in

this section. The core of the proof is Lemma 20 that establishes the one-to-one

correspondence between MG, the G-invariant measures on Rm, and the measures on

RN . Other, integral conditions, then follow in §3.1 - Theorems 22 and 23. A proof of

Lemma 20 and other auxiliary proofs are deferred till Appendix B.

Weak convergence of the G-invariant measures under the progressive moment

matching, or pursuit, appears in Theorem 24 that, with its proof, opens §4. The rest

of that Section is dedicated to modeling of the G-invariant distributions within the

Maximum Entropy framework with (G-invariant) moment constraints. Namely, The-

orem 26 specializes the convergence result of Theorem 24 to this particular modeling

framework. The monomial orderings that define the direction of the approximating se-

quences are introduced at this point. Using those, Theorem 28 further specializes the

above convergences to the case of adaptive, or accelerated, minimax learning. Addi-

tional comments and auxiliary proofs are given in Appendix C. Issues of the adaptive

minimax learning that are specific to the case of distributions on finite G-invariant

5



state spaces are discussed in §5. Namely, considerations of model selection replace

those of convergence. Computational considerations such as obtaining G-invariant

generators f , the Reynolds operators R and R∗, the sets of equivalence classes, or

orbits, of G action on Ω are presented in §6. The Section is also complemented by

interesting observations on the reduction of the Maximum Entropy optimization in

the case of G-invariant, or, more generally, piecewise-constant, constraints as well as

by some open technical issues on algorithmization. Appendix D gives corresponding

proofs.

The microimage distribution example is explained in §7 with the relevant symme-

tries and their group G appearing in §7.1, and the associated generators - in §7.2. We

conclude by a summarizing discussion in §8.

2 Group action, invariance, polynomial generators

In this section we review several notions from algebra and introduce relevant notation.

Definition 1 A group action of a group G on a set A is a map from G × A to A

(written as ga, for all g ∈ G and a ∈ Ω) satisfying the following properties ([10]):

1.) g1(g2a) = (g1g2)a, for all g1, g2 ∈ G, a ∈ A, and

2.) 1a = a, for all a ∈ A.

Definition 2 Let G act on A and let a ∈ A. a is said to be fixed under G, or G-

invariant, if ga = a ∀g ∈ G. B ⊂ A is said to be fixed under G, or G-invariant, if

∀b ∈ B ∀g ∈ G gb ∈ B.

We will also use the following observations that show how the original G action on A

induces G actions on objects from various categories involving A:

Proposition 3

1.) Let B ⊂ A be fixed under G. Then the restriction of the original G action on A

is a well-defined G action on B.

2.) The following defines a G action on RA, the set of all real valued functions on A:

(gf)(a) = f(g−1a), where g ∈ G and f ∈ RA and a ∈ A. (1)
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3.) The following defines a G action on PA, the power set of A:

gB = {gb : ω ∈ B} for B ⊂ A. (2)

Let a finite group G act on W = Rm in a way that admits a linear (matrix) repre-

sentation ρ : G ↪→ GL(W ) (∼= GL(m,R)). We will simply identify the original action

of G on W with its matrix representation, ρ and will therefore think of g ∈ G as an

m×m matrix.

Instantiating Proposition 3, we introduce the following G actions:

Proposition 4 The following actions are well-defined.

1.) The (restricted) action of G on a G-invariant Ω ⊂ W .

2.) The G action on B, the Borel σ-algebra on Ω:

gB = {gω : ω ∈ B}. (3)

3.) The G action on M, the set of (positive) measures on B:

(gP )(B) = P (g−1B), B ∈ B, P ∈M. (4)

4.) The G action on R[W ], the set of real polynomials in m indeterminates:

(gf)(v) = f(g−1v), where g ∈ G and f ∈ R[W ] and v ∈ W. (5)

Proposition 5 Any group action partitions the set on which it acts.

Definition 6 Let SΩ = Ω/G be the set of equivalence classes (also called orbits) of

the given G action on Ω.

Proposition 7 For any Ω1 ⊂ Ω2, two invariant subsets of W , SΩ1 ⊂ SΩ2.

For convenience, we extend the notation of the probabilistic expectation, writing

EPh(X) for
∫

W
h(x)dP (x) for any P ∈ M (and any measurable h W → R), making

X = (X1, X2, . . . , Xm) into a pseudo random vector distributed according to P .

The multiindex notation fα for f ∈ RN and α ∈ NN means fα1
1 · · · fαN

N , in partic-

ular, Xα = Xα1
1 · · ·Xαm

m . (Here, N = {0, 1, 2, . . .}.)
We will need the following sets of G-invariant measures on B:
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Definition 8

MG = {P ∈M : gP = P ∀g ∈ G} and MG
∗ = MG ∩M∗,

where

M∗ = {P ∈M : EP |Xα| <∞ ∀α ∈ Nm}.

Proposition 9

M∗ = {P ∈M : EP‖X‖d <∞ ∀d ≥ 0}

Other useful invariant objects include:

1. PG, the set of invariant probability measures on Ω.

2. (RΩ)G, the set of invariant real functions on Ω.

3. BG, the σ-algebra of invariant Borel sets.

4. R[W ]G (alternatively R[x]G), the ring, and algebra, of invariant polynomials on W

(3 x).

The following operator projects RΩ, the linear space of real functions on Ω, onto

(RΩ)G, the linear subspace of G-invariant real functions on Ω, and plays a key role in

the ensuing development (see also §A):

R(f) =
1

|G|
∑
g∈G

gf. (6)

We will also be interested in the restricted operator R : R[W ] → R[W ]G, and in the

adjoint R∗ : M→MG:

R∗(P ) =
1

|G|
∑
g∈G

gP (7)

Proposition 10 Consider R mapping the space of measurable functions on W onto

(RW )G and the linear functionals f 7→
∫

W
f(x)dP (x) indexed by P ∈ M. Then R

and R∗ are adjoint.

Proposition 11

1.) Let P ∈M have a density p relative to some reference measure µ. Then R(p) is

a density of R∗(P ) relative to µ.
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2.) Let p be a density of a G-invariant measure P relative to µ, then p is µ-a.e.

G-invariant.

Our main ingredients are invariant polynomials from R[W ]G and their special repre-

sentatives that generate the entire ring:

Definition 12 Polynomials f1, . . . , fN from R[W ]G are said to generate R[W ]G if

any f ∈ R[W ]G can be expressed as a polynomial in terms of f1, . . . , fN . We will also

refer to such f1, . . . , fN as generators.

Definition 13 Let f1, . . . , fN generate R[W ]G. We call f1, . . . , fN a minimal system

of generators if none of the generators can be expressed as a polynomial in terms of

the others. In this case, we will also refer to such f1, . . . , fN as fundamental integral

invariants.

The fact that there always exists a finite system of such generators was proved by

Hilbert for polynomials with coefficients from fields of characteristic zero (e.g. R),

and later extended for certain fields of positive characteristic by Noether ([13], [35]).

Remark 14 Let C[W ]G be the ring (also, a complex algebra) of G-invariant poly-

nomials with complex coefficients. Then note that for any r(x) ∈ C[W ]G, Re(r(x)),

Im(r(x)) ∈ R[W ]G since the complex conjugation on C[W ] commutes with the G

action on C[W ].

The next well-known fact is also fundamental for our discussion and follows from

more general results in Invariant Theory [7], [31], [35], [37]. In §A we give a short,

basic proof of this result.

Proposition 15 Let f1, . . . , fN generate R[W ]G and let f = (f1, . . . , fN) : W → RN .

Then the map f̄ : SW → RN mapping [w], the equivalence class of w ∈ W , to f(w),

is well-defined and injective. Thus SW
∼= f(W ), the image of f in RN .

Example 1 Let G ∼= Zm
2 be the group of order 2m generated by the component-

wise sign inversions. As a matrix group, G is generated by m matrices (ak
ij), k =

1, 2, . . . ,m, whose all off-diagonal entries equal 0, and all but one diagonal entries

equal 1: ak
ij = δij for all i, j except when i = j = k: ak

kk = −1, i.e. the k-th matrix

has −1 for its k-th diagonal entry. It can be shown that {fi = x2
i , i = 1, . . . ,m}

is a minimal set of generators of R[W ]G. [w], the equivalence class of w ∈ W , is

the smallest set containing w and symmetric with respect to reflections about all the
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hyperplanes xi = 0, i = 1, . . . ,m. The size of [w] is 2l, where l is the number of

nonzero components of w, which also stays invariant under the transformations in G.

In particular, in one dimension this is simply the symmetry around 0. Also, if

such an invariant measure has a density, then the density must be an even function,

i.e. function of x2.

3 Invariant Moments, Determinacy of Invariant Measures

The problem of moments is whether a measure exists with prescribed moments and

if so, whether it is unique within the class of all measures with finite moments. We

are going to generalize the latter question to include situations when measures are to

be determined within special subclasses of the original class and by, one would then

expect, “fewer” moments. In particular, we are introducing the notion of determinacy

of G-invariant measures by “G-invariant moments”. Some of our notation is borrowed

from [1] and [8].

Let f1, . . . , fN be a minimal set of generators. Let P ∈M, and let α ∈ NN be the

degree multi index, where N contains 0.

Definition 16 Given generators f , we call EPf
α =

∫
W
fαdP (x) the mixed G-invariant

moment of order α, or, invariant α-moment and denote it by sα(P ).

Let us also denote by s(P ) the set of all such moments (sα(P ))α∈NN for a given

measure P . When the measure P is clear from the context, we will overload the

notation sn(k) = EPf
k
n for k ∈ N and 1 ≤ n ≤ N .

Proposition 17 Let f1, . . . , fN be a minimal generating set. Then MG
∗ = {P ∈

MG : EP |fα| <∞ α ∈ NN}.

Definition 18 Let P ∈ MG
∗ have s(P ), its G-invariant moments, relative to some

minimal generating set. Then P is said to be G-determinate by s(P ), or simply G-

determinate, if no other measure in MG
∗ has the same set of moments s(P ) relative

to the chosen generating set.

In §B we prove a simple but crucial fact that this notion is well-defined, i.e. indepen-

dent of the choice of the generators.

We next give a generalized version of the extended Carleman theorem ([8]):
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Theorem 19 (Extended Carleman theorem for G-invariant measures). Let f1, . . . , fN

be some minimal set of generators. Let P ∈ MG
∗ and assume that for each n =

1, . . . , N , {sn(k)}∞k=1 satisfies Carleman’s condition

∞∑
k=1

1

sn(2k)1/2k
= ∞, (8)

then P is determinate by G-invariant moments. Also, C[W ]G and SpanC{ei(λ,f)|λ ∈
S} are dense in LG

p (W,P ), the G-invariant subspace of complex Lp(W,P ), for 1 ≤
p <∞ and for every S ∈ RN which is somewhere dense (i.e. S̄, the closure of S, has

a nonempty interior).

