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Weighted Procrustes Analysis for
Diffusion Tensor Imaging

Diwei Zhou, Ian L. Dryden, Alexey A. Koloydenko, and Li Bai

Abstract—There has been substantial interest in the de-
velopment of methods for processing diffusion tensor fields,
taking into account the non-Euclidean nature of the tensor
space. In this paper, we generalise Procrustes analysis to
weighted Procrustes analysis for diffusion tensor smoothing,
interpolation, regularisation and segmentation in which an
arbitrary number of tensors can be processed efficiently
with the additional flexibility of controlling their individual
contributions. An algorithm has been developed for cal-
culating the weighted Procrustes mean tensor. A weighted
regularisation model with Procrustes size-and shape met-
ric is proposed which incorporates the smoothness of the
neighbourhood and the regularisation with the diffusion
behaviour of interest. Our methods and a study of Procrustes
anisotropy measure are illustrated on both synthetic and real
diffusion tensor data.

Index Terms—Diffusion tensor, Procrustes analysis, Reg-
ularisation, Smoothing, Interpolation, Anisotropy measure.

I. INTRODUCTION

Diffusion tensor imaging (DTI) is an advanced mag-
netic resonance imaging (MRI) modality which provides
a unique insight into tissue structure and organisation in
vivo. In DTI, the probability density function of a water
molecule displacement over a fixed time in a voxel is that
of a zero-mean multivariate Gaussian distribution [1]
and its covariance matrix is proportional to the diffusion
tensor. Many methods have been proposed to estimate
the diffusion tensor, such as least squares methods [2],[3]
and Bayesian frameworks [4],[5]. Once the diffusion
tensor is estimated, its eigensystem can be calculated
which plays a significant role in DTI. The eigenvectors
and eigenvalues of the diffusion tensor coincide with
the main diffusion directions and associated diffusivities
in the tissue [6]. In particular, the principal eigenvector
corresponding to the largest eigenvalue represents the
mean fibre orientation at each voxel. The anisotropy
of water diffusion can be captured quantitatively using
tensor-derived diffusion anisotropy measures [7], such
as Mean Diffusivity (MD), Fractional Anisotropy (FA),

D. Zhou is with the School of Technology, University of Wolver-
hampton, Wolverhampton, WV1 1LY, UK. Email: D.Zhou@wlv.ac.uk.

I. L. Dryden is with the Department of Statistics, University of South
Carolina, Columbia, SC 29208, USA. Email: dryden@mailbox.sc.edu.

A. A. Koloydenko is with the Mathematics Department, Royal Hol-
loway, University of London, Egham, Surrey, TW20 0EX, UK. Email:
Alexey.Koloydenko@rhul.ac.uk.

L. Bai is with the School of Computer Science, University of
Nottingham, Jubilee Campus, Nottingham NG8 1BB, UK. Email:
bai@cs.nott.ac.uk.

Relative Anisotropy (RA) and Geodesic Anisotropy (GA)
[8]. DTI has been applied to the study of diseases
such as multiple sclerosis, schizophrenia, and stroke [9].
White matter tractography [10] is another promising
application of DTI for investigating brain connectivity.
However, the estimation of diffusion tensors is noise-
sensitive due to artifacts and limitations resulting from
DTI measurements [11].

There has been substantial interest in the development
of approaches for diffusion tensor processing. A regular-
isation scheme was proposed to process the tensor field
using diffusion direction maps and diffusion anisotropy
maps [12]. A k-means algorithm with the Mahalanobis
distance has been proposed for clustering the tensors in
the thalamus [13]. The Euclidean metric was used in
level set segmentation methods [14], [15] for grouping
tensor data of particular interest. However, the usual
Euclidean method is often unsatisfactory for diffusion
tensors due to the non-Euclidean nature of the diffusion
tensor. One defect with Euclidean calculus is that non-
positive semi-definite symmetric matrices can appear
during Euclidean computation, e.g. in extrapolation [16].
To overcome this problem, several non-Euclidean ap-
proaches were developed. Recently, the affine-invariant
Riemannian [8],[17], [18] and log-Euclidean [16] metrics
using the matrix logarithm have been proposed for
diffusion tensor smoothing and interpolation. Procrustes
analysis is another promising non-Euclidean approach
to diffusion tensor processing [19],[20]. In particular,
the full shape Procrustes and Procrustes size-and-shape
metrics are invariant under simultaneous rotation and
reflection of the tensors. The full Procrustes shape metric
is also invariant under individual scaling of the ten-
sors, and the Procrustes metrics can deal with some
rank-deficient tensors unlike the Riemannian and log-
Euclidean metrics [19].

