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Wolbachia are very common, maternally transmitted endosymbionts of insects. They often spread by a

mechanism termed cytoplasmic incompatibility (CI) that involves reduced egg hatch when Wolbachia-free ova

are fertilized by sperm from Wolbachia-infected males. Because the progeny of Wolbachia-infected females

generally do not suffer CI-induced mortality, infected females are often at a reproductive advantage in

polymorphic populations. Deterministic models show that Wolbachia that impose no costs on their hosts and

have perfect maternal transmission will spread from arbitrarily low frequencies (though initially very slowly);

otherwise, there will be a threshold frequencybelow whichWolbachia frequencies decline to extinction and above

which they increase to fixation or a high stable equilibrium. Stochastic theory was used to calculate the

probability of fixation in populations of different size for arbitrary current frequencies ofWolbachia, with special

attention paid to the case of spread after the arrival of a single infected female. Exact results are given based on a

Moran process that assumes a specific demographic model, and approximate results are obtained using the more

general Wright–Fisher theory. A new analytical approximation for the probability of fixation is derived, which

performs well for small population sizes. The significance of stochastic effects in the natural spread ofWolbachia

and their relevance to the use of Wolbachia as a drive mechanism in vector and pest management are discussed.
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Wright–Fisher process
1. INTRODUCTION

A purely maternally inherited gene, parasite or symbiont

will not tend to increase in frequency unless it causes its

host to have more female offspring relative to a non-carrier.

One way of doing this is to bias the sex ratio towards

females, while another way is to be a mutualist and

somehow increase host fitness directly. A third approach

is to damage the fitness of non-carriers so that the relative

fitness of carrier females increases. Wolbachia provide the

best-known example of this strategy. These intracellular

bacteria (Alpha Proteobacteria) often spread through

arthropod host populations by a process called cytoplasmic

incompatibility (CI; Hoffmann & Turelli 1997). In a way

that it is not yet fully understood at the molecular level,

CI-causing Wolbachia modify sperm such that uninfected

females that mate with infected males suffer reduced

embryo viability and hence lower relative fitness (Werren

1997). Wolbachia infections are found in over 20 per cent of

all insects (Werren et al. 1995; Werren & Windsor 2000)

and their presence may influence population structure and

speciation (Shoemaker et al. 1999; Bordenstein et al. 2001).

Wolbachia may also spread in insects through manipulating

host reproduction in other ways (Hurst et al. 1999, 2002),

and also occur as beneficial symbionts in nematodes (Bandi

et al. 1998). Here we concentrate solely on CI-inducing

Wolbachia, though our arguments also apply to the

unrelated bacterium Cardinium that can also spread by CI

(Hunter et al. 2003; Zchori-Fein & Perlman 2004).
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The relative fitness of a Wolbachia carrier depends on:

(i) any direct fitness costs imposed by the bacteria on the

host, (ii) the effective fecundity reduction of uninfected

females that mate with a Wolbachia-bearing male, (iii) the

probability that Wolbachia is transmitted to offspring, and

(iv) the frequency of Wolbachia carriers in the population.

Where there are no fitness costs to the carrier but perfect

transmission, infected females will always produce more

Wolbachia-carrying daughters than uninfected individuals

having female offspring and hence the infection will

invariably tend to spread, though the rate of increase will

be very slow at low frequencies. Assuming random mating

(Hoffmann et al. 1990; de Crespigny & Wedell 2007), when

Wolbachia reduces host fitness from 1 to 1Ksf!1 and when

mating with a Wolbachia-bearing male reduces a non-

carrier’s fitness from 1 to 1Ksh!1, there is a threshold

infection frequency, sf /sh, above whichWolbachia is expected

to spread to fixation, but below which its frequency is

expected to decline to 0 (Caspari & Watson 1959).

Mathematically, the threshold and fixation frequencies are,

respectively, unstable and stable equilibria. If transmission is

not perfect (mO0) and uninfected ova from infected females

are susceptible to CI, then the threshold becomes p̂ and

instead of becoming fixed the Wolbachia reaches an

equilibrium frequency p�. The values of p̂ and p� are given

by (Hoffmann et al. 1990; Turelli & Hoffmann 1991)

p̂Z
sf C shK

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sf C sh
� �2

K4ðmð1K sf ÞC sf Þð1Kmð1K sf ÞÞsh

q
2ð1Kmð1K sf ÞÞsh

p� Z
sf C sh C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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It is thought that Wolbachia infections arise in naive

populations through rare interspecific horizontal transfer

(Vavre et al. 1999). The initial infection frequency is thus

likely to be very low, and this produces a barrier to spread

whenever costs are present, as observed in several systems

(Hoffmann et al. 1990; Min & Benzer 1997; Poinsot &

Mercot 1997; Vavre et al. 1999).