Proof. The proof of the first statement takes two steps. First, notice that the map

f = (f1, . . . , fN) : W → RN as in Proposition 15 induces an injection f̃ of MG
∗

to M̃∗, the set of probability measures on RN with finite mixed absolute moments

(E|Xα| <∞ ∀α ∈ NN) via f̃(P )(B) = P (f−1(B)) for any B ∈ B(RN).

Lemma 20 The map f̃ : MG → M̃ is one-to-one.

Second, suppose P , Q ∈MG
∗ , P 6= Q, and s(P ) = s(Q) that satisfy (8), the conditions

of the Theorem. By Lemma 20, f̃(P ) 6= f̃(Q), and by definition the latter measures

have all their mixed (ordinary N -dimensional) moments identical and satisfying the

conditions of the extended Carleman theorem ([8]). (Note that the definition of M∗

in [8] and Definition 8 are equivalent by Proposition 9.) Thus, according to that

theorem, f̃(P ) is determinate, i.e. f̃(P ) = f̃(Q), which contradicts our previous

observation.

The proof of the denseness results closely parallels that of Theorem 2.3 of [8]: Let

1 ≤ p <∞ be fixed and let h ∈ LG
q (W,P ), where 1/q + 1/p = 1, and such that∫

W

r(x)h(x)dP (x) = 0 (9)

∀r ∈ C[W ]G. In order to prove that h = 0 P -a.s., we first note that due to G-

invariance of h combined with Proposition 15, there exists h̃ : RN → C such that

h = h̃(f). Next, following [8], we perform the following Fourier-like transform:

ξ̂h(λ) =

∫
W

ei(λ,f(x))h(x)dP (x) =

∫
RN

ei(λ,y)h̃(y)d[f̃(P )](y), (10)
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resulting in a smooth function on RN . All derivatives of this function vanish at

0 ∈ RN since (9) implies∫
RN

yαh̃(y)d[f̃(P )](y) = 0, ∀α ∈ NN .

From this point, the corresponding part of the proof in [8] applies to conclude that

under the hypotheses of the present Theorem, and based on Theorem 2.1 of [8], ξ̂h(λ)

is identically 0. This in turn implies that h̃ = 0 f̃(P )-a.s., which finally implies that

h = 0 P -a.s.

The denseness of SpanC{ei(λ,f)|λ ∈ S} can be proved by a similar chain of argu-

ments, replacing λ in the right-hand side of (10) by λ + a, where a ∈ Interior(S̄).

�

Example 1 continued.

Let MC be the set of positive Borel measures with supports in C = {(w1, . . . , wm) ∈
Rm : wi ≥ 0, i = 1, . . . ,m}, the positive cone relative to the standard basis, and let

MC
∗ = M∗ ∩MC . Then Lemma 20 applies to show MG ∼= MC and MG

∗
∼= MC

∗ as

sets, and f̃(MG) = MC and f̃(MG
∗ ) = MC

∗ .

3.1 Integral criteria for G-invariant determinacy

In [8], it is argued that integral criteria for determinacy are more convenient in practice

than series conditions such as Carleman’s conditions, and the notion of quasi-analytic

weights is introduced in order to formulate suitable integral conditions. Thus, follow-

ing [8]:

Definition 21 A quasi-analytic weight on W is a bounded nonnegative function w :

W → R such that
∞∑

k=1

1

||(vj, x)kw(x)||1/k
∞

= ∞

for j = 1, . . . ,m and v1, . . . , vm, some basis for W .

We next provide simple generalizations of Theorems 4.1 and 4.2 of [8] that provide

sufficient integral conditions for determinacy by invariant moments. We omit proofs

of these results since they are straightforward analogs of their prototypes in [8] and are

based on the same “change of variable” argument that we used to prove Theorem 19.
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Theorem 22 Let P ∈MG be such that∫
W

w(f(x))−1dP <∞

for some measurable quasi-analytic weight on RN . Then P is determinate by its

G-invariant moments. Furthermore, C[W ]G and SpanC{ei(λ,f)|λ ∈ S} are dense in

(complex) LG
p (W,P ), for 1 ≤ p < ∞ and for every S ⊂ RN which is somewhere

dense.

Following [8], we point out that due to the rapidly-decreasing behavior of w, the

assumption of the Theorem implies that P is necessarily in MG
∗ .

Theorem 23 For j = 1, . . . , N , let Rj > 0 and let a non-decreasing function ρj :

(Rj,∞) → R+ of class C1 be such that∫ ∞

Rj

ρj(s)

s2
ds = ∞.

Define hj : R → R+ by

hj(x) =

exp
(∫ |x|

Rj

ρj(s)

s
ds
)

for |x| > Rj

1 for |x| ≤ Rj.

Let A be an affine automorphism of RN . If P ∈MG is such that∫
W

N∏
j=1

hj((Af(x))j)dP (x) <∞,

then P is determinate by its G-invariant moments. Also, C[W ]G and SpanC{ei(λ,f)|λ ∈
S} are dense in (complex) LG

p (W,P ), for 1 ≤ p <∞ and for every S ∈ RN which is

somewhere dense.

We conclude this part by pointing out that other integral criteria discussed in [8] also

have their G-invariant formulations similar to the ones above. Thus, for example,

Theorem 4.3 of [8] provides a significantly weakened version of the following classical

condition for determinacy: ∫
W

exp(||x||)dP (x) <∞

Both, the classical condition and its weakened versions due to [8], easily incorporateG-

invariance by the appropriate adjustment of the radial integrands via: ||x|| 7→ ||f(x)||.
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4 Sequential G-invariant modeling

From now on we specialize our discussion to probability measures P . The following

result lays a foundation for modeling invariant distributions via (invariant) moment

constraints.

Theorem 24 Let a sequence of G-invariant probability measures {Pl}∞l=1 ⊂ PG be

such that

∀α ∈ NN lim
l→∞

EPl
fα = sα. (11)

Assume that there can exist at most one G-invariant P with such sα. Then, such P

indeed exists and Pl ⇒ P .

Note that such P would necessarily be in MG
∗ .

Proof. Clearly ([12]), (11) implies that the m families of marginals of Pl’s are indi-

vidually tight, which immediately implies that the family {Pl}∞l=1 is itself tight, and

therefore ([3]) contains a weakly convergent subsequence. Since every subsequential

limit must also be G-invariant and have the same moments sα, all such limits must be

equal to each other by the uniqueness hypothesis of the Theorem. We take P to be

the common value of those limits and finish the proof by invoking the well-known fact

[3] that a tight sequence whose all (weak) subsequential limits are equal, converges

weakly to that common measure. �

We next introduce notation to describe G-invariant models based on the Entropy

Maximization Principle. Let a probability measure P be absolutely continuous with

respect to some positive σ-finite reference measure µ, P � µ, and let p be a den-

sity dP/dµ. Let Hµ(P ) = −
∫

W
p(x) log p(x)dµ(x) be the entropy of P relative to

µ (for P discrete, a natural choice for µ is the counting measure on Ω, the sup-

port of P : H(P ) = −
∑

Ω p(x) log p(x) (the Shannon’s entropy), and for P contin-

uous - the Lebesgue measure on Ω: H(P ) = −
∫

Ω
p(x) log p(x)dx). In the absence

of ambiguity, we will suppress the reference measure in the subscript. Thus, let

D(P‖Q) =
∫

W
p(x) log(p(x)/q(x))dµ(x) stand for the Kullback-Leibler divergence

between two probability measures P and Q with densities p and q relative to µ.

Proposition 25 Let P have a density p relative to µ. Then

H(P ) ≤ H(R∗(P )) ≤ H(P ) + log |G|.

The equality in place of the first inequality occurs if and only if P is G-invariant.
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(See §C for a proof.) Let F be a finite set of (measurable) real-valued functions on

(G-invariant) Ω, and {νφ ∈ R}φ∈F . Let

PF ,ν = arg max
P ′:EP ′φ=νφ

∀φ∈F

H(P ′), (12)

a maximum entropy distribution relative to the above constraints. Since we are going

to work with (invariant) moment constraints (on P ′) of the form EP ′f
α = EPf

α, α ∈
A ⊂ NN , for some fixed measure P , we will be writing PA for the maximum entropy

distribution.

Theorem 26 Let P be a probability measure on W supported on G-invariant Ω and

having a density relative to some µ. Assume that Hµ(P ) > −∞ and that R∗(P ) is

G-determinate. (Note that G-invariance of Ω implies that R∗(P ) is also a probability

measure on Ω.) Let f1, . . . , fN be a minimal generating set for R[W ]G. Let A1 ⊂
A2 ⊂ . . . be such that ∪∞l=1Al = NN and that the corresponding maximum entropy

problems (12) with νfα = EPf
α α ∈ Al have solutions Pl = PAl

. Then Pl ⇒ R∗(P ).

Proof. First, note that for any (measurable)G-invariant function φ, EPφ = EPR(φ) =

ER∗(P )φ (Proposition 10). Second, note that if Pl exists, then it is necessarily G-

invariant (Proposition 25). This can also be seen from the exponential form of pl(x),

the density of the maximum entropy distribution:

pl(x) = exp

(∑
α∈Al

λαf
α(x)− ψ(λ)

)
(13)

ψ(λ) = log

∫
Ω

exp

(∑
α∈Al

λαf
α(x)

)
dµ(x) (14)

λ = (λα1 , . . . , λα|Al|
) : EPl

fα = EPf
α; α ∈ Al (15)

Finally, Theorem 24 applies to finish the proof. �

The above Theorem in its present form is too abstract to be immediately applied in

practice. In general, the existence of a solution to the maximum entropy problem

cannot be taken for granted as can be seen from the following well-known example

[4], [6], [20]: There is no solution to the maximum entropy problem on R constraining

only the mean. However, constraining additionally the second moment gives a unique

maximum entropy distribution that is the normal distribution with the given first two

moments. Thus, in order to produce feasible sets Al as above, one may need to make
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more assumptions. For example, one sufficient condition for the well-posedness of the

maximum entropy problems with moment constraints is given in [20] for Ω open but

otherwise arbitrary. Using our notation, let Λ(Al) = {λ ∈ R|Al| : ψ(λ) <∞}, where

ψ(λ) is as in (14) and the reference measure is the Lebesgue one. The condition then

is that Λ(Al) be open, i.e. Λ(Al) ∩ ∂Λ(Al) = ∅. Also, it is often a mild restriction

in practice to assume compactness of Ω. In this case, first of all, the conclusion of

Theorem 24 always holds (provided that {Pl}∞l=1 are all supported on the same Ω)

due to the uniform approximation of compactly-supported continuous functions by

polynomials. Secondly, it can be seen that if one additionally required that pG, the

density of R∗(P ) with respect to the Lebesgue measure on Ω, be non-zero almost

everywhere on Ω and have finite entropy, then all subsets A ∈ NN would give rise to

well-posed maximum entropy problems with exponential solutions (13).