This paper focuses on generalising Procrustes analy-
sis to weighted Procrustes analysis for diffusion tensor
processing including smoothing, interpolation, regulari-
sation and segmentation in which an arbitrary number of
tensors can be processed efficiently with the additional
flexibility of controlling their individual contributions. In
Section II, some non-Euclidean metrics including the log-
Euclidean, Riemannian, power Euclidean, full ordinary
Procrustes and Procrustes size-and-shape metrics are
reviewed. A weighted Procrustes averaging method and
the corresponding numerical algorithm are proposed for
diffusion tensor smoothing and interpolation in Section
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III. Then in Section IV we develop a weighted regu-
larisation model which incorporates the smoothness of
the neighbourhood and regularisation with a diffusion
behaviour of the user’s choice, which can be exercised
locally. The Procrustes size-and shape metric is of our
main interest in this weighted regularisation model with
applications for tensor field regularisation and segmen-
tation. Results of anisotropy studies and diffusion tensor
processing will be illustrated on both synthetic and real
DT-MR data in Section V.

II. BACKGROUND

A. Logarithm-based metrics
Let Ω(3) be the space of real symmetric 3 × 3 ma-

trices and Ω+(3) be the space of the 3 × 3 positive
definite symmetric matrices. Then the diffusion tensor
D ∈ Ω+(3). The Riemannian and log-Euclidean metrics
are based on the tensor logarithm. The affine-invariant
Riemannian metric between two diffusion tensors D1
and D2 is given by [8], [17], [18]

dR(D1, D2) =‖ log(D−1/2
1 D2D−1/2

1 ) ‖, (1)

where ‖ A ‖=
√

trace{ATA} is the Euclidean norm
(also known as the Frobenius norm). A gradient descent
algorithm for obtaining the mean diffusion tensor esti-
mates of more than two tensors based on this metric
was proposed in [17]. The log-Euclidean metric which is
similar to the above Riemannian metric but with simpler
calculation is given by [16]

dL(D1, D2) =‖ log(D1)− log(D2) ‖ . (2)

Note that metrics (1) and (2) require the tensors to
be strictly positive definite, whereas the space can be
relaxed to positive semi-definite symmetric matrices for
the metrics below in (3), (5), (6).

B. Power Euclidean metric
The power Euclidean metric is another possible metric

given by [19]

dA(D1, D2) =
1
|α| ‖ Dα

1 −Dα
2 ‖, (3)

where Dα = EΛαET , and E and Λ are such that D =
EΛET , and the power α is nonzero and real. Note that
the Euclidean (α = 1), and root Euclidean (α = 1/2), and
log-Euclidean (α→ 0) are all special cases of the power
Euclidean metric.

C. Ordinary Procrustes Analysis
Procrustes analysis is a powerful shape analysis tool

for matching configurations as closely as possible using
the similarity transformations (rotation, translation and
scaling) [21], [22]. To ensure the symmetric positive semi-
definiteness of D, a new reparameterisation

D = QQT (4)

was suggested [5] where Q is a general 3 × 3 matrix.
Then, D1 = Q1QT

1 and D2 = Q2QT
2 . A Procrustes size-

and-shape metric was introduced to match Q1 (from
D1) and Q2 (from D2) under rotation, reflection and
translation while often preserving scale information. The
Procrustes size-and-shape metric is given by [19]

dS(D1, D2) =‖ Q1 −Q2R̂− 13γ̂T ‖ (5)

where R ∈ O(3) is a 3× 3 rotation and reflection matrix
and O(3) is the space of 3× 3 orthogonal matrices. A
3 × 1 location vector is denoted by γ. Note 13 is the
3× 1 vector of ones. The solution (R̂, γ̂) has been given
in [19].

The full ordinary Procrustes metric between D1 and
D2 using rotation, translation and scaling is defined by
[19]

dF(D1, D2) =
∥∥∥ Q1

‖Q1‖
− β̂Q2R̂− 13γ̂T

∥∥∥ (6)

where (R̂, β̂, γ̂) is the solution to the minimisation of a
squared Euclidean distance given by

SF(D1, D2) =‖ Q1 − βQ2R− 13γT ‖2 . (7)

where β > 0 is a scale parameter. The solution (R̂, β̂, γ̂)
has been explicitly described [22], [23]. Note that dF is
invariant under individual scalings of D1, D2, i.e.

dF(β1D1, β2D2) = dF(D1, D2) (8)

for β1 > 0 and β2 > 0.

D. Anisotropy
Fractional anisotropy (FA) is one of the most popular

diffusion anisotropy measures in the MRI community.
FA gives an estimate of the proportion of the ’magnitude’
of D that can be ascribed to anisotropic diffusion [24].
The definition of FA is given by

FA =

√
3[(λ1 − λ̄)2 + (λ2 − λ̄)2 + (λ3 − λ̄)2]√

2(λ2
1 + λ2

2 + λ2
3)

, (9)

where λ̄ =
3
∑

i=1
λi/3. FA ranges from 0 for complete

isotropy to 1 for linear anisotropy. For example, when
λ1 � λ2 = λ3, FA≈ 1. When λ1 = λ2 � λ3, FA≈ 1/

√
2.