If the initial number of infected hosts is very low,

stochastic effects will be important. Even if a Wolbachia

with complete CI and perfect transmission (shZ1, mZ0)

has no costs to its hosts (sfZ0) or is beneficial (sf!0)

(Vavre et al. 1999; Dobson et al. 2002; Weeks et al. 2007),

the risk of stochastic loss may still be great, especially in

large populations where CI will affect the relative fitness

of non-carriers only marginally. Conversely, Wolbachia

may still establish when its initial frequency is low if

stochastic processes carry its frequency above the

threshold. Stochastic effects in Wolbachia were first studied

by Rigaud & Rousset (1996) who stated that, based on

the Wright–Fisher model, the probability of fixation of

Wolbachia after the introduction of a single infected

individual, u(1/N ), was

uð1=NÞz2

ffiffiffiffiffiffiffiffi
sh
pN

r
exp

KNs2
f

sh

� �
; ð1:2Þ

where N is the population size (number of females).

(Their expression omits ‘2’, but this is clearly a typo-

graphical error.) For cost-free infections (sfZ0), they

further write that uð1=NÞZ2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
sh =pN

p
. Later, Egas et al.

(2002), unaware of this earlier work, simulated the spread

of Wolbachia and showed that the probabilities of fixation

were low (less than approx. 0.1) for population sizes

greater than 100 females, and declined further in the

presence of costs to bacterial carriage or imperfect trans-

mission. However, as demonstrated below, equation (1.2)

provides a rather poor approximation for the simulation

results of Egas et al. (2002) (and our own numerical

studies) for the biologically most interesting cases of small

N. Here we provide robust new approximations of fixation

probabilities applicable to small population sizes, as well

as exact results for one particular set of demographic

assumptions (which determine the relationship between

effective and census population sizes). We also extend the

model to include situations when the probability of

Wolbachia non-transmission to offspring (m) is greater

than 0.

In addition to their intrinsic interest and importance,

Wolbachia are also being widely studied as possible means

of driving beneficial genes through populations of pests

and disease vectors, or for manipulating host phenotypes

in ways advantageous to man (Turelli & Hoffmann 1999;

Dobson et al. 2002; Brownstein et al. 2003; Sinkins &

Gould 2006). In these situations, Wolbachia-bearing

individuals would be mass reared and released at relatively

high frequencies, above the threshold at which, as

deterministic theory predicts, they should increase in

frequency. In designing control strategies involving

Wolbachia release, it will be important to understand

how stochastic processes affect the probability of bacterial

spread or fixation. To address these questions, we

determine fixation probabilities (u( p0)) when an arbitrary

fraction of individuals ( p0) carrying Wolbachia are

introduced into a population.
Proc. R. Soc. B (2008)
2. MODEL
Our model is a stochastic version of that analysed by

Caspari & Watson (1959) and Turelli & Hoffmann (1999).

We assume that the population (number of females) is

of constant size, N, and that uninfected female fecundity

is l (measured as the number of female offspring with

a constant sex ratio of 0.5), with the fecundity of infected

females being l(1Ksf ). If there are currently x infec-

ted females, they will produce qiZxl(1Ksf)(1Km)

infected offspring, while uninfected female production

will be quZ((NKx)lCxl(1Ksf)m)[1Ksh(x/N )]. The term

in square brackets represents the fitness reduction caused

by CI suffered by uninfected eggs fertilized by sperm

modified by Wolbachia-carrying males.