Alternatively, it is noted and used in [39] that all empirical distributions P̂ on [0, 1]

give rise to well-posed maximum entropy problems with constraints on any set of first

J moments (in order to keep all such constraints active, the sample data may not

be identically equal to 1). Based on the multidimensional version of the Hausdorff’s

moment problem (see, for example, [23]) it appears that these latter one-dimensional

results (Theorem 1 of [30] and Lemma 1 of [39]) also generalize to higher dimensions,

in which case Theorem 28 below generalizes appropriately to include the case of

empirical moment constraints. However, since in practice the use of the computer

often requires discretization of originally continuous Ω, we leave aside the discussion

of the well-posedness of the maximum entropy problem in the continuous case. Also,

in our motivating example (§7) Ω is finite, and we therefore focus on this case in §5.

We next present a modification of Theorem 26 on accelerated convergence toward

the target distribution. For completeness, we present the continuous version of this

result before an appropriate algorithm for the finite case. We need the following

notation: Let ≺ be a total well-ordering of NN such that α, β, γ ∈ NN and α ≺ β

imply α+ γ ≺ β + γ ([7]).

Definition 27 A monomial ordering on {fα}α∈NN is any relation ≺ on NN as above.

For α ∈ NN and for nonempty A ⊂ NN define also

d≺(α, β) = |{γ ∈ NN : min≺(α, β) ≺ γ � max≺(α, β)}|,
d≺(α,A) = d≺(A,α) = min

β∈A
d≺(α, β),
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discrete distances relative to ≺, and for d ∈ N, define discrete d-”balls” around A as

B≺(A, d) = {α ∈ NN : d≺(A,α) ≤ d}.

Theorem 28 Let P be a probability measure supported on compact and G-invariant

Ω. Assume p is a density of P relative to some µ and that Hµ(P ) > −∞ and

pG > 0 (µ−) almost everywhere on Ω. Fix a monomial ordering ≺ (Definition 27)

and a positive integer parameter r, and let 0 = (0, . . . , 0) ∈ NN . Define Pl = PAl
in

accordance with (12) and the scheme below:

A1 = {α∗1} where α∗1 = arg min
α∈B≺({0},r)

D(P‖P{α})

Al = Al−1 ∪ {α∗l } for l = 2, 3, . . . , where α∗l = argmin
α∈B≺(Al−1,r)

D(P‖PAl−1∪{α}).

Then Pl ⇒ R∗(P ).

Note that the minima of D always exist since D is minimized over a finite set. Po-

tential ties in the minimization can in principle be broken arbitrarily, but the choice

of α∗l being the minimum (with respect to ≺) appears to be sensible.

Proof. Based on the above discussion of well-posedness of the maximum entropy

problem, the conditions of the Theorem guarantee the existence and uniqueness of

maximum entropy distributions for all finite subsets A and in particular for Al,

l = 1, 2, . . . as above. Compactness of Ω results in G-determinacy of R∗(P ), and

application of Theorem 26 completes the proof. �

Remark 29 If P 6= R∗(P ), D(P‖Q) need not in general equal D(R∗(P )‖Q) even if

Q = R∗(Q). However, one should not worry about replacing the target distribution P

by its symmetrized version thanks to the additivity of D on nested exponential models

M0 ⊂ M1 ⊂ M2: D(P2|P0) = D(P2|P1) + D(P1|P0) (Pi ∈ Mi, i = 0, 1, 2), which in

our case gives:

D(P‖PA) = D(P‖R∗(P )) +D(R∗(P )‖PA). (16)

Hence, minimizing D(P‖PAl−1∪{α}) is equivalent to minimizing D(R∗(P )‖PAl−1∪{α}).

(See §C for additional comments.)
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5 Adaptive minimax learning of symmetric distributions on

finite Ω

We now specialize this modeling scheme to Ω finite, which is often the case in practice.

Fix an enumeration k(·) : Ω = {ω1, . . . , ωK} → ZK . Relative to this enumeration,

identify fα with K-dimensional vectors (fα(ω1), . . . , f
α(ωK)) ∈ (RΩ)G.

Proposition 30 Let M = |SΩ|. There exist α1, . . . , αM ∈ NN such that {fαk}M
k=1 is

a basis for (RΩ)G.

Proof. Clearly, (RΩ)G has a basis in terms of G-invariant polynomials. One such

basis, for example, is given by {IO}O∈SΩ
, the set of all the orbit indicators computed,

for example, as follows:

IO(x) =
hO(x)

h̄O(O)
, where (17)

hO(x) =
∏

O′∈SΩ
O′ 6=O

m∑
i=1

[
fi(x)− f̄i(O′)

]2
, h̄O(O) =

∏
O′∈SΩ
O′ 6=O

m∑
i=1

[
f̄i(O)− f̄i(O′)

]2
,

and f̄([w]) = f(w) ∀w ∈ Ω is well-defined (with [w] ∈ SΩ, Proposition 15). Since

hO(x) ∈ R[W ]G and M < ∞, the set of all fα(x)’s participating in the above poly-

nomial expansions of hO is finite. Evidently the corresponding set of K-dimensional

vectors fα spans (RΩ)G and therefore contains a desired basis with M elements. �

We introduce more notation: With β ∈ NN , β ⊥ A refers to {fα}A∪{β} being linearly

independent.

Definition 31 Let A ⊂ NN be nonempty and d, r ∈ N, and let ≺ be a monomial

order. Define B⊥
≺(A, d) = {α ∈ B≺(A, d) : α ⊥ A}, and for any A such that

dim (span{fα : α ∈ A}) < M define

dA,r = min{d′ ∈ N : |B⊥
≺(A, d′)| ≥ r}, C∗

≺(A, r) = B⊥
≺(A, dA,r).

Note that dA,r is the depth of the smallest ”shell” around A that includes at least

r monomial vectors fβ each of which being linearly independent of {fα}A. Since

∅ = B⊥
≺(A, 0) ⊂ B⊥

≺(A, 1) ⊂ · · · , and by Proposition 30, dA,r is well-defined. Thus,

C∗
≺(A, r) is a set of at least r candidate indices each of which gives rise to a linearly

independent expansion of {fα}A.
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Adaptive minimax learning of G-invariant distributions

A0 = {0}, Al = Al−1 ∪ {α∗l } for l = 1, 2, . . . ,M − 1

where α∗l = min≺{α′ : D(P‖PAl−1∪{α′}) = min
α∈C∗≺(Al−1,r)

D(P‖PAl−1∪{α})}(18)

Then PM−1 = R∗(P ).

Remark 32

1.) The ground step is special as it enforces the normalization constraint with P0 being

the uniform distribution on Ω.

2.) Suppose that P is an empirical distribution based on an i.i.d. sample. It can then

be easily verified ([24]) that Pl gives the maximum likelihood estimate (of the data

generating distribution) relative to the parametric family (13) (parametrized by

λ). In particular, R∗(P ) gives the maximum likelihood estimate relative to PG.

3.) At each step l = 1, 2, . . . ,M−1 the procedure “explores” at least r new directions,

or predictors, each of which is linearly independent of Span{fα : α ∈ Al}, the span

of the current model predictors. A direction that promises the fastest approach

toward R∗(P ) (or, equivalently, toward P ), is chosen and the current model is

augmented accordingly.

4.) Instead of taking α∗ to be the minimum, potential ties could in principle be broken

arbitrarily.

5.) Let Dl = D(P‖Pl), and Hl = H(Pl), for l = 0, . . . ,M − 1. It can be easily

seen that {Dl} and {Hl} are strictly decreasing and DM−1 = D(P‖R∗(P )) and

HM−1 = H(R∗(P )). Clearly, if α 6⊥ Al, then Dl = D(P‖PAl∪{α}), i.e. adding a

linearly dependent predictor does not change the model and is therefore avoided

by the minimization phase of the procedure.

Even if R∗(P ) is accepted as a working model of P , the utility of the above procedure

would still be limited to simply finding pG(f(x)), an analytic form for R(p). In fact,

computing and working with R(p) (see §6.2) as the K-dimensional vector may also be

acceptable depending on the application. Recall §1 that we have outlined the above

procedure mainly as an example to complete our exposition, emphasizing that avail-

ability of the generators f in their analytic form allows us to enforce G-invariance,
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in principle, using an arbitrary model construction-selection approach. Thus, for in-

stance, the cross-validation and bootstrap methods [18] can be applied directly to

suggest an optimal G-invariant model for P given a fixed data set. Specifically, the

“adaptive minimax learning” above can be halted, say, once the cross-validation es-

timate of the log-likelihood (cross-entropy) loss [18] starts to increase.

6 Computational issues

6.1 Computing minimal generating sets

In Appendix F we compute f “by hand” for our example in §7. However, algorithms

exist to compute such generating sets in a systematic fashion (see, for example, [9], [35]

and [37]) and there are also computer algebra tools implementing those algorithms:

Gap [14], INVAR [22], Macaulay2 [17], Magma [5], to name a few.

6.2 Computing R and SΩ

The operator defined in (6) and used throughout this work admits a natural decom-

position

R = π2 ◦ π1, (19)

where π1 : RΩ → RSΩ surjectively and π2 : RSΩ → RΩ injectively as follows:

(π1(h))(O) =
1√
|O|

∑
ω∈O

h(ω) (20)

(π2(h̃))(ω) =
1√
|[ω]|

h̃([ω]). (21)

Simply speaking, this operator averages a function h over the G-invariant orbits, in

particular it computes the maximum likelihood estimate relative to PG based on an

i.i.d. sample (Remark 32). Thus, to implement this averaging with the computer, one

needs to index the orbits of SΩ. We briefly comment on two types of such indexings.

The first type is based on a naive generation-elimination via ρ : G ↪→ GL(W ), the

matrix representation of G (for a concrete example, see (31)). Below is a sketch of a

naive algorithm that computes χ : ZK → ZM , (M = |SΩ|), an orbit indexing map,

assuming some ordering k(·) of Ω (§5):

χ(m) ⇐ 0, m = 1, . . . , K
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l = 0, m = 0

R = {m′ : m < m′ ≤ K,χ(m′) = 0}
while R 6= ∅ do

m⇐ minR, l⇐ l + 1

for g ∈ G do

χ (k (ρ(g) · ωm)) = l

end for

R = {m′ : m < m′ ≤ K,χ(m′) = 0}
end while

The second approach to calculating S is more algebraic. Recall that IO, O ∈ S can

be computed using minimal generators f as in (17). Next note that writing I and h as

K-dimensional column vectors, we have (π1(h))(O) = Itr
O×h/

√
|O|. Thus, π1(h) can

be computed as π1 × h, where, abusing the notation, π1 becomes the matrix whose

rows are Itr
O, the transposed orbit indicator vectors renormalized by the square root

of the orbit size. It can easily be seen that in this matrix formulation, π2 = πtr
1 ,

which means that the corresponding linear operators are adjoint. Thus, we obtain

the matrix representation of R = πtr
1 × π1. Since R is a projection operator, it is

idempotent. The multiplicity of its eigenvalue λ = 1 is M with the corresponding

eigenspace spanned by the orbit indicators. The orthogonal complement (of dimension

K −M), corresponding to λ = 0, can be easily analyzed via an orthogonal basis of

M groups of basis vectors. For one example, within group m ≤M , j-th basis vector

would have only two non zero components, 1 and -1 in the positions of the “first”

and “j + 1-st” elements of orbit Om, respectively. Note that this type of orthogonal

decomposition is a key component in the analysis of variance ([38]) if we switch to

the context of linear models with G-invariant predictors.

