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Comment on “Lévy Walks Evolve
Through Interaction Between Movement
and Environmental Complexity”
Vincent A. A. Jansen,1* Alla Mashanova,1 Sergei Petrovskii2

de Jager et al. (Reports, 24 June 2011, p. 1551) concluded that mussels Lévy walk. We confronted
a larger model set with these data and found that mussels do not Lévy walk: Their movement is
best described by a composite Brownian walk. This shows how model selection based on an
impoverished set of candidate models can lead to incorrect inferences.

ALévy walk is a form of movement in
which small steps are interspersed with
very long ones, in such a manner that

the step length distribution follows a power law.
Movement characterized by a Lévy walk has no
characteristic scale, and dispersal is superdiffu-
sive so that individuals can cover distance much
quicker than in standard diffusion models. de Jager
et al. (1) studied the movements of individual
mussels and concluded that mussels move
according to a Lévy walk.

The argument of (1) is based on model se-
lection, a statistical methodology that compares
a number of models—in this case, different step
length distributions—and selects the model that
describes the data best as themost likelymodel to
explain the data (2). This methodology is used to
infer types of movements of animals (3) and has
led to a number of studies that claim Lévy walks
are often encountered in the movement of ani-
mals. The methodology in (1) contrasts a power-
law distribution, which is indicative of a Lévy
walk, with an exponential distribution, which
indicates a simple random walk. If one has to
choose between these alternatives, the power-law
distribution gives the best description. However,
if a wider set of alternatives is considered, this
conclusion does not follow.

Heterogeneity in individual movement be-
havior can create the impression of a power law
(4–6). Mussels’ movement is heterogeneous as
they switch between moving very little or not at
all, and moving much farther (1, 7). If mussels
switch between differentmodes, and in eachmode
display Brownianmotion, this suggests the use of
a composite Brownian walk, which describes the
movement as a sum of weighted exponential dis-
tributions. We confronted this plausible model
with the mussel movement data (8).

Visual inspection of the data shows that the
cumulative distributionof step lengths has a humped

pattern that is indicative of a sum of exponentials
(Fig. 1A). We applied a model selection pro-
cedure based on the Akaike information criterion
(AIC) (2, 3). We compared six different step
length distributions: an exponential distribution,

a power law, a truncated power law, and three
hyperexponential distributions (a sum of two,
three, or four exponentials to describe composite
Brownian walks). We did this for the data trun-
cated as in (1) (Fig. 1A) as well as all the full,
untruncated data set (Fig. 1B). In both cases, we
found that the composite Brownian walk con-
sisting of the sum of three exponentials was the
best model (Fig. 1 and Table 1). This convinc-
ingly shows that the mussels described in (1) do
not do a Lévy walk. Only when we did not take
the composite Brownian walk models into
account did the truncated power law model
perform best and could we reproduce the result
in (1).

Mussel movement is best described by a
composite Brownian walk with three modes of
movement with different characteristic scales be-
tween which the mussels switch. The mean move-
ment in these modes is robust to truncation of the
data set, in contrast to the parameters of the power
law, which were sensitive to truncation [Table 1;
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Fig. 1. The step length
distribution for mussel
movement [as in (10)]
and curves depicting some
of the models. The circles
represent the inverse cu-
mulative frequency of step
lengths, The curves repre-
sent Brownian motion
(blue), a truncated power
law (red), and a composite
Brownian walk consisting
of a mixture of three ex-
ponentials (blue-green). (A)
Data as truncated in Fig.
1 in (1, 10) (2029 steps).
(B) The full untruncated
data set (3584 steps).
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also see supporting online material (SOM)]. This
analysis does not tell us what thesemodes are, but
we speculate that it relates to the stop-move
behavior that mussels show, even in homoge-
neous environments (1). We speculate that the
mode with the smallest average movement
(~0.4 mm) is related to nonmovement, combined
with observational error. The next mode (average
movement ~1.5 mm) is related to mussels moving
their shells but not displacing, and the mode with
the largestmovements (on average 14mm, about the
size of a small mussel) is related to actual dis-
placement. This suggests that in a homogeneous
environment, mussels are mostly stationary, and
if they move, they either wobble or move about
randomly. Indeed, if we removemovements smaller
than half the size of a small mussel (7.5 mm), the
remaining data points are best described by
Brownian motion. This shows that mussel move-
ment is not scale invariant and not superdiffusive.