FA maps are therefore intuitive to interpret when the
white matter is rendered white and grey matter - dark.

A new anisotropy measure, Procrustes anisotropy
(PA), has been proposed based on the full ordinary
Procrustes metric (6) [19]. The definition of PA is given
by

PA(D) =

√
3
2

dF (I3×3, D)

=

√√√√3
2

3

∑
i=1

(
√

λi −
√

λ)2/
3

∑
i=1

λi (10)

where
√

λ = ∑3
i=1
√

λi/3. It is clear that PA is a
normalisation of the full ordinary Procrustes distance
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from any given diffusion tensor D to the identity tensor,
representing the case of ideal isotropy. As in the case of
FA, the range of PA is [0, 1] with 0 and 1 corresponding
to extreme isotropy and anisotropy, respectively.

An anisotropy measure based on the power Euclidean
metric with power α is a generalisation of FA given by

FA(Dα) =

{
3
2

3

∑
i=1

(λα
i − λα)2/

3

∑
i=1

λ2α
i

}1/2

, (11)

where λα = ∑3
i=1 λα

i /3. It is noted that FA and PA of D
are both members of FA(Dα) when α = 1 and α = 1/2
respectively. Since FA(Dα) is an increasing function of
α (see APPENDIX for proof), PA(D) ≤ FA(D), i.e. PA
maps may generally appear darker than FA maps in the
same region. At the same time, in some regions of high
diffusion anisotropy PA provides better contrast than FA.
A comparison of PA and FA is discussed in Section V-B.

III. WEIGHTED PROCRUSTES AVERAGING

We present here the non-Euclidean method of
weighted Procrustes averaging for defining a sample
mean of N (N ≥ 2) diffusion tensors. The contribution
of a diffusion tensor to the mean tensor is quantified by
the corresponding weight which provides an additional
flexibility of controlling each tensor in the group.

A. Weighted Fréchet mean

Consider a sample of N diffusion tensors D1,..., DN
where Di ∈ Ω+(3), i = 1, . . . , N. We assume that the Di
are independent and identically distributed (i.i.d.) from
a distribution with mean T although care must be taken
in defining what is a mean in a non-Euclidean space.
The sample weighted Fréchet mean is defined by [25],
[16]

T̂ = arg inf
T

N

∑
i=1

wid2(Di, T) (12)

where d is a metric and the weights wi satisfy wi ≥ 0
and ∑N

i=1 wi = 1, and in applications can be, for example,
a decreasing function of the Euclidean distance from
the location of interest to the sampling locations (e.g.,
voxels).

B. Weighted Procrustes mean

A weighted Procrustes framework is proposed to es-
timate the Fréchet mean tensor T̂ when d = dS is the
Procrustes size-and-shape metric, defined in (5). The
weighted Procrustes mean is given by

T̂W = arg inf
T

N

∑
i=1

wid2
S(Di, T). (13)

Specifically,
T̂W = Q̂WQ̂T

W , (14)

where Q̂W = ∑N
i=1 wiQiR̂i and the orthogonal matrices

R̂i, i = 1, . . . , N minimise SW , the sum of weighted
squared Euclidean distances, which is given by

SW(D1, ..., DN) =
N

∑
i=1

wi ‖ QiRi −
n

∑
j=1

wjQjRj ‖2 (15)

and Qi is the decomposition matrix of Di mentioned in
(4). In this study we use the Cholesky decomposition
[2] which is a special case of this reparameterisation,
i.e. Qi = chol(Di) = Li where Li is lower triangular
with positive diagonal entries provided D is strictly
positive definite. Note that dS is not dependent on using
Cholesky versus another decomposition since any two
decomposition matrices of the same tensor are related
via an orthogonal transformation.

We propose Algorithm 1 for computation of the
weighted Procrustes mean.

Algorithm 1 Computation of Weighted Procrustes Mean

1: Initial setting: QP
i ← chol(Di), i = 1, ..., N

2: SW from previous iteration: Sp ← 0
3: SW from current iteration:

Sc ←
N
∑

i=1
wi ‖ QP

i −
N
∑

j=1
wjQP

j ‖2

4: while |Sp − Sc| > tolerance do
5: for i = 1 to N do
6: Q̂i =

1
1−wi

∑
j 6=i

wjQP
j

7: Calculate the R̂i minimising ‖ Q̂i − QP
i Ri ‖

(Procrustes size-and-shape metric)
8: QP

i ← QP
i R̂i

9: end for
10: Sp ← Sc

11: Sc ←
N
∑

i=1
wi ‖ QP

i −
N
∑

j=1
wjQP

j ‖2

12: end while
13: Q̂W ←

N
∑

i=1
wiQP

i

14: return Q̂W

The weighted Procrustes averaging can be applied to
diffusion tensor smoothing and interpolation problems.
Some experimental results can be seen in Section V.