6.3 Entropy maximization. Sequential approach and dimensionality re-

duction.

To solve for λ, numerical and stochastic methods are used and require an initial

guess. A certain computational saving can be expected and indeed has been noticed

(e.g. [24], [39]) handling nested maximum entropy models with moment constraints.

Namely, suppose λ(l) = (λ
(l)
1 , . . . , λ

(l)
l ) have been found at step l, i.e. the distribution

Pl is computed, and suppose an l + 1-st constraint fα is added. One then seeks

λ(l+1) = (λ
(l+1)
1 , . . . , λ

(l+1)
l+1 ). It then often turns out in practice that (λ

(l)
1 , . . . , λ

(l)
l , 0)
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is a good initial guess for λ(l+1). It is also noticed in [24] that the minimization step

contributes significantly to the observed continuity in λ, i.e. when the “most infor-

mative” moments are added first, then the contribution of subsequent steps decreases

rapidly. Thus, to achieve the same precision as with the baseline procedure without

the greedy selection, the overall amount of computations of the “adaptive minimax”

algorithm is comparable to the amount of computations of the baseline procedure:

Specifically, on one hand, each step of the minimization requires computing r or more

models instead of only one, but on the other hand, such computations require pro-

gressively less time.

The next computational aspect has a more analytic nature. Namely, we now show

how the G-invariance allows us to translate the entropy maximization problem on the

original space Ω ⊂ Rm to the quotient space SΩ, which for nontrivial G is “smaller”

than Ω. We also show that in the most important in practice case of Ω finite, the

dimension of the optimization problem indeed reduces from |Ω| to |SΩ|.
Let

B̃ = {B̃ ⊂ SW | ∪O∈B̃ O ∈ B}, (22)

which can be seen to be a σ-algebra on SW . Let M̃ be the image of the following

operator:

π∗1 : M→ M̃ via π∗1(P )(B̃) = P (∪O∈B̃). (23)

Note that π∗1 maps P , the probability measures on B, to P̃ , the probability measures

on B̃. π∗1 is also surjective since π∗1 ◦ π∗2 = id, where

π∗2 : M̃ →M via π∗2(P̃ )(B) =

∫
S

|B ∩ O|
|O|

dP̃ (O). (24)

The right hand side of (24) is well-defined as can be seen from the following:

Proposition 33 Let hB(O) = |B∩O|
|O| . Then hB : SW → R is B̃-measurable, and

hB ◦ [w] : W → R is B-measurable.

We now observe the following:

Proposition 34

R∗ = π∗2 ◦ π∗1, and π∗1 : MG → M̃ and π∗2 : M̃ →MG are bijective.
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Next, we define the adjoints of π∗1 and π∗2:

π2f(O) =
1

|O|
∑
w∈O

f(w) π1f̃(w) = f̃([w]), (25)

and notice:

Proposition 35 π1 and π2 are indeed adjoints of π∗1 and π∗2, respectively, and

R = π1 ◦ π2.

The last two ingredients needed to state the main result of this section are as follows:

τ ∗µ(B̃) =

∫
W

IB̃([w])

|[w]|
dµ(w) τf(O) =

∑
w∈O

f(w), (26)

Theorem 36 Let V : Rm → RJ be measurable and G-invariant. Then

argmax
Q∈PQ�µ

EQV =EP V

Hµ(Q) = π∗2

arg max
Q̃∈P̃ Q̃�τ∗µ

E
Q̃

π2V =Eπ∗1P π2V

[
Hτ∗µ(Q̃) + EQ̃(log(|O|)

] .

Proof.

argmax
Q∈P Q�µ
EQV =EP V

Hµ(Q)
by Propositions 10, 25

= arg max
Q∈PG Q�µ
EQV =EP V

Hµ(R∗Q)

by Proposition 34
= arg max

Q∈PG Q�µ
Eπ∗2◦π∗1QV =Eπ∗2◦π∗1P V

Hµ(π∗2 ◦ π∗1Q)

by Propositions 34, 35
= π∗2

arg max
Q̃∈P̃ Q̃�τ∗µ

E
Q̃

π2V =Eπ∗1P π2V

Hµ(π∗2Q̃)


= π∗2

arg max
Q̃∈P̃ Q̃�τ∗µ γ=

dπ∗2 Q̃

dµ
E

Q̃
π2V =Eπ∗1P π2V

−
∫
W

γ(w) log(γ(w))dµ


by Proposition 11

= π∗2

arg max
Q̃∈P̃ Q̃�τ∗µ γ=

dπ∗2 Q̃

dµ
E

Q̃
π2V =Eπ∗1P π2V

−
∫
W

τγ([w])

|[w]|
log

(
τγ([w])

|[w]|

)
dµ
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= π∗2

arg max
Q̃∈P̃ Q̃�τ∗µ γ=

dπ∗2 Q̃

dµ
E

Q̃
π2V =Eπ∗1P π2V

−
∫
SW

τγ(O) log(τγ(O))dτ ∗µ (27)

+

∫
SW

τγ(O) log(|O|)dτ ∗µ


= π∗2

arg max
Q̃∈P̃ Q̃�τ∗µ

E
Q̃

π2V =Eπ∗1P π2V

[
Hτ∗µ(Q̃) + EQ̃(log(|O|)

] . (28)

It follows from (26) that ∫
S

f̃(O)d(τ ∗µ) =

∫
W

f̃([w])

|[w]|
d(τ ∗µ),

hence (27). Also, τ maps probability densities on W relative to µ to probability

densities on SW relative to τ ∗µ, and τγ = dQ̃/dτ ∗µ, hence (28). Note, that π2γ =

dQ̃/dπ∗1µ is not a probability density. This fact and also the fact that τ ∗ preserves

uniformity of the reference measure (e.g. counting measures on discrete Ω ⊂ W are

transformed into counting measures on SΩ) are the reasons to use the τ transforms

despite the extra term in (28). �

Corollary 37 Let |Ω| = K and |SΩ| = M . Let ρ be the distribution on SΩ defined

via ρ({O}) = |O|/K. Let µ be the counting measure on Ω, and let P be some fixed

probability distribution on Ω. Let V : Ω → RJ be G-invariant. Then

argmax
Q∈P

EQV =EP V

H(Q) = π∗2

arg min
Q̃∈P̃

E
Q̃

π2V =Eπ∗1P π2V

D(Q̃‖ρ)

 .

Proof. Rewrite (27) in the proof of the Theorem as follows:

π∗2

arg min
Q̃∈P̃ γ=

dπ∗2 Q̃

dµ
E

Q̃
π2V =Eπ∗1P π2V

∑
O∈SW

τγ(O) log

(
τγ(O)K

|O|K

)
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= π∗2

arg min
Q̃∈P̃

E
Q̃

π2V =Eπ∗1P π2V

D(Q̃‖ρ)− log(K)

 = π∗2

arg min
Q̃∈P̃

E
Q̃

π2V =Eπ∗1P π2V

D(Q̃‖ρ)

 .

�

Unlike Theorem 36 that is very general, Corollary 37 emphasizes the practical signif-

icance of the main result, i.e. reduction of dimensionality of the original optimization

problem. Note that the orbit sizes (or the distribution ρ) become available once the

partition SΩ has been computed. Thus, if the original problem is solvable with all

|λj| < ∞, one can manipulate the solution to the original problem given by (29) in

order to obtain (30), the corresponding solution on SΩ.

γ(w) = exp

(
J∑

j=1

λjVj(w)− ψ(λ)

)

ψ(λ) = log
∑
w∈Ω

exp

(
J∑

j=1

λjVj(w)

)
(29)

λ = (λ1, . . . , λJ) : EQ(λ)Vj = EPVj; j = 1, . . . , J,

where we assumed linear independence of ~1, V1, . . . , VJ as K-dimensional real vectors.

Thus, except for computing the orbits, the computations required to solve the problem

on SΩ are essentially identical to those of entropy maximization: Solving (numerically

or by simulation) a system of exponential equations to find the Lagrange multipliers

λ. The only difference is therefore the reweighting of the summands of the equations

according to the orbit sizes:

τγ(O) = |O| exp

(
J∑

j=1

λjṼj(O)− ψ(λ)

)

ψ(λ) = log
∑
O∈SΩ

|O| exp

(
J∑

j=1

λjṼj(O)

)
(30)

λ = (λ1, . . . , λJ) : EQ̃(λ)Ṽj = EP̃ Ṽj; j = 1, . . . , J,

where we used Ṽ = π2V , P̃ = π∗1P .

Note finally that in the case of Ω finite, the assumption Ω ⊂ Rm andG ≤ GL(m,R)

is not necessary for the above reduction of dimensionality. Thus, in general Ω can be

any finite set with an arbitrary partition S, in which case G can always be recovered
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from S as a subgroup of the permutation group S|Ω|. S, on the other hand, may

emerge as the set of constancy classes of V : Ω → RJ as one usually defines models

in terms of V and not S.

6.4 Construction of C∗
≺(A, r) from Definition 31

Note that the algorithm (18) refers to the sets C∗
≺(Al−1, r) that contain r or more can-

didate terms fα for model refinement. It would therefore help analyze the algorithm

if we could, at least for some orders ≺, bound (from above) S(Al−1, r), the number of

steps required to generate C∗
≺(Al−1, r). For example, ≺ can be the Graded Lex Order:

α >grlex β if deg(α) =
∑N

n=1 αn > deg(β), or deg(α) = deg(β) and α >lex β.

7 Microimage Distributions

We consider an example from the area of natural image statistics which, in its broad

formulation, studies various statistics defined on digital (or, digitized) images of suf-

ficiently complex scenes and environments. For example, we qualify photographs of a

landscape or an urban scene as complex, or natural, as opposed to a photograph of an

artificially arranged scene of an isolated chair in an otherwise empty room. Statistics

of interest are usually local, i.e. defined on very small, relative to the image size,

regular (e.g. square) subimages, or, microimages. Suppose that images and microim-

ages are identified with I × I and n × n matrices (n < I), respectively, with entries

from CL = {0, . . . , L − 1} (e.g. L = 256). We denote the set of microimages by Ω̃L
n .

