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Details of models used
We used the following distributions to model mussel step length distribu-
tion: exponential, power law and truncated power law distributions as in [1]
and hyperexponential functions, which are exponential mixtures (with 2, 3
or 4 exponential distributions). Since the power law and truncated power
law distributions require specifying the lower truncation value (and since a
data set is naturally lower truncated by the resolution of observations) we
truncated all the models at the smallest value in the data set to make model
comparison fair.

Exponential distribution

The probability density function for the exponential distribution with the
left truncation is

P (X = x) = λe−λ(x−xmin)

from which the maximum likelihood estimate of the parameter λ can be
calculated as [2]

λbest =
1

1
n

∑n
i=1 Xi − xmin

and the inverse cumulative function is

P (X ≥ x) = e−λ(x−xmin).
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It is readily seen that the mean value of the step length is

E(X) = xmin + λ−1.

λ−1 thus quantifies the spatial scale of the corresponding random walk ‘on
top’ of the truncation distance xmin.

Power law distribution

The probability density function for the power law distribution with left
truncation is

P (X = x) =
µ− 1

x1−µ
min

x−µ

with µ > 1, from which the maximum likelihood estimate of the parameter
µ can be calculated as [2]

µbest = 1 +
1

1
n

∑n
i=1 logXi − log xmin

and the inverse cumulative function is

P (X ≥ x) =
(

x

xmin

)1−µ

.

Truncated power law distribution

The probability density function for the power law distribution with both
the left and right truncation is

P (X = x) =
µ− 1

x1−µ
min − x1−µ

max

x−µ.

The log-likelihood function is

L = n(log(µ− 1)− log(x1−µ
min − x1−µ

max))− µ
n∑

i=1

logXi.

It can be seen from inspection of the log-likelihood function that if xmax is
not known and is taken as a parameter the likelihood is maximized at the
smallest xmax possible which would naturally be the maximum value observed
in the data. We chose this is as the upper truncation point in order to give
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the truncated power law as much statistical support as possible. We did not
try to fit any other values for xmax.

We maximized the log-likelihood numerically to estimate µ. The inverse
cumulative function for the truncated power law distribution is

P (X ≥ x) = 1− x1−µ
min − x1−µ

x1−µ
min − x1−µ

max

.

Composite Brownian walk as a mixture of 2 exponential distributions

The probability density function is

P (X = x) = pλ1e
−λ1(x−xmin) + (1− p)λ2e

−λ2(x−xmin).

To find the maximum likelihood estimate of the parameters we maximized the
log-likelihood function L =

∑n
i=1 log(P (Xi = xi)) numerically. The inverse

cumulative function is

P (X ≥ x) = pe−λ1(x−xmin) + (1− p)e−λ2(x−xmin).

Composite Brownian walk as a hyperexponential distribution

The probability density function for a mixture of k exponentials can be de-
scribed by the hyperexponential function as

P (X = x) =
k∑

j=1

pjλje
−λj(x−xmin)

with pk = 1 − ∑k−1
j=1 pj. The log-likelihood function L =

∑n
i=1 log(P (Xi =

xi)) can be maximized numerically in the same way as for a mixture of 2
exponentials. To ensure

∑k
j=1 pj = 1 during fitting process we used the

log-ratio transformation yj∈{1,2...k−1} = log(pj/pk) with the inverse transform
pj∈{1,2...k−1} = eyj/(1 +

∑k−1
i=1 e

yi) [3]. The inverse cumulative function is

P (X ≥ x) =
k∑

j=1

pje
−λj(x−xmin).

Note that the average value of the hyperexponential distribution is given
by a linear combination of the averages of the contributing exponentials:
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E(X) =
∑k

j=1 pj(xmin+λ−1
j ). For the mixture of 3 exponentials that had the

best fit we found the averages had the following contributions. When we used
the full data set with xmin = 0.21095mm we found E(X) = 0.034 ∗ 14.51 +
0.099 ∗ 1.56 + 0.867 ∗ 0.30 whereas we found for the truncated data set with
xmin = 0.02236mm that E(X) = 0.063∗14.10+0.21∗1.41+0.73∗0.44. Note
how the contributing averages (respectively 14.51mm, 1.56mm and 0.30mm
versus 14.10mm, 1.41mm and 0.44mm) are similar which shows that the
value of the contributing averages is relatively robust against truncation.

Concerns regarding the analysis and presentation of the data in
[1]

• The calculation of the upper truncation point as a maximum likelihood
estimation is incorrectly executed. The routine used in [1] is based on
a formula from [2] for finding the maximum likelihood estimate for
the exponent µ, but it seems that in the analysis in [1] the value of
the derivative with respect to µ is used to calculate the likelihood.
Therefore the routine for the calculation of the upper values does not
return the maximum likelihood estimate of the upper truncation point.
It is easy to show that the maximum likelihood value for the upper
truncation point is the highest observed value, and any deviation from
this is therefore incorrect. As the value of the truncation point in [1]
appears to differ between different parts of the analysis, and the value is
not given in the paper nor in supplementary material, it is not possible
to judge how this have affected the results.

• Judging from the R file provided by M. de Jager, and by the form of
the curve, the curve plotted in Fig 1B in [1] appears to be a Rayleigh
distribution, not an exponential distribution. Fig 1B in [1] therefore
appears not to depict what the text in the paper describes. Moreover,
the formula for the exponential distribution in the online supplementary
material omits the lower truncation point and is unsuitable for use as
presented. This last point is inconsequential for [1] as it appears that
the exponential distribution has not been used in the analysis in [1] at
all.

• Figure 1B in [1] omits a number of data points on the right of the
figure. This is not documented or explained.
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• De Jager et al. [1] reports that Figure 1B is based on 12,401 data points.
Instead, Figures 1A and 1B in [1] appear to depict far fewer points. The
data file we received contained 4696 data points. It appears this has
been used for Figure 1B in [1].

• When scrutinizing the data that we received and that were apparently
used in [1], we noticed that many data points were doubled or quadru-
pled. It transpired that the data file had been corrupted. We received a
data file with uncorrupted data from M. de Jager which contained 3584
data points. When we truncated these data by discarding values below
0.21095 mm (as was done in [1]) in order to obtain data comparable to
Fig 1B in [1] only 2029 data points remained.

• The application of AIC in [1] is problematic as it is not applied to
a maximum likelihood. In [1] the parameters are estimated using a
maximum likelihood estimate as given in [2], but the AIC is calculated
based on a different likelihood, i.e. based on the fit of the cumulative
distribution. This is not necessarily a maximum likelihood.

• The goodness of fit measure used in [1] appears to assume that the de-
parture from the cumulative distribution is normally distributed with
constant variance. This not generally the case for a cumulative dis-
tribution. The error is usually not symmetric and the variance is not
constant. We therefore question the appropriateness of this method [3].

• The calculation of the AIC weights in [1] is incorrect. It appears from
the R file which we received from M. de Jager that the weights are cal-
culated from normalized AIC measures, as opposed to the normalized
exponentials of the AIC measures. Therefore the AIC weights in Table
1 in [1] are incorrect.

We reanalyzed both the corrupted and uncorrupted data, using a stan-
dard model selection based on AIC, as described in [2]. In all cases the
truncated power law formed the best description if compared to the random
walk only. Analysis of the data using a broader range of models conclusively
shows the the movement pattern in this data set is not a Lévy walk as the
hyper-exponential distribution with 3 components gives a much better fit of
the data than the power law.
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