1 Introduction

- The income distribution at any one time is a simple snapshot.
- However, individuals’ position may change over time.
- We will explore three dimensions of mobility
 - Job turnover
 - Income mobility
 - Intergenerational mobility
- Look at the first two topics today.

2 Job Turnover

Stylized facts: Demographic and cyclical factors

- Probability of job change decreases with age

<table>
<thead>
<tr>
<th>Age Group</th>
<th>Number of New Employers during interval</th>
<th>Cumulative Number of Employers</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>30-39</td>
<td>2.1</td>
<td>5.2</td>
</tr>
<tr>
<td>40-49</td>
<td>1.4</td>
<td>6.6</td>
</tr>
<tr>
<td>50-59</td>
<td>0.9</td>
<td>7.5</td>
</tr>
</tbody>
</table>

Table 1: Number of employers for whom an employee works from ages 20 to 60 (From Ehrenberg and Smith)

- Women are more likely to change jobs than men.
- Quits are low when the unemployment rate is high.

Fig 10.4 from Ehrenberg and Smith
2.1 The Job Match and Specific Training

The Job Match

- Workers and firms are not perfectly informed about each others’ characteristics.
- Hence they learn about each other after the employment starts.

Definition. *Job-match.* A particular pairing of a firm and a worker.

- Some matches are revealed to be good – these employments continue.
- Other matches are revealed to be not-so good – they are terminated.

Insight. Turnover can be efficient by generating better matches.

Specific Training

Definition. *Specific training.* Training that enhances productivity on in the firm where it is acquired.

Specific training \Rightarrow worker’s productivity higher in current firm than in alternative employment \Rightarrow Surplus shared by the worker and the firm.

Implications:

1. Worker’s productivity exceeds his wage
2. The wage exceeds the wage the worker could earn at other firms.

- Note that (1) implies that the firm has low incentives to lay off the worker
- Note that (2) implies that the worker has low incentives to quit

Conclusion. Firm-specific human capital reduces the probability of job-turnover.

- Suppose that specific human capital builds up gradually during the employment relationship.
- Then the probability of job-separation should depend negatively on tenure.
- It would also be consistent with many jobs terminating very early.

2.2 Turnover and Tenure

Stylized facts: Turnover and Tenure

1. Long-term employment relationships are common;
2. Most new jobs end early;
3. The probability of a job ending decreases with tenure;

- Table 1 from Farber (1999) shows the fraction of employed reporting more than 10 years of tenure with current employer.
Table 1 from Farber (1999)

- Figure 3 from Farber shows the probability that a new job is still active after x months.

Figure 3 from Farber

- Fig 5 (panel C) from Farber shows the probability of job ending in the xth month of employment (conditional on the employment having lasted that long)

Fig 5 (panel C) from Farber

Insight: The specific human capital hypothesis can account for these stylized facts.

Question: Can this be taken as evidence for the existence of specific human capital?

- The problem is that it is nearly impossible to measure specific human capital.
- The above stylized facts do not necessarily imply the existence of specific human capital as we will show next.

Heterogeneity

Insight: The relationship between turnover and tenure may be driven by heterogeneity.

In fact I can re-use a previous example

- 100 workers start employments at time 0 and we follow them over time.
- Two types of workers in equal proportions
 - “Movers”: Leave job with probability with 1/2 in every period.
 - “Stayers”: Leave job with probability with 1/5 in every period.
- After one period
 \[50 \times \frac{1}{2} + 50 \times \frac{1}{5} = 35 \]
 workers will ended their jobs. Thus the turnover rate in the first period is 35 percent.
- In the second period, there are 65 workers left (25 “movers” and 40 “stayers”). Of them
 \[25 \times \frac{1}{2} + 40 \times \frac{1}{5} = 20.5 \]
 end their jobs in the second period. Hence the average turnover rate in the second period is \(\frac{20.5}{25+40} \) i.e. 31.5 percent.
- Thus the average job turnover rate decreases with tenure!!
- And yet, for no individual worker is there a negative relationship between tenure and turnover!!

Conclusion: Turnover decreasing with tenure in a cross-section of workers does not necessarily imply that the same is true for individual workers.
Testing the Specific Capital Model Using the Return to Tenure

Idea: If specific capital is built up during the employment ⇒ Surplus increases with tenure ⇒ Wage increases with tenure.

Approach: Include tenure in wage regression.

\[\ln W = \alpha + \beta_1 Ed. + \beta_2 Exp. + \beta_3 \text{Tenure} \]

Typical finding: Some degree of “returns to tenure”, \(\beta_3 > 0 \) (see e.g. Altonji and Shakotko, 1987).

• There is a basic problem with this approach – tenure may be endogenous.
• This can be argued both from a job-search model and from an agency-model.

Problem 1: Suppose that some workers were lucky and got a high wages while some were unlucky and got low wages; if the unlucky workers are more inclined to quit (to find better employment elsewhere), observed wages will increase with tenure. Then:

High wage generates tenure (endogeneity)

Problem 2. Wage-tenure profile may be chosen by firm to encourage low turnover! (Similar to Lazear)

In this case:

Steep wage-tenure profile generates low turnover (endogeneity)

Conclusion: Observing “returns to tenure” is not conclusive evidence for the existence of specific human capital.