Typical studies are based on large collections of digital grey scale images of a partic-

ular origin (e.g. optical or range imaging) and a particular domain (e.g. landscapes,

terrains) followed by a comparative analysis of findings (e.g. topological and geomet-

rical properties of percentile manifolds). Distributional properties of such statistics

are functions of P , the underlying microimage distributions on Ω̃L
n . Defining P is,

however, application dependent and can be quite non obvious as one usually starts

with fixing a microimage sampling scheme without worrying about a corresponding

microimage population. The microimage sampling mechanism then also depends on a

number of application-specific factors, and varies from low-density random sampling

within the entire image [24] to high-density sampling within certain globally defined

regions of interests, or from sampling at regular grid nodes [24] to conditional sam-

pling at high contrast regions [15], [27], and [33]. In principle, every distinct sampling
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scheme leads to its own definition of the microimage population or, equivalently, P .

Remarkably ([24]), certain properties of microimage samples appear stable regardless

of the particular sampling scheme and the imaging domain. This, to a certain extent,

allows one to think of the microimage distribution P . It is this “universal” P whose

properties we discuss next.

7.1 The group G of Microimage Symmetries

There has been found ample evidence of P respecting the geometric symmetries of

Ω̃L
n (n is typically 2 or 3 and I = 100, . . . , 1500. Ω̃L

n is identified with the square-

based parallelepiped whose bases correspond to the “all-dark” (0) and “all-bright”

(L− 1) configurations. This evidence includes visual inspection of graphs of various

multidimensional local statistics [19], point estimates of probabilities of high contrast

patches [15], [27], and P -values of statistical tests [24]. Some symmetries, such as

“left-right” and “up-down”, are more pronounced than the others, such as, for exam-

ple, the intensity inversion one. Nonetheless, here we will consider the entire group

G of the corresponding transformations, and one can easily specialize the discussion

to the subgroups of G.

Thus, we define G via its three generators, r, s, and i: Let r represent the counter-

clockwise rotation of the square by π/2, and let s stand for the reflection of the square

through its secondary diagonal. The resulting subgroup of G is isomorphic to D8
1, the

dihedral group of order 8, with the following presentation 〈r, s|r4 = s2 = 1, rs = sr3〉.
Recall that composite actions propagate right to left; for example, rsω acts on ω by

the diagonal reflection s followed by the rotation r.

The last symmetry required to generate G is that with respect to the photometric

inversion, denoted here by i: i(ω) = L− ω, ω ∈ Ω̃L
n . Finally, the group G generated

by all the above symmetries has presentation 〈r, s, i|r4 = s2 = i2 = 1, si = is, ri =

ir, rs = sr3〉. Therefore, G ∼= D8 × C2, where C2
∼= Z2

∼= 〈i〉 is the cyclic group of

order two.

In order to simplify computations (including establishing a group isomorphism

between G and the corresponding subgroup of GL(n2,R)), we standardize intensity

ranges CL: {1−L
2L
, 3−L

2L
, . . . , L−1

2L
}, embedding them in [−0.5, 0.5] via c 7→ 2c−(L−1)

2L
, c ∈

CL. The corresponding state spaces are consequently embedded in Ωn
def
= [−0.5, 0.5]n

2

1We follow the notation of [10] in which D2n stands for the group of all symmetries of a regular n-gon. Another

popular notation for this group is Dn.
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in the same manner (ω 7→ 2ω−(L−1)
2L

), and will be written as ΩL
n . Thus, by partitioning

(quantizing) Ωn uniformly as below(
(
−L
2L

+
1 + 2 · 0

2L
,
−L
2L

+
1 + 2 · 1

2L
] ∪ · · · ∪ (

−L
2L

+
1 + 2 · (L− 1)

2L
,
−L
2L

+
1 + 2 · L

2L
]

)n2

one can think of ω = (ω1,1, . . . , ωn,n) ∈ Ω̃L
n as the central point of (ω1,1 − 1

2L
, ω1,1 +

1
2L

]× · · · × (ωn,n − 1
2L
, ωn,n + 1

2L
], the corresponding n2-dimensional partition cell.

We now assume n = 2. With the standard basis for R4, the matrix representation

of G is generated by

r
ρ7→


0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 s
ρ7→


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 i
ρ7→


−1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 (31)

As explained in §6, knowing SΩ is important for understanding the complexity of

PG, for obtaining the Reynolds operator R in its matrix form §6.2, and for efficient

computation of the invariant models §6.3.

Proposition 38 Let L be even. Then |SΩL
2
| = L4+2L3+6L2+4L

16
. There are L orbits of

size two, L2

4
orbits of size four, 2L3+3L2−10L

8
orbits of size eight, and L4−2L3−4L2+8L

16

orbits of size 16.

This proposition and its proof (§E) suggest the following asymptotic result for any

finite subgroup G ≤ GL(n2,R) acting on ΩL
n for any n and L: The leading term of

|SΩL
n
| is |ΩL

n |
|G| , i.e., |SL||G|

|ΩL
n |

→ 1 as L→∞. In particular, not surprisingly the complexity

of the corresponding models PG grows as Ln2
(= |ΩL

n |). However, one needs to recall

the technical issues of computing invariant distributions (30) in order to appreciate

this reduction of model dimensionality. Thus, for example, L = 16 and n = 2 give

|Ω| = 65536 and |SΩ| = 4708, almost 14-fold reduction that is surely appreciated by

any computational method of parameter estimation.

7.2 A minimal set of generators of R[R4]G.

Before we propose a particular set of invariant generators for R[x1, x2, x3, x4]
G, let

us recall that, according to (31) and (5), the G action on R[x1, x2, x3, x4] can be

concisely expressed via the action of r, s, i, generators of G, on x1, x2, x4, x4, canonical
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generators of R[x]:

rx1 = x2; rx2 = x3; rx3 = x4; rx4 = x1;

sx1 = x1; sx2 = x4; sx3 = x3; sx4 = x2;

ixk = −xk, k = 1, 2, 3, 4 (32)

Theorem 39 The following set of polynomials is a minimal set of generators of

R[x1, x2, x3, x4]
G:

f1(x) = (x1 + x3)(x2 + x4),

f2(x) = x1x3 + x2x4,

f3(x) = x2
1 + x2

2 + x2
3 + x2

4, (33)

f4(x) = x1x2x3x4,

f5(x) = (x2
1 + x2

3)(x
2
2 + x2

4).

Also,

R[x1, x2, x3, x4]
G

(f1,...,f5)∼= R[w1, w2, w3, w4, w5]/JF , where (34)

JF = {h ∈ R[w1, w2, w3, w4, w5] : h(f1, f2, f3, f4, f5) = 0 ∈ R[x1, x2, x3, x4]} =

〈q〉, and q(w1, w2, w3, w4, w5) = 4w2
1w3 + 8w1w2w5 + 2w1w3w5 − 2w1w

2
4w5+

16w2
2 − 8w2w3 − 8w2w

2
4 + 4w2w

2
5 + w2

3 − 2w3w
2
4 + w4

4 .

A proof of the theorem is given in Appendix F. We base our proof on a very intuitive

approach, which, in particular, does not require familiarity with algebraic geometry or

invariant theory (§6.1). One classical upper bound due to Noether gives N ≤
(

m+|G|
|G|

)
.

In our case the above upper bound is
(
4+16
16

)
= 4845. This might be too large for a

direct manual execution of the corresponding algorithm to find such generators. Our

case turns out to be special, however, in that we nearly achieve the lower bound

(m ≤ N) determined by dim R4 = 4. This small number of generators encourages

one to use them in practice for orbit-indexing (§6.2).

8 Conclusion

In this paper, we introduce the notion of invariance under a finite group of linear

transformations of a Euclidean space into probabilistic and statistical modeling in
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general, and into the uniqueness part of the problem of moments, in particular. Fur-

thermore, we illustrate significance of this notion by providing a concrete example

of such invariances encountered in natural image statistics. We also discuss several

computational issues arising from the presence of such invariances, or symmetries, in

probabilistic and statistical models. In particular, we attempt to increase awareness

of availability of algebraic software tools for statistical modeling in the presence of

such invariances. Deriving performance bounds for, and advancing the algorithms to

compute such invariant statistical models in practice presents a direction for future

work.

A Algebraic Supplements

This section presents proofs and remarks on the notions from §2.

Proposition 4The following actions are well-defined.

1.) The (restricted) action of G on an invariant Ω ⊂ W .

2.) The G action on B, the Borel σ-algebra on Ω:

(3)gB = {gω : ω ∈ B}. (35)

3.) The G action on M, the set of (positive) measures on B:

(4)(gP )(B) = P (g−1B), B ∈ B, P ∈M. (36)

4.) The G action on R[W ], the set of real polynomials in m indeterminates:

(5)(gf)(v) = f(g−1v), where g ∈ G and f ∈ R[W ] and v ∈ W. (37)

Proof.

1.) Straightforward verification.

2.) Clearly, ∀B ∈ B and ∀g ∈ G gB ∈ B (any g maps an open ball in Ω to an open set

in Ω), and (g1g2)B = g1g2B immediately follows from its pointwise counterpart.

3.) Let g and P be arbitrary elements of G and M, respectively. Clearly, ∀B ∈
B g−1B ∈ B, hence gP is defined on the entire B. It is also obvious that

gP (∅) = P (g−1∅) = P (g∅) = 0. Note that this action is also preserved if M is
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restricted to the set of probability measures, since in that case 0 ≤ gP (B) ≤ 1 and

gP (Ω) = P (g−1Ω) = P (Ω) = 1 hold (all transformations g ∈ Gmap Ω onto itself).

Finally, for any collection {Bn}∞n=1 of disjoint Borel sets, the Borel sets {g−1Bn}∞n=1

are clearly also disjoint (all transformations g ∈ G are one-to-one), and thus:

gP (∪∞n=1Bn) = P (g−1 ∪∞n=1 Bn) = P (∪∞n=1g
−1Bn) =

∞∑
n=1

P (g−1Bn) =
∞∑

n=1

gP (Bn).

4.) Straightforward verification.

�

Proposition 9

M∗ = {P ∈M : EP‖X‖d <∞ ∀d ≥ 0}

Proof. Let P ∈ M∗, and let d ≥ 0 be arbitrary. Then, EP‖X‖d < P (B(0, 1)) +

EP‖X‖D, where B(0, 1) is the unit ball, D is even and D > d. The first term is finite

as α = 0 is included in the definition of M∗ and the second term breaks down into

a finite sum of “even” mixed moments, each of which is again finite by the definition

of M∗. To see the reverse inclusion, assume EP‖X‖d <∞ ∀d ≥ 0 and let α ∈ Nm be

arbitrary. Then,

(EP |X|α)m ≤ EP |X1|mα1EP |X2|2α2EP |X3|3α3 · · ·EP |Xm|mαm

follows from Hölder’s inequality. At the same time, every factor of the righthand side

is finite as can be seen, for example, from the following:

EP |X1|mα1 ≤ P ([−1, 1]× Rm−1) + EP |X1|2mα1 ≤ EP‖X‖0 + EP‖X‖mα1 <∞.