We implement this model in two different ways. First,

by using the Wright–Fisher method (Crow & Kimura

1970), which assumes that the generations are discrete

and that the new generation is a random sample of

constant size drawn from the total number of offspring

produced by the previous generation. The second

implementation is based on the continuous-time Moran

process (1958), and assumes overlapping generations (as

in the classic birth–death process, Karlin & Taylor 1975,

ch. 4). This model assumes that individuals die randomly

and sequentially and are replaced by new individuals

randomly drawn from the offspring produced by the

population. Both approaches thus assume idealized

populations, the main biological difference being that the

Wright–Fisher model assumes discrete and the Moran

model overlapping generations. The Wright–Fisher model

has been used extensively in population genetics, facilitat-

ing comparisons with previous results. An analysis based

on the Wright–Fisher model requires the standard

assumptions of a diffusion approximation concerning the

strength of selection but allows a flexible connection

between census population size (N ) and variance effective

population size (Ne). The latter is the size of an idealized

panmictic population of identical individuals that would

experience the same sampling-induced variance of infec-

tion frequencies as the actual population under study. The

Moran analysis gives exact solutions but assumes a

particular demography and hence a specific relationship

between census and effective population sizes (Crow &

Kimura 1970, ch. 7).

Deterministic models predict that as long as the

infection frequency is above the critical threshold, it will

become established. By this we mean that it will increase

to fixation, p�Z1, or when transmission is incomplete

(mO0) to a stable equilibrium, p�!1. More formally, if

p0 is the current infection frequency and u( p0) the

probability of establishment, then u( p0)Z0 for p0! p̂

and u( p0)Z1 for p0O p̂, where p̂ is given by equation

(1.1). In the electronic supplementary material, we

describe indetail howexpressions for u( p0) canbe calculated

for finite populations influenced by stochastic processes

using either the Moran or Wright–Fisher approaches.

The main mathematical results are given in appendix A.
3. RESULTS
As mentioned in §1, study of the stochastic spread of

Wolbachia is relevant to two issues: first, to Wolbachia

dynamics in natural populations where transfer between

species is rare, most likely involving the infection of very
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few individuals or even one (i.e. p0Z1/N ), and, second, to

the applied use of Wolbachia in pest and disease vector

management; here the probability of spread with much

larger initial numbers of infected individuals ( p0[1/N ) is

of interest. We explore each in turn.
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Figure 2. The probability of fixation of Wolbachia following
the introduction of a single female into a population with
effective population size N. Probabilities of a neutral
Wolbachia and then strains with different combinations of
fitness costs (sf) and probabilities of the non-transmission of
the bacterium to offspring (m) are shown. CI is assumed to be
complete (shZ1).
(a) Spread of Wolbachia from a very low

initial frequency

The probability that a neutral or deleterious Wolbachia will

spread to fixation in a finite population is shown in

figure 1, where it is assumed that CI is complete (shZ1)

and Wolbachia transmission perfect (mZ0). To plot these

figures, the exact results from the Moran analysis

(equation (A 4) in appendix A) were used. The probability

of fixation decreases with population size, as would be

expected of a stochastic genetic process. The slope of

decline on the double logarithmic plot is K1/2 and hence

the fixation probability is proportional to 1=
ffiffiffiffiffi
N

p
. This is

considerably greater than that for a neutral chromosomal

gene or maternally inherited element without CI, where

the equivalent expression is proportional to the reciprocal

of population size (1/N ). When the population size is

small, the probability of fixation of a weakly deleterious

Wolbachia is similar to the neutral value (i.e. sfZ0, shO0),

but the discrepancy grows rapidly as population size or

the magnitude of the deleterious effect increases. We

found that decreasing the efficiency of CI (sh!1) has

the same effect as approximately increasing population

size by an amount (1/sh), an observation we confirm

analytically below.

When transmission is imperfect (mO0), the Wolbachia

never reaches a frequency of 1, but we can calculate the

probability that it increases in frequency to the stable

equilibrium given in equation (1.1) (figure 2). For low

values of m, the reduction in the likelihood of establish-

ment is very similar to the effect of the cost of bacterial

carriage (sf ): increasing either by the same amount has

similar consequences. The two effects are also roughly

additive in the sense that the probability of fixation of a
Proc. R. Soc. B (2008)
strain with mZsfZx is approximately the same as that of a

strain with mZ2x and sfZ0 or mZ0 and sfZ2x.

The equivalent fixation probabilities of a Wolbachia

strain that imparts a fitness benefit to its host are shown in

figure 3 (which assumes shZ1 and mZ0). For low

population sizes, the probability of fixation is again similar

to that of the neutral case; but for stronger benefits and in

larger populations, the relative probability of fixation

increases. As population size increases, the probability of

fixation asymptotes at a figure that is higher for more

beneficial bacteria. Note that although the deterministic

models always predict beneficialWolbachia to spread from a

single infection, the actual probability, taking into account

stochastic effects, is always considerably below 1, whatever

the population size is, as is true for beneficial mutations.