de Jager et al.’s analysis (1) does show that
mussels do not perform a simple random walk
and that they intersperse relatively long displace-
ments with virtually no displacement. However,
one should not infer from that analysis that the
movement distribution therefore follows a power
law or that mussels move according to a Lévy
walk, and there is no need to suggest that mussels

must possess some form of memory to produce a
power law–like distribution (9). Having included
the option of a composite Brownian walk, which
was discussed in (1) but not included in the set of
models tested, one finds that this describes
mussels’ movement extremely well.

Our analysis illustrates why one has to be
cautious with inferring that animalsmove accord-
ing to a Lévy walk based on too narrow a set of
candidate models: If one has to choose between a
power law and Brownian motion, often the power
law is best, but this could simply reflect the
absence of a better model. To make defensible
inferences about animal movement, model selec-
tion should start with a set of carefully chosen
models based on biologically relevant alterna-
tives (2). Heterogeneous random movement often
provides such an alternative and has the addition-
al advantage that it can suggest a simple mech-
anism for the observed behavior.
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Table 1. ModelparametersandAkaikeweights. Themaximumlikelihoodparameter
estimates, log maximum likelihoods (ML), AIC values, and Akaike weights are
calculated (for details, see SOM) for the data shown in Fig. 1, A and B. The Akaike
weights without the composite Brownianwalks are given in brackets.We analyzed the

full data set (*) with xmin=0.02236mm, and the data set truncated as in (1) (†) with
xmin = 0.21095 mm. For xmax, the longest observed step length (103.9mm) was
used. The mix of four exponentials is not the best model according to the AIC
weights. It gives a marginally, but not significantly, better fit and is overfitted.

Models Formula Parameters* Parameters† ML AIC Weight

Exponential
(Brownian
motion)

P(X = x) = le −l(x− xmin) l = 1.133 l = 0.770 –3136.89*
–2558.67†

6275.78*
5119.37†

0 (0)*
0 (0)†

Power law
(Lévy walk)

P(X = x) = m−1
x1 − m
min

x−m m = 1.397 m = 1.975 –2290.10*
–1002.32†

4582.20*
2006.64†

0 (0) *
0 (0.006)†

Truncated
power law
(Lévy walk)

P(X = x) = m−1
x1 − m
min − x1 − m

max
x−m m = 1.320 m = 1.960 –2119.55*

–997.29†
4241.10*
1996.58†

0 (1) *
0 (0.994)†

Mix of two
exponentials
(Composite
Brownian walk)

P(X = x) =
X

i=1

2

pilie
−li(x − xmin)

with
X

i=1

2

pi = 1

p = 0.073,
l1 = 0.122,
l2 = 3.238

p = 0.127,
l1 = 0.123,
l2 = 3.275

–906.15*
–1022.44†

1818.31*
2050.87†

0*
0†

Mix of three
exponentials
(Composite
Brownian walk)

P(X = x) =
X

i=1

3

pilie
−li(x − xmin)

with
X

i=1

3

pi = 1

p1 = 0.034,
p2 = 0.099,
l1 = 0.069,
l2 = 0.652,
l3 = 3.613

p1 = 0.063,
p2 = 0.210,
l1 = 0.072,
l2 = 0.832,
l3 = 4.309

–861.55*
–966.70†

1733.11*
1943.40†

0.881*
0.873†

Mix of four
exponentials
(Composite
Brownian walk)

P(X = x) =
X

i=1

4

pilie
−li(x − xmin)

with
X

i=1

4

pi = 1

p1 = 0.014,
p2 =0.034,
p3 = 0.085,
l1 = 0.656,
l2 = 0.069,
l3 = 0.652
l4 = 3.613

p1 = 0.017,
p2 = 0.060,
p3 = 0.202,
l1 = 0.377,
l2 = 0.070,
l3 = 0.902,
l4 = 4.345

–861.55*
–966.63†

1737.11*
1947.26†

0.119*
0.127†
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