�

More on Reynolds operator defined in (6).

In polynomial algebra, this “averaging” map is called the Reynolds Operator. The

orbit-averaging feature of this operator is apparent from its definition and the fol-

lowing property further underlines the correspondence with probabilistic averaging:

∀f ∈ RΩ and ∀h ∈ (RΩ)G, R(hf) = hR(f). The probabilistic interpretation is that a

random variable which is measurable relative to the σ-algebra on which conditioning

is performed can almost surely be factorized through the conditional expectation.

Proposition 10

Consider R mapping the space of measurable functions on W onto (RW )G and the

linear functionals f 7→
∫

W
f(x)dP (x) defined by P ∈M. Then R and R∗ are adjoint.
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Proof. First show that for simple functions φ,
∫

W
R(φ(x))dP (x) is indeed equal to∫

W
φ(x)d(R∗(P ))(x) and then use the definition of the Lebesgue integral to extend

this equality to all the measurable functions. �

Proposition 11

1.) Let P ∈ M have a density p relative to some reference measure µ. Then R(p) is

a density of R∗(P ) relative to µ.

2.) Let p be a density of a G-invariant measure P relative to µ, then p is µ-a.e.

G-invariant.

Proof. The second statement follows immediately from the first one. To prove the

first, let B ∈ B be arbitrary and note

R∗P (B) = 1
|G|
∑
g∈G

P (gB) =
1

|G|
∑
g∈G

∫
gB

p(x)µ(dx)

= 1
|G|
∑
g∈G

∫
B

p(gy)| det(g)|µ(dy) =

∫
B

Rp(y)µ(dy).

| det(g)| = 1 follows from finiteness of G ⊂ GL(m,R). �

Remark 40 Despite being finite, minimal generating sets need not in general have

the same cardinality unless one explicitly requires the minimality of their cardinality.

Proposition 15 Let f1, . . . , fN generate R[W ]G and let f = (f1, . . . , fN) : W →
RN .Then the map f̄ : SW → RN mapping [w], the equivalence class of w ∈ W , to

f(w), is well-defined and injective. Thus SW
∼= f(W ), the image of f in RN .

Proof. The G-invariance of f1, . . . , fN means constancy of f on the orbits of SW .

Thus [w]
f̄7→ f(w) is indeed well-defined as a map from SW onto f(W ). Therefore,

we need only prove that, given any two distinct orbits O1,O2 ∈ SW , f̄(O1) 6= f̄(O2).

We show this by exhibiting a G-invariant polynomial h that takes distinct values

on O1 and O2, and then conclude that the values assumed by at least one of the N

generators on these orbits must be distinct since h can be expressed (as a polynomial)

in terms of the given generators.

The finite size of the orbits allows the following crude construction of h:

h̃O1(x) =
∏
g∈G

m∑
l=1

[xl − (gω)l]
2 , ω ∈ O1 (38)
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hO1(x) = R(h̃)(x). (39)

The definition (38) ensures that h̃O1(v) = 0 (and consequently h(v) = 0) if and only

if v ∈ O1. In (39), we average h̃O1 over all the G-orbits in order to guarantee G-

invariance. Note that hO1 separates O1 from the rest of the orbits, since for each

g ∈ G the only roots of gh̃O1 are the points in O1. In particular, hO1 assumes distinct

values on O1 and O2. �

B Invariant measures, moments, and determinacy

Proposition 17 Let f1, . . . , fN be a minimal generating set. Then MG
∗ = {P ∈

MG : EP |fα| <∞ ∀α ∈ NN}.
Proof. The inclusion of MG

∗ into the right hand side is obvious. To show the other

inclusion, we take α∗ ∈ NN arbitrary and P ∈ RHS and otherwise arbitrary. Let Σk

be the set of all k-subsets of {1, . . . ,m}, and notice:

EP |Xα∗| =
∑

0≤k≤m
σ∈Σk

∫
|xj |≥1 ∀j∈σ

|xj |<1 ∀j 6∈σ

|xα∗|dP

≤
∑

0≤k≤m
σ∈Σk

∫
|xj |≥1 ∀j∈σ

|xj |<1 ∀j 6∈σ

∏
i∈σ

x
2α∗i
i dP

≤
∑

0≤k≤m
σ∈Σk

∫
Rm

∏
i∈σ

x
2α∗i
i dP

=
∑

0≤k≤m
σ∈Σk

∫
Rm

∏
i∈σ

x
2α∗i
i dR∗P

=
∑

0≤k≤m
σ∈Σk

∫
Rm

R(
∏
i∈σ

x
2α∗i
i )dP <∞.

In the above we used the fact R∗ and R are adjoint (Proposition 10). The last

inequality follows from that R(
∏

i∈σ x
2α∗) is G-invariant and hence is a polynomial

in f -generators:
∑

α aαf
α, but EPf

α ≤ EP |fα| <∞ for all α ∈ NN . �

Definition 18 Let P ∈ MG
∗ have s(P ), its G-invariant moments, relative to some

minimal generating set. Then P is said to be G-determinate by s(P ), or simply G-

33



determinate, if no other measure in MG
∗ has the same set of moments s(P ) relative

to the chosen generating set.

Let us prove that this notion is well-defined:

Proof. Let f1, . . . , fN and h1, . . . , hL be two distinct minimal sets of generators, and

let sf (P ) and sh(P ) be the corresponding sets of G-invariant moments. Suppose

that P is the only measure in MG
∗ possessing sf (P ), and suppose that there exists

Q ∈ MG
∗ such that Q 6= P and sh(P ) = sh(Q). Then there must exist α ∈ NN such

that EPf
α 6= EQf

α. Since fα is G-invariant, it can be written as a polynomial in

h-generators:
∑

β aβh
β, but then for each monomial we have EPh

β = EQh
β. This

clearly contradicts EPf
α 6= EQf

α. �

Lemma 20 The map f̃ : MG → M̃ via f̃(P )(B) = P (f−1(B)) for any B ∈ B(RN),

is one-to-one.

Proof. Let P,Q ∈ MG
∗ be distinct, and let B ∈ B(Ω) be such that P (B) > Q(B).

Now, define h(x) = R(IB(x)), the G-symmetrized indicator function of B. Next

note that P (B) = EP IB(X) = EPh(X), where the random vector X is distributed

according to P , and the second equality is a consequence of G-invariance of P . Also

note that similarly, Q(B) = EQh(X), and therefore EPh(X) > EQh(X).

Observe that the level sets h−1(x ≥ c) for any c ∈ R are also G-invariant:

gh−1(x ≥ c) = {gw : w ∈ W h(w) ≥ c} = {w′ : g−1w′ ∈ Wh(g−1w′) ≥ c} =

= {w′ : g−1w′ ∈ Wgh(w′) ≥ c} = {w′ : g−1w′ ∈ Wh(w′) ≥ c} =

= {w′ : w′ ∈ Wh(w′) ≥ c} = h−1(x ≥ c)

Now, EPh(X) =
∑

c∈{h(w): w∈W} P (h(X) ≥ c), where the summation has a finite

number of terms due to the special form of h. Hence, there must be at least one

term such that P (h(X) ≥ c) > Q(h(X) ≥ c), which gives us a G-invariant set

A = h−1(x ≥ c) (that is obviously also Borel) on which P and Q differ.

It now remains to prove that f̃(P ) 6= f̃(Q). To this end we show that

f̃(P )(fA) = P (f−1fA)

= P (f̄−1f̄
·
∪O⊂A O) (40)

= P (
·
∪O⊂A f̄

−1f̄(O))

= P (
·
∪O⊂A O) (41)

= P (A) (42)
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Proposition 5 gives A =
·
∪O⊂A O used in (40) and (42), and Proposition 15 implies

(41).

Summarizing the above, we get f̃(P )(fA) > f̃(Q)(fA), finishing the proof of the

Lemma. �

C Sequential G-invariant modeling

Proposition 25 Let P have a density p relative to λ. Then

H(P ) ≤ H(R∗P ) ≤ H(P ) + log |G|.

The equality in place of the first inequality occurs if and only if P is G-invariant.

Proof. To see the first inequality, first recall that D(P |Q) ≥ 0 with the strict equality

if and only if P = Q (use log x ≤ x− 1 with the strict equality only at x = 1). Then

notice that

0 ≤ D(P |R∗(P )) = −H(P ) + EP log(1/R(p(X))),

and by Proposition 10:

EP log(1/R(p)(X)) = ER∗(P ) log(1/R(p)(X)) = H(R∗(P )).

Finally, noticing that |O| ≤ |G|,∀O ∈ SW , gives:

D(P |R∗(P )) ≤
∫

W

p(x) log
maxy∈[x] p(y)

maxy∈[x] p(y)/|[x]|
dµ(x) =

∫
W

p(x) log |[x]|dµ(x) ≤ log |G|.

Summarizing the above: H(R∗(P )) = H(P ) +D(P |R∗(P )) ≤ H(P ) + log |G|. �

Remark 29 continued. In order to see more directly that minimizingD(P |PAl−1∪{α})

is equivalent to minimizing D(R∗(P )|PAl−1∪{α}) note that the minimization takes

place only within the term −EP log(p′(X)), where p′ is a G-invariant density of

PAl−1∪{α} (Proposition 11). Recalling (Proposition 10) that the operators R and

R∗ are adjoint and Proposition 11, establishes EP log(p′(X)) = EPR(log(p′(X))) =

ER∗(P ) log(p′(X)).

D Computational Issues

Proposition 33 Let B ∈ B and hB(O) = |B∩O|
|O| . Then hB : SW → R is B̃-measurable,

and hB ◦ [w] : W → R is B-measurable.

Proof. Let B ∈ B, then
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hB([w]) =
1

|G|
∑
g∈G

IB(gw). (43)

To see this, notice

hB([w]) =
1

|Gw||[w]|
∑

hGw∈G/Gw

|Gw|IB(hw)

=
1

|G|
∑

hGw∈G/Gw

|hGw|IB(hw) (44)

=
1

|G|
∑

hGw∈G/Gw

∑
g∈hGw

IB(gw) (45)

=
1

|G|
∑
g∈G

IB(gw). (46)

Equalities (44)-(46) follow from the isomorphism between the orbit [w] and G/Gw,

the left cosets hGw of Gw, the stabilizer of [w]. Evidently, IB(gw) is measurable for

all g ∈ G. �

Proposition 34

R∗ = π∗2 ◦ π∗1
Proof. Let B ∈ B, then

R∗(P )(B) =
1

|G|
∑
g∈G

P (gB) (47)

= EPhB([·]) by (43)

= EP
|[w] ∩B|
|[w]|

= Eπ∗1(P )
|O ∩B|
|O|

(48)

= π∗2 ◦ π∗1(P )(B). (49)

Equality (47) is due to (4) and (7). Equalities (48) and (49) follow from the definitions

(23) and (24). �

E The structure of SΩ2
L

Proposition 38 Let L be even. Then |SΩ2
L
| = L4+2L3+6L2+4L

16
. There are L orbits

of size two, L2

4
orbits of size four, 2L3+3L2−10L

8
orbits of size eight, and L4−2L3−4L2+8L

16
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orbits of size 16.