C. Choice of weights

For any application we have some choice of weights
wi where wi ≥ 0 and ∑N

i=1 wi = 1. For example, wi could
be a decreasing function of the Euclidean distance from
the location of interest to the sampling locations i. A
simple setting for the weights is with the inverse distance
function given by

wi =
d−1

i
N
∑

j=1
d−1

j

, i = 1, ..., N (16)
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where di is the Euclidean distance from the location
(voxel) at which the weighted mean is to be estimated,
to the location (voxel) of ith tensor Di.

For more flexibility of weights, an exponential weight
function is proposed and used in this paper as follows:

wi =
exp(−Ad2

i ) + B
N
∑

j=1
[exp(−Ad2

j ) + B]
, i = 1, ..., N (17)

where A, B ≥ 0. It is clear that the two parameter
exponential weight family is very flexible. In this study,
we use the exponential weight function. In a region of
homogeneous diffusion behaviour, a set of equal weights
is preferable. However, for a region with complex dif-
fusion behaviour, the choice of the weight function is
application dependent.

IV. WEIGHTED PROCRUSTES REGULARISATION

In the following, we develop a weighted regular-
istation model which incorporates the smoothness of
local diffusion and regularisation of a prescribed dif-
fusion behaviour. Specifically, the Procrustes size-and-
shape metric is adapted in the regularisation model.

A. Weighted regularisation model
Consider a sample of diffusion tensors D1, . . . , DN

from a noisy tensor field containing N voxels with
coordinates xi ∈ Z3 where i = 1, . . . , N. Now we wish
to carry out regularisation for the tensor field. We pro-
pose a weighted regularisation model which is defined
by minimising the following function, with respect to
Σj ∈ Ω+(3), j = 1, . . . , N,

f =
N

∑
j=1

N

∑
i=1

wijd
p
1 (Di, Σj) + λ

N

∑
j=1

dq
2(Π, Σj)

=
N

∑
j=1

[
N

∑
i=1

wijd
p
1 (Di, Σj) + λdq

2(Π, Σj)

]
, (18)

where the weights wij can be obtained via some decreas-
ing function of the Euclidean distance between xi and
xj, p, q ≥ 0, and λ > 0 is a regularisation parameter
and Π is a reference tensor, representing the prescribed
diffusion behaviour. Note that d1 and d2 are general,
i.e. can be non-Euclidean and need not be the same.
Therefor, the weighted regularisation model (18) is very
flexible in the ways in which it deals with smoothness
and regularisation.

It is clear that the solution Σ̂j, j = 1, 2, . . . , N to the
weighted regularisation model (18) must minimise

N

∑
i=1

wijd
p
1 (Di, Σ) + λdq

2(Π, Σ). (19)

Therefore, the procedure to solve (18) is that we solve Σ̂j
for each j = 1, . . . , N individually as follows

Σ̂j = arg inf
Σ∈Ω+(3)

N

∑
i=1

wid
p
1 (Di, Σ) + λ′dq

2(Π, Σ) (20)

where wi = wij/(w1j + w2j + · · · + wNj + λ) and λ′ =
λ/(w1j + w2j + · · ·+ wNj + λ).

Consider first the case where d1 = d2 is a Euclidean-
based metric dE−based given by

dE−based =‖ g(D1)− g(D2) ‖, (21)

where g is a mapping from Ω+(3) to Ω(3). Note that g
is assumed to be defined via the spectral decomposition
D = VΛVT , i.e. g(D) = Vg(Λ)VT , where g(Λ) is the
diagonal matrix with the g(λi), i = 1, 2, 3 on the main
diagonal, and λi’s are the eigenvalues of D. Assume
also that g has an inverse g−1. We list some possible
choices of dE−based in Table I. Recall that the Euclidean,

TABLE I
CHOICES OF EUCLIDEAN-BASED METRICS

g(D) Metric
log(D) log-Euclidean
chol(D) Cholesky
D Euclidean
2D1/2 Root Euclidean
1
α Dα, α 6= 0 and α ∈ R Power Euclidean

root Euclidean, and the log-Euclidean metrics are three
special cases of the power Euclidean metric.

If p = q = 2, d1 = d2 = dE−based in the weighted
regularisation model (18), then there is a unique solution
to the model (18) which is given by

Σ̂j = g−1(∆̂j) (22)

where

∆̂j =
∑N

i=1 wijg(Di) + λΠ

∑N
i=1 wij + λ

. (23)

For example, if g(D) = 1
α Dα, then

Σ̂j = α∆̂1/α
j . (24)

If g(D) = log(D), then

Σ̂j = exp{∆̂j}. (25)

It is clear that using identical Euclidean-based metrics
for the weighted regularisation is straightforward in
DTI studies. It is more interesting to compare weighted
regularisation methods based on different metrics.