Further insight into these results can be obtained

from approximations of the expressions for the fixation

probabilities given in appendix A. First assume perfect
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transmission (mZ0). In the case of the Wright–Fisher

model, the population can be characterized by its variance

effective population size, Ne, that allows us to model a

variety of demographic assumptions. The price of obtaining

exact solutions for the Moran process is the need to make a

precise demographic assumption that implies Ne/NZ1/2

(Ewens 2004, sec. 3.7). For small sf and p0z1/N, but for

arbitrary sh, both the approaches show that the fixation

probability can be approximated by a truncated power law

(see the electronic supplementary material)

uðp0Þz2p0

ffiffiffiffiffiffiffiffiffiffi
Nesh
p

r
exp K2sf

ffiffiffiffiffiffiffiffi
Ne

shp

s !
: ð3:1Þ

When population size is large, this approximation

performs similar to that of Rigaud & Rousset (1996;

equation (1.2) above); but when population size is smaller,

and fixation probabilities are higher, this result provides a

significantly better match to the simulations in Egas et al.

(2002) as well as those we have carried out ourselves

(figure 4). If the Wolbachia has no effect on host fitness

(sfZ0) and Ne/N is constant for populations of different

sizes, we obtain

uð1=NÞf
ffiffiffiffiffiffiffiffiffiffi
sh=N

p
; ð3:2Þ

which was first derived by Rigaud & Rousset (1996). This

matches the patterns in figure 1 and also confirms that the

effect of an incomplete CI (sh!1) is equivalent to inflating

population size by a factor 1/sh.

Now relax the assumption about perfect transmission.

It can be shown (see the electronic supplementary

material) that for small sf and m, and for p0z1/N,

uðp0Þz2p0

ffiffiffiffiffiffiffiffiffiffi
Nesh
p

r
exp K2ðsf CmÞ

ffiffiffiffiffiffiffiffi
Ne

shp

s !
: ð3:3Þ

Note that changes in sf and m have the same effect on

fixation probability, a finding that closely matches the

results shown in figure 2.

For the parameter values used in figure 1, the fixation

probabilities for deleterious Wolbachia converge to those

for the neutral case (i.e. sfZ0, shO0) in ‘small’

populations. We can state more generally the conditions

under which this is true. As is explained in the electronic

supplementary material, the probability of fixation is

roughly proportional to
ffiffiffiffiffiffiffiffiffiffi
sh=N

p
for populations smaller

than Nezðp=4Þshðsf CmÞK2. Above this threshold, the

negative effects of the Wolbachia are much stronger than

stochastic drift, and fixation is much less likely.
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ForWolbachiawith positive effects on host fitness, figure 2

shows that fixation probabilities are again well approxi-

mated by the neutral case (i.e. sfZ0, shO0, mZ0) for small

population sizes and small fitness effects, but asymptote

as population size increases. It can be shown that when

p0z1/N and mZ0, the asymptotic value is 2sfNep0, which

increases with fitness benefit, initial frequency and effective

population size. For the particular demography assumed in

figure 1 (Ne /NZ1/2) and for a single initially infected

individual ( p0Z1/N ), the log probability of fixation is Ksf:

the greater the fitness benefit, the higher the probability of

fixation. This result is equivalent to Haldane’s (1927)

classic demonstration that the probability of fixation in

the Wright–Fisher model of a single copy to a beneficial

allele is approximately 2s in a large population, where s is

the (small) selective advantage to heterozygotes.