Proof. Orbit counting can be organized by group elements following Burnside’s

Lemma ([10], [38]):

|SΩ2
L
| = 1

|G|
∑
g∈G

|{ω ∈ Ω2
L : gω = ω}|.

Since we are interested in orbit size distribution and since the number of possible

orbit sizes is much less than 16 (the order of the group), we organize the counting by

the orbit size.

The n = 1 case is special but trivial. There are two orbits of size two:{
− 1

2
− 1

2

− 1
2
− 1

2

,
1
2

1
2

1
2

1
2

}
,
{
− 1

2
1
2

1
2

− 1
2

,
1
2

− 1
2

− 1
2

1
2

}
,

one orbit of size four: {
− 1

2
− 1

2
1
2

1
2

,
1
2
− 1

2
1
2
− 1

2

,
1
2

1
2

− 1
2
− 1

2

,
− 1

2
1
2

− 1
2

1
2

}
,

and one orbit of size eight:{
1
2
− 1

2
1
2

1
2

,
1
2

1
2

1
2
− 1

2

,
1
2

1
2

− 1
2

1
2

,
− 1

2
1
2

1
2

1
2

,
− 1

2
1
2

− 1
2
− 1

2

,
− 1

2
− 1

2

− 1
2

1
2

,
− 1

2
− 1

2
1
2

− 1
2

,
1
2

− 1
2

− 1
2
− 1

2

}
To prove the general case, one first recalls that ∀O,∀ω ∈ O, |O| = |G : Gω|, the

size of the orbit O equals the index of the stabilizer Gω.

Since |G| = 16, |O| can only be 1, 2, 4, 8, 16. Clearly, there is no ω with Gω = G

because i(ω) = ω has no solution. For the same reason Gω can not contain i, si, or

r2si among its generators. This leaves only two copies of D8 (i.e. 〈r, s|r4 = s2 =

1, rs = sr3〉 and 〈ri, s|(ri)4 = s2 = 1, (ri)s = s(ri)3〉) as possible stabilizers of index

two. The first group gives rise to the two equations r(ω) = ω and s(ω) = ω with L

solutions of the form ( λ λ
λ λ ) , λ ∈ CL, thus yielding L/2 orbits of size two. The second

choice implies that (ri)(ω) = ω and s(ω) = ω, resulting in the 2n patches of the

form
( −λ λ

λ −λ

)
, λ ∈ CL that are partitioned into L/2 size-two orbits. Hence, the total

number of size-two orbits becomes L.

We now count orbits of size four. The following subgroups are the only subgroups

of G of index four not containing i, si, or r2si: 〈r〉, 〈ri〉, 〈r3i〉, 〈r2, s〉, 〈r2, rs〉, 〈r2, rsi〉,
〈r2i, rs〉, 〈r2i, rsi〉. Since all the ω’s fixed by the rotation group are necessarily fixed by

the entire 〈r, s|r4 = s2 = 1, rs = sr3〉 group, the rotation group can not be a proper

stabilizer itself. Similarly, (ri)(ω) = ω ⇒ s(ω) = ω implies that 〈ri〉 is a proper

subgroup of a larger stabilizer, and for the same reason (r3i)(ω) = ω ⇒ s(ω) = ω
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makes it impossible for 〈r3i〉 to be a stabilizer. Now notice, 〈r2, rs〉 can not be a

proper stabilizer since [(r2)(ω) = ω] ∧ [(rs)(ω) = ω] ⇒ r(ω) = ω2; 〈r2, rsi〉 can not

be a proper stabilizer because [(r2)(ω) = ω] ∧ [(rsi)(ω) = ω] ⇒ (ri)(ω) = ω. Finally,

〈rs, r3s〉 fails to be a stabilizer since [(rs)(ω) = ω] ∧ [r2(ω) = ω] ⇒ r(ω) = ω.

Next, 〈r2, s〉 is a stabilizer for all elements of the form:
(

λ γ
γ λ

)
, where γ, λ ∈ CL, γ 6=

λ, γ 6= −λ. Since there are L(L − 2) such matrices, and the orbit of each of them

consists of matrices of the same form (up to renaming of λ and γ), they must form

exactly L(L− 2)/4 size-four orbits.

Matrices of the form
(
−λ −λ
λ λ

)
, with λ ∈ CL are stabilized by 〈r2i, rs〉. In fact, these

will represent only L/2 distinct matrices as λ runs effectively only through half of the

range CL. Since no two distinct such matrices fall into the same orbit, we obtain L2/4

as the total number of size-four orbits. We also notice that the subgroup 〈r2i, rsi〉 is

a stabilizer for the elements of the form
(

λ −λ
λ −λ

)
, which are rotationally equivalent to

the previous matrices, hence adding no new orbits.

The last task is to compute the number of orbits of size eight. First, we list all

the subgroups of index eight (thus, order two) not containing i, si, or r2si. These

are: 〈r2〉, 〈r2〉, 〈r2i〉, 〈s〉, 〈r2s〉, 〈rs〉, 〈r3s〉, 〈rsi〉, and 〈r3si〉. 〈r2〉 immediately leaves

the list since it is a proper subgroup of a larger stabilizer (r2(ω) = ω ⇒ s(ω) = ω).

Matrices of the form
(

λ δ
γ λ

)
, where δ, γ, λ ∈ CL, γ 6= δ, are stabilized by 〈s〉, whereas

rotationally equivalent to them matrices of the form
(

δ λ
λ γ

)
are stabilized by 〈r2s〉.

Since size-eight orbits generated by these 2L2(L− 1) matrices are composed of these

matrices only, we arrive at L2(L − 1)/4 distinct orbits of size eight. Next, observe

that 〈rs〉 fixes L(L− 2) matrices of the form ( γ γ
λ λ ), with γ, λ ∈ CL, γ 6= λ, γ 6= −λ,

whereas their L(L − 2) rotational equivalents
(

λ γ
λ γ

)
are fixed by 〈r3s〉. Since all

the matrices inside the corresponding orbits of size eight are of either of the two

forms, we add L(L− 2)/4 orbits of size eight. The same number of L(L− 2)/4 size-

eight orbits come from L(L − 2) matrices of the form
( −λ −γ

λ γ

)
fixed by 〈r3si〉, with

γ, λ ∈ CL, γ 6= λ, γ 6= −λ, and from their L(L − 2) rotational equivalents of the

form
(

γ −γ
λ −λ

)
fixed by 〈rsi〉. The last source of size-eight orbits is matrices stabilized

by 〈r2i〉. They are represented by
( −γ −λ

λ γ

)
, where γ 6= λ, γ 6= −λ. There are exactly

L(L− 2) such matrices, producing the last L(L− 2)/8 orbits of size eight.

Summing over orbits of sizes less than 16, we get 2× L+ 4× L2/4 + 8× (L3/4 +

3L2/8− 5L/4) as the total number of elements in these orbits. Hence, the number of

2We use “∧” to denote the logical and.
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orbits of size 16 is (L4 − 2L3 − 4L2 + 8L)/16 = n4 − n3 − n2 + n. Finally, the total

number of orbits is L4+2L3+6L2+4L
16

= n4 + n3 + n(3n+1)
2

. �

F Generators for R[x]G

Theorem 39. The following set of polynomials is a minimal set of generators of

R[x1, x2, x3, x4]
G:

f1(x) = (x1 + x3)(x2 + x4),

f2(x) = x1x3 + x2x4,

f3(x) = x2
1 + x2

2 + x2
3 + x2

4, (33)

f4(x) = x1x2x3x4,

f5(x) = (x2
1 + x2

3)(x
2
2 + x2

4).

Also,

R[x1, x2, x3, x4]
G

(f1,...,f5)∼= R[w1, w2, w3, w4, w5]/JF , where (34)

JF = {h ∈ R[w1, w2, w3, w4, w5] : h(f1, f2, f3, f4, f5) = 0 ∈ R[x1, x2, x3, x4]} =

〈q〉, and q(w1, w2, w3, w4, w5) = 4w2
1w3 + 8w1w2w5 + 2w1w3w5 − 2w1w

2
4w5+

16w2
2 − 8w2w3 − 8w2w

2
4 + 4w2w

2
5 + w2

3 − 2w3w
2
4 + w4

4 .

Proof. It is immediate to see that f1, . . . , f5 respect the action of r, s, i, generators of

G. Therefore, f1, . . . , f5 ∈ R[x1, x2, x3, x4]
G. To prove that they indeed generate the

entire ring, we consider a sequence of decompositions of the original G action, first

step of which is given by:

SR4
∼= (R4/G1)

/
(G/G1) ,

where G1 = 〈s, r2|s2 = (r2)2 = 1, r2s = sr2〉EG (50)

The equation above simply says that the original action of G on R4 decomposes into

two actions as follows: First, G1, a normal subgroup of G, acts on R4, producing

the orbit set R4/G1, and then the quotient group G/G1 acts on R4/G1, resulting

in “the same” orbits SR4 , just as if G acted on R4 directly. Thus, we first aim to

find y1(x), . . . , yk(x) for some k, generators for R[x]G1 , and then will focus on the

polynomials (in those generators) that are invariant under G/G1.
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Claim 41 R[x]G1 = R[x1 + x3, x2 + x4, x1x3, x2x4].

Proof. It suffices to prove that R[x]〈r
2s〉 = R[x1 + x3, x2, x1x3, x4] and R[x]〈s〉 =

R[x1, x2 +x4, x3, x2x4], since R[x1 +x3, x2 +x4, x1x3, x2x4] = R[x1 +x3, x2, x1x3, x4]∩
R[x1, x2 + x4, x3, x2x4]. In fact, we only prove the first of these statements since the

second one proves along the same lines interchanging x1 with x2 and x3 with x4. We

argue by induction on the degree function, deg = deg1 + deg2 + deg3 + deg4, where

degk is the highest power of xk (k = 1, 2, 3, 4) in a given polynomial. Let us begin

by noticing that the result holds for all polynomials of deg = 0 (i.e. constants.)