3 Earnings Mobility

• The income distribution at one point in time is a simple snapshot.
• Does not capture individual’s movements within the income distribution.

Question: Are people persistently low (alt. high) paid or are low earnings largely transitory?

Question: Does the degree of mobility differ by age, gender, race etc.?

• Why should we care?
 – Given a cross-sectional income distribution, lower earnings mobility implies greater inequality in terms of lifetime earnings.
 – It also matters for policy directly, e.g. for pensions that are linked to lifetime earnings.
• Let’s start by thinking about how to model earnings dynamics.
3.1 Transitory vs. Permanent Components

- Suppose that individual i’s earnings have

1. A *permanent* component x_i (which does not vary over time).
2. A *transitory* component u_{it} (which varies over time).

- Her earnings at time t is

$$y_{it} = x_i + u_{it}$$

- u_{it} is an (independent) random draw in each period (pure transitory earnings).

- Thus individuals differ in earnings partly due to the fact that they differ in permanent income (i.e. different x_is), and partly due to transitory component.

Question: How much of the variance in earnings is due the permanent component and how much is due to transitory earnings fluctuations?

- The correlation between an individual’s in earnings from one period to the next, $r[y_{it}, y_{it+1}]$, turns out to be

$$r[y_{it}, y_{it+1}] = \frac{\sigma_x^2}{\sigma_x^2 + \sigma_u^2} \equiv \theta$$

where σ_x^2 is the variance in permanent income (across the population) and σ_u^2 is the variance in transitory earnings.

- Hence, by empirically estimating the correlation $r[y_{it}, y_{it+1}]$ in earnings from one period to the next, we calculate θ, the *fraction of the variance in total earnings in the population* that is due to permanent income differences.

3.2 Regression Towards the Mean

- A different approach is to model earnings shocks as being partially persistent

- Suppose that

$$y_{it} = \beta y_{i,t-1} + \varepsilon_{it}$$

- Given that $\beta > 0$, shocks have a degree of persistency

- Useful to interpret y_{it} as deviation from the population average wage \overline{y}; in this case

$$y_{it} - \overline{y} = \beta (y_{i,t-1} - \overline{y}) + \varepsilon_{it}$$

with $E[\varepsilon_{it}] = 0$ (i.e. the average value of the earnings-shock ε_{it} is zero)

- Then

$$E[y_{it}] = \overline{y} + \beta (y_{i,t-1} - \overline{y})$$

thus, given that $\beta < 1$, earnings regress towards the mean.
3.3 Transition Approach

Alternative: Look at transition among *discrete ranges* on incomes.

- Two justifications for using this discrete approach
 1. Focus on particular groups: e.g. “low-paid” vs. “not low-paid”.
 2. Flexibility: e.g. does not impose regression towards the mean.

Example: Low-paid vs. not-low paid.

- Determine a bound \(y \) and denote anyone with earnings \(y_{it} < y \) as “low-paid” (denote by index 0)
- Let \(p_{00} \) be the probability of being low-paid at time \(t + 1 \) conditional on being low-paid at time \(t \).
- Let \(p_{01} \) be the probability of not being low-paid at time \(t + 1 \) conditional on being low-paid at time \(t \), etc.
- Collecting all the probabilities in a matrix we have
 \[
 P = \begin{bmatrix}
 p_{00} & p_{01} \\
 p_{10} & p_{11}
 \end{bmatrix}
 \]
- The row indicates “initial state” and column indicates “terminal state”.
- Note that it must be that \(p_{00} + p_{01} = 1 \) and \(p_{10} + p_{11} = 1 \).
- If there is no mobility, then \(p_{00} = p_{11} = 1 \).

3.4 Measuring Mobility

- We then have three ways of quantifying mobility.
 1. Calculate the correlation in earning \(r[y_{it}, y_{it-1}] \); the gives us the fraction of the variance in earning which is permanent.
 2. Regress \(y_{it} \) on \(y_{it-1} \) in order to estimate \(\beta \) – the degree of regression to the mean.
 3. Estimate the transition matrix \(P \).

3.5 Empirical Findings

- Estimates by Jarvis and Jenkins (1998)
- Data: BHPS 1991-1994 (four years)
- Look at disposable income (see next seminar for details).

- Compute
 1. Income correlations \(r[y_{it}, y_{it-1}] \)
 2. Regress \(\ln y_{it} \) on \(\ln y_{it-1} \) to estimate \(\beta \)
 3. Compute transition for deciles.
Results

Table 1 From Jarvis and Jenkins

- The income correlation falls in the range of 60 - 70 percent

Implication: About 2/3 of total earnings variable can be considered as permanent.

- The regression estimates of β are around 0.7.

Implication. Take two individuals A and B and suppose that A’s earnings are 10 percent higher than B’s earnings in year t; then, in year $t + 1$, A’s earnings are on average 7 percent higher than B’s.

- When doing transition matrix analysis, they look at average earnings 1991-92 and compare with average earnings 1993-94, and look at transitions between decile groups.

 - Finding: Large numbers on the diagonal (staying in the same decile) and one cell above or below (moving one decile)

Table 2 From Jarvis and Jenkins

Implication. There is substantial movement, but most mobility is short-distance.

References