Note p = 2 and q = 0 gives the weighted Fréchet
mean, if q = 0 we have a type of M-estimator [26], [22],
if p = 1 and q = 0 we have the geometric median [27], if
p = 2 and q = 2 non-Euclidean type of ridge-regression,
and if p = 2 and q = 1 a non-Euclidean type of LASSO
[28].

B. Weighted Procrustes regularisation
Now consider the special case that (p, q) = (2, 2) and

d1 = d2 = dS where dS is the Procrustes size-and-
shape metric (see (5)). Then, the weighted Procrustes
regularisation model is given by

fWPS =
N

∑
j=1

N

∑
i=1

wijd2
S(Di, Σj) + λ

N

∑
j=1

d2
S(Π, Σj). (26)
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Using the procedure proposed in (20), the solution Σ̂j,
j = 1, 2, . . . , N is given by

Σ̂j = arg inf
Σ∈Ω+(3)

N

∑
i=1

wid2
S(Di, Σj) + λ′d2

S(Π, Σj). (27)

To solve (27) is equivalent to solve

Σ̂j = arg inf
Σ∈Ω+(3)

N+1

∑
i=1

wid2
S(Di, Σ), (28)

where DN+1 = Π and wN+1 = λ′. Furthermore, the
weighted Procrustes averaging (13) in Section III-B is
proposed to solve for (Σ1, . . . , ΣN) which can be com-
puted using Algorithm (1).

The weighted Procrustes regularisation model (26) can
be used for tensor field smoothing and interpolation.
More importantly, we propose to use the same weighted
Procrustes method for segmentation. In this work, we il-
lustrate the approach by simply examples where a single
structure of interest can be highlighted and ultimately
segmented from a region of interest (ROI). Initial results
of the segmentation will be discussed in Section V-E2.

V. RESULTS

Our methods are illustrated on both synthetic and
real diffusion tensor data. First, we present a study for
comparing the anisotropy measures PA and FA. We then
compare different choices of metrics (the Euclidean, log-
Euclidean, Riemannian, Cholesky, root Euclidean and
Procrustes size-and-shape metrics) using geodesic in-
terpolation and the weighted Procrustes regularisation
model is then applied to synthetic data. The weighted
Procrustes methods are also applied to smooth and
interpolate a tensor field from a healthy human brain.
Finally, the initial results of the Procrustes segmentation
are reported.

A. Materials
A set of diffusion weighted MR images acquired

with the Uniform 32 DTI diffusion gradient direction
scheme [29] from a healthy human brain has been used
for this study. The MR images were acquired using
a spin echo EPI (echo planar imaging) sequence with
diffusion weighting gradients applied with a weight-
ing factor of b=1000 s/mm2 in a Philips 3T Achieva
clinical imaging system (Philips Medical Systems, Best,
The Netherlands). Throughout the subject’s head, 52
interleaved contiguous transaxial slices were acquired
in a matrix of 112x112 (interpolated to 224x224) with
an acquisition voxel size of 1x1x2 mm3. For each slice,
the acquisition was repeated for each of the 32 non-
collinear directions according to the Uniform 32 direction
scheme, and once with no diffusion weighting (b = 0).
A Bayesian estimation method [5] has been employed to
compute the tensor field and all methods of this paper
are programmed with MATLAB (The Mathworks, Inc.,
R2008a).

Fig. 1. Comparison of FA and PA. a: Graph of FA and PA values
as functions of t. b: Derivatives of FA and PA with respect to t. The
x-axis is t ∈ [0, 1] which defines three eigenvalues as t, (1− t)/2 and
(1− t)/2.

B. Anisotropy study

To compare PA with FA, we first define three eigen-
values of the diffusion tensor as functions of a single
parameter t, 0 ≤ t ≤ 1, namely t, (1− t)/2 and (1− t)/2
(e.g. [8]). Figure 1a shows a comparison of the FA and
PA values as t increases from 0 to 1. The diffusion tensor
varies from planar to spherical as t increases from 0
to 1/3. The tensor then becomes linear as t grows to
1. Recall that the PA value is always dominated by
the corresponding FA value (see APPENDIX). Figure 1b
shows the first derivative of FA and PA with respect to
t. Approximately when t < 0.075 or t > 0.708, |PA′(t)|
is larger than |FA′(t)|. This means PA is more sensitive
to changes in highly planar or highly linear anisotropy
of diffusion than FA.

Now let us compare FA and PA maps from real data.
Figure 2a and 2b are FA and PA maps (axial slices) com-
puted from the healthy human brain data. The splenium
in the corpus callosum is one of the regions where the
overall anisotropy is very high [30]. We take the FA
and PA values along the green line in the splenium and
show them in Figure 2c in detail. PA has notably higher
variation than FA. In summary, PA offers better contrast
in highly anisotropic regions.