Assume now that the result is true for deg ≤ N, N ≥ 0 and show that it also

holds for deg = N + 1. A generic polynomial r(x1, x2, x3, x4) ∈ R〈r2s〉[x] such that

deg(r) ≤ N + 1 has the form:

∑
i,j,k,l≥0

i+j+k+l≤N+1

ai,j,k,lx
i
1x

j
2x

k
3x

l
4 =

1︷ ︸︸ ︷∑
i,k≥0

i+k≤N

ai,0,k,0x
i
1x

k
3 +

2︷ ︸︸ ︷
aN+1,0,0,0x

N+1
1 + a0,0,N+1,0x

N+1
3 + (51)

3︷ ︸︸ ︷
x1x3

∑
i,k>0

i+k=N+1

ai,0,k,0x
i−1
1 xk−1

3 +
∑
j,l≥0

0<j+l≤N+1


4︷ ︸︸ ︷∑

i,k≥0
0≤i+k≤N+1−j−l

ai,j,k,lx
i
1x

k
3

xj
2x

l
4 (52)

In order for the left hand side to be invariant under x1 ↔ x3, each of the terms 1− 4

in (51)-52 must be invariant under the same action. By the induction argument,

terms of degree N and below are already in the desired form. Thus, the first sum and

all the sums labeled 4 belong to R[x1 + x3, x2, x1x3, x4]. This implies that the entire

double sum of (52) is in R[x1 + x3, x2, x1x3, x4]. The cofactor of x1x3 in the third

term of (52) is also invariant and has degree N , hence lies in R[x1 + x3, x2, x1x3, x4]

as well. The invariance of the second term of (51) forces aN+1,0,0,0 = a0,0,N+1,0. We

now notice that if N = 0, then

aN+1,0,0,0x
N+1
1 + a0,0,N+1,0x

N+1
3 = a1,0,0,0(x1 + x3) ∈ R[x1 + x3, x2, x1x3, x4]

For N ≥ 1, on the other hand,

xN+1
1 + xN+1

3 = (x1 + x3)(x
N
1 + xN

3 )− x1x3(x
N−1
1 + xN−1

3 ) ∈ R[x1 + x3, x2, x1x3, x4]

by the induction argument. This shows that the left hand side of (51),(52) belongs

to R[x1 + x3, x2, x1x3, x4]. �
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Thus, we have obtained a set of generators for R[x]G1 :

y1 = x1 + x3, y2 = x2 + x4, y3 = x3x4, y4 = x2x4, (53)

which are algebraically independent. We now want to find RG/G1 [y1, y2, y3, y4]. Recall

that

G/G1 = {1, r, ı, ır}

and that its action on the orbit set R4/G1 translates into

r : y1 ↔ y2, y3 ↔ y4

ı : y1 7→ −y1, y2 7→ −y2, y3 ↔ y3, y4 ↔ y4

Continuing (50) to decompose the original G action, we write:

(R4/G1)
/
(G/G1) ∼=

(
(R4/G1)

/
G2

)/(
G/G1

/
G2

)
, where G2 = 〈ı〉EG/G1 (54)

Claim 42 R[y1, y2, y3, y4]
G2 = R[y2

1, y
2
2, y1y2, y3, y4]

Proof. Using induction just as in the proof of Claim 41, we can simply imagine

replacing x1 with y1, x3 with y2, x2 with y3, and x4 with y4, which yields equations

essentially identical to (51),(52):

∑
i,j,k,l≥0

i+j+k+l≤N+1

ai,j,k,ly
i
1y

j
2y

k
3y

l
4 =

∑
i,j≥0

i+j≤N

ai,j,0,0y
i
1y

j
2 +

2︷ ︸︸ ︷
aN+1,0,0,0y

N+1
1 + a0,N+1,0,0y

N+1
2 + (55)

y1y2

∑
i,j>0

i+j=N+1

ai,j,0,0y
i−1
1 yj−1

2 +
∑
k,l≥0

0<k+l≤N+1

 ∑
i,j≥0

0≤i+j≤N+1−k−l

ai,j,k,ly
i
1y

j
2

 yk
3y

l
4

The only other difference from the previous proof is as follows: The new second

term 55 disappears if N+1 is odd, whereas even N+1 immediately yields the needed

form, i.e. yN+1
1,2 = (y2

1,2)
(N+1)/2. �

Next, notice:

R[y2
1, y

2
2, y1y2, y3, y4] ∼= R[z1, z2, z3, z4, z5]

/
〈z1z2 − z2

5〉,

under:

y2
1 → z1, y

2
2 → z2, y3 → z3, y4 → z4, y1y2 → z5.
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We now show by induction that(
R[z1, z2, z3, z4, z5]

/
〈z1z2−z2

5〉
)(G/G1)

/
G2= R[z1 + z2, z3 + z4, z3z4, z1z3 + z2z4, z5], (56)

where (G/G1)
/
G2 = 〈r〉, and its action results in exchanging z1 with z2 and z3

with z4. First, denote the right hand side of (56) by R and focus on the inductive

transition from deg ≤ N to deg = N + 1. A generic polynomial of interest splits into

two sums, one with deg ≤ N and the other - with deg = N + 1, each of which is

separately invariant under the action of r. Since the first sum is in R by the induction

assumption, we continue on to decompose the second one as follows:

∑
i,j,k,l≥0

i+j+k+l=N+1

ai,j,k,lz
i
1z

j
2z

k
3z

l
4 =

1︷ ︸︸ ︷
z1z2z3z4

∑
i,j,k,l>0

i+j+k+l=N+1

ai,j,k,lz
i−1
1 zj−1

2 zk−1
3 zl−1

4 + (57)

2︷ ︸︸ ︷
z1z2

 ∑
i,j,k>0

i+j+k=N+1

ai,j,k,0z
i−1
1 zj−1

2 zk
3 +

∑
i,j,l>0

i+j+l=N+1

ai,j,0,lz
i−1
1 zj−1

2 zl
4

+

3︷ ︸︸ ︷
z3z4

 ∑
i,k,l>0

i+k+l=N+1

ai,0,k,lz
i
1z

k−1
3 zl−1

4 +
∑

j,k,l>0
j+k+l=N+1

a0,j,k,lz
j
2z

k−1
3 zl−1

4

+

4︷ ︸︸ ︷
z1z2

∑
i,j>0

i+j=N+1

ai,j,0,0z
i−1
1 zj−1

2 +

5︷ ︸︸ ︷
z3z4

∑
k,l>0

k+l=N+1

a0,0,k,lz
k−1
3 zl−1

4 +

6︷ ︸︸ ︷∑
i,k>0

i+k=N+1

ai,0,k,0z
i
1z

k
3 +

∑
j,l>0

j+l=N+1

a0,j,0,lz
j
2z

l
4 +

7︷ ︸︸ ︷∑
i,l>0

i+l=N+1

ai,0,0,lz
i
1z

l
4 +

∑
j,k>0

j+k=N+1

a0,j,k,0z
j
2z

k
3 +

8︷ ︸︸ ︷
aN+1,0,0,0z

N+1
1 + a0,N+1,0,0z

N+1
2 +

9︷ ︸︸ ︷
a0,0,N+1,0z

N+1
3 + a0,0,0,N+1z

N+1
4

An immediate inspection of (57) combined with the symmetry of the coefficients

ai,j,k,l = aj,i,l,k reveals that each of the terms numbered one through nine is individ-

ually invariant under the the given action. By the inductive argument, terms one
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through five are already in R, and following the pattern of the second term of (51)

eventually shows that terms eight and nine are also in R. We now rewrite the sum

of terms six and seven as follows:∑
i,k>0

i+k=N+1

ai,0,k,0

(
zi
1z

k
3 + zi

2z
k
4

)
+

∑
i,k>0

i+k=N+1

ai,0,0,k

(
zi
1z

k
4 + zi

2z
k
3

)
Observe that for i, k > 0:

zi
1z

k
3 + zi

2z
k
4 = (z1z3 + z2z4)(z

i−1
1 zk−1

3 + zi−1
2 zk−1

4 )− zi−1
1 z2z

k−1
3 z4 − z1z

i−1
2 z3z

k−1
4 (58)

zi
1z

k
4 + zi

2z
k
3 = (z1z4 + z2z3)(z

i−1
1 zk−1

4 + zi−1
2 zk−1

3 )− z1z
i−1
2 zk−1

3 z4 − zi−1
1 z2z3z

k−1
4

We conclude by considering the first of the two equations above and noticing that the

second equation can be treated similarly due to that z1z4 + z2z3 equals (z1 + z2)(z3 +

z4)− (z1z3 + z2z4), and thus lies in R. The following expression in conjunction with

the induction argument helps to see why the left hand side of (58) belongs to R:

zi−1
1 z2z

k−1
3 z4 + z1z

i−1
2 z3z

k−1
4 =


z1z3 + z2z4, if i− 1 = k − 1 = 0

z3z4(z2z
k−2
3 + z1z

k−2
4 ), if i− 1 = 0, k − 1 > 0

z1z2(z
i−2
1 z4 + zi−2

2 z3), if i− 1 > 0, k − 1 = 0

z1z2z3z4(z
i−2
1 zk−2

3 + zi−2
2 zk−2

4 ), if i− 1, k − 1 > 0.

Summarizing the results proved to this point, we return to the initial x indeterminates:

R[x1, x2, x3, x4]
G = R[(x1 + x3)

2 + (x2 + x4)
2, x1x3 + x2x4, (59)

x1x2x3x4, (x1 + x3)
2x1x3 + (x2 + x4)

2x2x4, (x1 + x3)(x2 + x4)]

These generators are not unique, and recognizing that

(x1 + x3)
2 + (x2 + x4)

2 = f3(x) + 2f2(x),

(x1 + x3)
2x1x3 + (x2 + x4)

2x2x4 = 1
2
[f5(x)− f 2

1 (x)]+

f2(x)f3(x) + 2f 2
2 (x)− 2f4(x),

with f1, f2, f3, f4, f5 as in (33), makes it clear that

R[x1, x2, x3, x4]
G = R[f1(x), f2(x), f3(x), f4(x), f5(x)]

G.

A straightforward computation verifies that none of the above five generators can

be expressed as a real polynomial in the remaining four. We conclude by instantiating

a well-known fact (see, for example, [7]):

R[x1, x2, x3, x4]
G ∼= R[w1, w2, w3, w4, w5]/JF , where (34)
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JF = {h ∈ R[w1, w2, w3, w4, w5] : h(f1, f2, f3, f4, f5) = 0 ∈ R[x1, x2, x3, x4]} =

〈q〉, and q(w1, w2, w3, w4, w5) = 4w2
1w3 + 8w1w2w5 + 2w1w3w5 − 2w1w

2
4w5+

16w2
2 − 8w2w3 − 8w2w

2
4 + 4w2w

2
5 + w2

3 − 2w3w
2
4 + w4

4

In order to compute JF , the syzygy ideal, one can use, for example, the elimination

method based on computation of a Gröbner basis for the ideal JF = 〈f2 − w1, f4 −
w2, f5 − w3, f1 − w4, f3 − w5〉 ⊂ R[x1, x2, x3, x4, w1, w2, w3, w4, w5] [7]. The above

generator for JF was computed analytically and also verified using Macaulay2 [17]. �
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