C. Geodesic interpolation

Now we carry out three experiments to investigate the
geometric nature of geodesic paths obtained with the
different metrics d. Specifically, we choose two tensors
of interest as the end ”points” of a geodesic, and then
interpolate between them by sampling seven additional
tensors along the geodesic as follows:

Di = arg inf
D

(9− i)
8

d2(D1, D) +
(i− 1)

8
d2(D9, D), (29)

where 1 < i < 9, D1 and D9 are the original tensors. For
each tensor D on the geodesic, we measure its size (vol-
ume) of D by |D|, the determinant, and the anisotropy
by PA(D) and FA(D). We also measure orientation of D
by φ defined in (30) as the angle between the principal
directions (eigenvectors) of D and D1.

φ = arcsin(‖ pv1 × pvi ‖), i = 1, ..., 9 (30)
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Fig. 2. Comparison of FA and PA in the splenium. Anisotropy maps
from axial view. a: FA map. b: PA map. c: Graph of FA and PA values
along the green line in a and b.

Fig. 3. Geodesic paths between two general tensors. Two tensors D1
(left in red) and D9 (right in red) with general (i.e. non-collinear, non-
orthogonal) orientation, different shape and size. The geodesic paths
are obtained with dE, dL, dR, dC , dH and dS.

where pvi is the principal eigenvector of Di. First, we
focus on the evolution of the size, shape and orientation
through the geodesic paths. The setting of D1 and D9 is
general, specifically the two tensors are φ = 63◦ apart,
have (10,1,1) and (40,4,1) as their respective spectra, and
therefore differ in shape and size. Six metrics are con-
sidered, namely the Euclidean (dE), log-Euclidean (dL),
Riemannian (dR), Cholesky (dC), root Euclidean (dH) and
Procrustes size-and-shape (dS). Figure 3 shows samples
from the six geodesic paths. This example confirms that
the Euclidean metric is very problematic, especially due
to the parabolic interpolation of the determinant. The
Procrustes metric offers somewhat better interpolation
in terms of orientation and anisotropy (see graphs of φ,
FA and PA). The Cholesky path has a significant cusp in

Fig. 4. Geodesic paths under simultaneous rotation of two tensors
(red) with different metrics.

the tensor’s volume, orientation and anisotropy in this
example. In general, the log-Euclidean, Riemannian and
Procrustes size-and-shape methods seem preferable.

Another experiment is carried out to illustrate the
geometry of geodesic path under rotation. Specifically,
it is known [19] that all of the metrics considered here,
except dC, are invariant to orthogonal transformations
of the underlying 3D space, i.e. d(UD1UT , UD2UT) =
d(D1, D2) where U ∈ O(3). This is very important in
practice as any method for diffusion tensor processing
must be independent of the choice of the reference frame.
Here, we emphasize that all of the considered linear
interpolations using dS and the Euclidean-based metrics,
apart from the Cholesky-based one, are invariant to the
orthogonal transformations, and therefore are indeed
independent of the choice of the reference frame. The
dR-based geodesics are also independent of the choice
of the reference frame. The experiment is described as
follows:

1. Obtain six pairs of diffusion tensors by simul-
taneous rotation.
1.1 Start with two orthogonal tensors D1 and

D9 with the same setting of eigenvalues (40,
2, 1). Since the largest eigenvalue is much
greater than the other two eigenvalues, D1
and D9 are nearly linear and their principal
eigenvectors are orthogonal.

1.2 Rotate the eigenstructures of D1 and D9
simultaneously along the z-axis with step
size of 15◦.

2. Plot the geodesic paths of each pair of tensors
with different metrics.

Figure 4 shows the geodesic paths of each pair of syn-
thetic tensors (red) with different metrics respectively.
It is clear that the geodesic path obtained with the
Cholesky approach is not invariant under the simultane-
ous rotation of D1 and D9, although all the other paths
are.

Figure 5 shows interpolations of the four synthetic
tensors at the corners of a grid using the Euclidean, Pro-
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Fig. 5. Interpolation of four tensors at the corners of a grid with
FA colouring. Left: Euclidean interpolation (dE). Middle: Procrustes
interpolation (dS). Right: log-Euclidean interpolation (dL). FA is used
for colouring the tensors.

Fig. 6. A synthetic diffusion tensor field with a U-shaped bundle of
anisotropic tensors in an isotropic environment.

crustes and log-Euclidean metrics. Again, the swelling
effect appears in the Euclidean case. The log-Euclidean
interpolation tends to produce smaller tensors. It may be
argued that the Procrustes metric provides a reasonable
interpolation of the tensor size. Indeed, the tensors near
the top right corner are reasonably small, and the size
increases smoothly as we approach the bottom right
corner. We colour the tensors with their FA values.
Graphs of FA and PA in Figure 5 suggests that the
Procrustes method may also be preferable as far as FA
and PA interpolation is concerned.

D. Weighted Procrustes Regularisation of synthetic data
A synthetic diffusion tensor field was generated by

placing a U-shaped bundle of anisotropic tensors in
an isotropic environment (see Figure 6). Tensors in the
anisotropic bundle have eigenvalues λ1 = 1000, λ2 =
λ3 = 200 and horizontal orientation (i.e. the principal
eigenvector is [1,0,0]). The isotropic tensors have the
following eigenvalues λ1 = λ2 = λ3 = 500. We generate
a noisy tensor D∗ from each noise-free tensor D in the
tensor field as follows

1 Obtain D1/2 =

 √λ1 0 0
0

√
λ2 0

0 0
√

λ3

 (since all the

original tesnors are diagonal in the canonical basis
(1,0,0), (0,1,0),(0,0,1)).

2 Let ∆ be a 3 × 3 matrix. Then sample vec(∆) ∼
N(vec(D1/2), σ2I9) where the operator vec vec-

Fig. 7. Regularisation error eFA as a function of the regularisation
parameter λ, and the variance of noise σ2 = 4 and 36.

torises a matrix by stacking all columns, I9 is the
9× 9 identity matrix, and N stands for ’multivariate
normal distribution’.

3 The noisy synthetic diffusion tensor is D∗ = ∆∆T .
We do a series of controlled simulations, using an error
measure to choose an optimal value for the regulari-
sation parameter λ. The error measure eFA is defined
in (31) below and measures discrepancy between the
regularised field and the original, noise-free field.

eFA =
N

∑
i=1

FAi(FAi − F̂Ai)
2 (31)

where N is the total number of diffusion tensors in the
field, FAi is the true FA value of the ith original tensor
and F̂Ai is the FA value of the corresponding regularised
tensor. The measure eFA upweights the errors from the
anisotropic part of the field, which is of more interest to
us. Figure 7 shows the error measure eFA as a function
of the regularisation parameter λ, and for two levels of
noise σ2 = 4 and 36. We define the reference tensor
Π = [5, 0, 0; 0, 1, 0; 0, 0, 1]. Two parameters A and B in
(17) for setting the weights are 2 and 0.01. The optimal
values of λ for σ2 = 4 and 36 are 3.4 and 3.7 respectively.
Table II additionally shows optimal λ values for several
other levels of noise. Experimentally, we notice that as
the noise level σ2 decreases, the optimal regularisation
parameter λ decreases to about 3.

TABLE II
OPTIMAL VALUES OF THE REGULARISATION PARAMETER λ FOR

DIFFERENT LEVELS OF NOISE.

σ2 100 25 10 1 0.01 0.001
optimal λ 8.100 5.500 3.330 3.260 3.130 3.124

Figure 8 shows results of the regularisations of two
synthetic fields corrupted with noise of level σ2 = 4
and 36. The regularised images are much smoother than
the noisy images. In particular, the smoothness of the
anisotropic part for σ2 = 36 is largely improved in the
regularised image.

E. Real data
1) Weighted Procrustes for Smoothing and interpolation:

Using the weighted Procrustes analysis (see Section



PREPRINT SUBMITTED TO IEEE TRANSACTIONS ON MEDICAL IMAGING 8

Fig. 8. Synthetic (a,b) and regularised (c,d) tensor fields with noise
variance σ2 = 4 (a,c) and σ2 = 36 (b,d). Color-coding is by principal
diffusion direction with red, green and blue representing diffusion in
the x, y and z axes respectively.

Fig. 9. Smoothing and interpolation of the human brain diffusion
tensor data. FA (a) and PA (b) maps based on tensor estimates
without post-processing. FA (c) and PA (d) maps from smoothed
and interpolated tensor data obtained with the weighted Procrustes
averaging method. (a.1), (b.1), (c.1) and (d.1) are zoomed inset regions
in the yellow box.

III-B), we smooth and interpolate (with two equally
spaced interpolation points between each pair of original
voxels) the diffusion tensor data from the human brain,
and calculate the FA and PA maps shown in Figure 9.
Two parameters A and B in (17) for setting the weights
are 2 and 0.01. It is clear that the FA and PA maps
from the processed tensor data are much smoother than
the ones without the processing. The feature that the
cingulum (cg) is distinct from the corpus callosum (cc) is
clearer in the anisotropy maps from the processed data
than in those without the processing [19].

2) Weighted Procrustes for Segmentation: The weighted
Procrustes regularisation method is applied to segment
structures of interest from the real DTI data. Figure 10
shows the initial results of the corpus callosum with

Fig. 10. Segmentation of the corpus callosum (FA map) with the refer-
ence tensor [0.0022,0,0; 0, 0.0004,0; 0,0, 0.0004]. Left: the regularisation
parameter λ = 0.1. Middle: λ = 0.6. Right: λ = 1.5.

Fig. 11. Segmentation of the cingulum (FA map) with the reference
tensor [0.0003,0,0;0,0.0015,0;0,0,0.0002]. Left: the regularisation param-
eter λ = 0.1. Middle: λ = 0.6. Right: λ = 1.5.

regularisation parameter λ = 0.1, 0.6 and 1.5. The
reference tensor is [0.0022,0,0; 0, 0.0004,0; 0,0, 0.0004]1

which is highly anisotropic and the diffusion direction
is parallel to the x axis. Two parameters A and B in
(17) for setting the weights are 2 and 0.01. It is clear
that as λ increases the FA map becomes blurred except
in the corpus callosum. Figure 11 shows the results of
the cingulum segmentation with the reference tensor
[0.0003,0,0;0,0.0015,0;0,0,0.0002]. When λ = 1.5, the cin-
gulum can be easily segmented from the image (using,
for example, a simple thresholding).

VI. DISCUSSION

We presented a weighted Procrustes averaging
method for defining the mean tensor in a diffusion
tensor image. A weighted regularisation model using the
Procrustes size-and shape metric has also been proposed
for tensor field regularisation. The proposed regularisa-
tion simultaneously smooths each tensor D based on
the information provided by the tensor’s neighbours
(endogenous regularisation) and also makes D mimic
a reference tensor (exogenous regularisation) according
to suitable tensor metrics. The flexibility of having a
reference tensor can be exploited to introduce additional
information about the expected diffusion profile in the
given region, or to highlight, and eventually segment,
local structures.

We applied our methods and models to smooth and
interpolate the entire tensor field within a region as
well as to segment a structure of particular interest. The
weighted regularisation framework proposed in Section
IV is very general. Presently, we have considered the
special case with the power parameters p = q = 2

1The reference tensor is already on the real scale that is determined
by the b-value of 1000 s/mm2
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and the Procrustes size-and-shape metric being used
for both d1 (endogenous regularisation) and d2 (exoge-
nous regularisation). It would be interesting to vary the
parameters in the weighted regularisation model. For
example, when p = 2 and q = 2, we have a generalised
(non-Euclidean) type of ridge-regression model. When
p = 2 and q = 1, the method gives a generalised (non-
Euclidean) type of LASSO [28], and so on. To develop
an efficient and more automated method for choosing
the regularisation parameter λ is also one of the aims
for our future work.

There is a challenge to process tensor fields containing
multiple diffusion profiles, especially when more than
one distinct profile is observed at a single voxel (crossing
fibres, etc). For example, to interpolate a pair of tensors
at one voxel with a pair of tensors at another voxel is a
basic problem. An intuitive idea is to find the optimal
matches between two pairs, i.e. to match each tensor at
the first voxel with a tensor at the second voxel. Then, the
processing can be carried out between matched tensors.
Also, when more angular directions are available such as
in HARDI data [32] more flexible models than diffusion
tensors can be explored, which presents more challenges
for non-Euclidean statistical analysis.

APPENDIX

Lemma For any non-zero symmetric semi-positive
definite D, FA(Dα) is an increasing function of α ∈
(0, ∞).

Proof: Let a, b > 0 be such that a ≤ b. We need to
show that

3
∑

i=1
(λa

i − λa)2

3
∑

i=1
λ2a

i

≤

3
∑

i=1
(λb

i − λb)2

3
∑

i=1
λ2b

i

. (A-1)

Equivalently, we need to show

[λb]2λ2a ≤ [λa]2λ2b. (A-2)

Let q = 2b−a
b , p = 2b−a

b−a , so that 1
q +

1
p = 1, p ≥ 1, q ≥ 1,

then write λb
i = λs+t

i , i ∈ {1, 2, 3} where s = a
q = ab

2b−a ,

t = 2b
p = 2b(b−a)

2b−a .
Apply Hölder’s inequality [31] with gi = λs

i , fi =
λt

i ,i ∈ 1, 2, 3,

3

∑
i=1
|gi fi| ≤ [

3

∑
i=1

gq
i ]

1/q[
3

∑
i=1

f p
i ]

1/p (A-3)

to obtain

λb ≤ [λa]
b

2b−a [λ2b]
b−a

2b−a

=⇒ [λb]2 ≤ [λa]
2b

2b−a [λ2b]
2b−2a
2b−a . (A-4)

Next, take q′ = 2b−a
2b−2a , p′ = 2b−a

a , note that p′, q′ ≥ 1,
1
q′ +

1
p′ = 1. Then write λ2a

i = λs′+t′
i , and take s′ = a

q′ =

2a(b−a)
2b−a , t′ = 2b

p′ = 2ab
2b−a . Again, let g′i = λs′

i , f ′i = λt′
i ,

i ∈ {1, 2, 3} and apply Hölder’s inequality to get

λ2a = λs′+t′ ≤ [λa]
2(b−a)
2b−a [λ2b]

a
2b−a . (A-5)

Finally, multiply both sides of inequality (A-4) by respec-
tive sides of inequality (A-5) to obtain inequality (A-2).
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