Once a Wolbachia strain with perfect transmission has

become fixed, there is a possibility that it might be lost by

chance events, if a single uninfected individual arises. This

probability (which can be calculated as 1Ku(1K(1/N )) in

equation (A 4) in appendix A) is much lower than the

equivalent chance that a rare Wolbachia spreads, and it falls

exponentially with population size (figure 1). Similar

results are found for established strains with imperfect

transmission at their equilibrium density. It is thus unlikely

that a population will lose an established Wolbachia

infection by stochastic processes, although other biologi-

cal mechanisms might bring this about (Hurst & McVean

1996; Sinkins & Godfray 2004).
(b) The deliberate introduction of Wolbachia

An important question relevant to using Wolbachia to

manipulate host populations concerns the number of

infected individuals that must be released to ensure

establishment with high probability. Deterministic models

predict spread and establishment, if the fraction of

infected individuals exceeds the threshold given in

equation (1.1). The probability of establishment changes

from a step to a sigmoid function, when stochastic effects

are taken into account (see examples in figure 5). When

population sizes are comparatively small, this probability
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may be substantial at frequencies below the deterministic

threshold, while establishment may be far from certain

above the threshold. A corollary of this is then that when

population size is relatively small, the precise position of

the threshold is of less importance and the probability of

establishment increases steadily with the number

of infected insects released. Note that the probability of

fixation or establishment at the deterministic threshold is

less than half in finite populations.

Pest or vector managers involved in practical control

programmes will often be faced with decisions about

which populations to target with the number of infected

insects currently available in the rearing facility, whether

to use all the available insects in one population or to split

them among several populations; and for host populations

that fluctuate in size, whether to release immediately or

wait until the wild population is smaller and a higher initial

fraction infected can be obtained. The latter is particularly

relevant as, almost by definition, pest (and often vector)

populations being large and waiting until population

bottlenecks occur may be the only feasible way of

exceeding the threshold for spread. Even then it is possible

that the maximum number of insects available for release

is below the threshold, and the pest or vector manager may

need to ‘gamble’ on stochastic processes working in his or

her favour. Ideally, decisions such as these should be made

using a population model tailored to the relevant pest or

vector, but where this is unavailable the theory developed

here can provide useful guidance. Figure 6 shows the

probability of successful establishment when different

numbers of Wolbachia-infected insects are released into

host populations of different sizes. We have assumed here

perfect transmission and complete CI, but both assump-

tions can be relaxed as appropriate. These probability

surfaces, coupled with information about the economics

of rearing insects for release and the likely fluctuations in

pest or vector population size, can be used to inform of

optimum release strategies.
Proc. R. Soc. B (2008)
4. DISCUSSION
In finite populations, Wolbachia may become established

when its initial frequency is below the critical threshold

(equation (1.1)), and may be lost when the infection

benefits the host or its initial frequency is above the

threshold. The presence of CI markedly increases the

probability of invasion in the face of stochastic loss

compared with equivalent nuclear genes or maternally

inherited elements without CI. Our results extend the

previous studies of the stochastic dynamics of Wolbachia

(Rigaud & Rousset 1996; Egas et al. 2002) and have

implications for how Wolbachia spreads and maintains

itself in natural populations of insects, as well as how it

might be used in pest and disease-vector management.

Information about the fitness effects of Wolbachia on its

host is difficult to obtain because costs and benefits may

vary depending on the environment as well as factors such

as host age and genotype. Examples of costs, benefits and

apparent neutrality have been recorded (McGraw et al.

2002; Vala et al. 2003; Duron et al. 2006; Fytrou et al.

2006; Islam & Dobson 2006; Montenegro et al. 2006;

de Crespigny & Wedell 2007; Weeks et al. 2007). If transfer

between populations does typically occur through rare

infections of single or small numbers of individuals,

then deterministic models would predict that strains of

Wolbachia which impose costs on their hosts would find it

very difficult to invade because the threshold for spread

would never be exceeded. The stochastic analysis shows

that fixation can occur after introduction at a very low

frequency, especially in small populations. Egas et al. (2002)

concluded after simulating the stochastic spread of

Wolbachia that drift was a very unlikely mechanism for the

bacterium to establish itself. Although our results closely

match and extend theirs, we point out that the fixation

probability of neutral or near-neutral Wolbachia markedly

exceeds that of an equivalent chromosomal gene. It is widely

accepted that drift can lead to the fixation of chromosomal

genes and the same processes may be influencing Wolbachia

dynamics, though in larger populations.

If an uninfected population constantly receives

Wolbachia immigrants, the probability that the infection

will eventually invade and reach fixation is unity. However,

this mathematical truism provides no guarantee that transfer

will occur on biologically relevant time scales. In figure 7 we

provide examples of average waiting times until fixation as a

function of population size, fitness cost and migration rates.
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population that receives a constant (small) influx of Wolbachia
at rate m. We assume that all individuals die at rate F, so that
average lifespan is 1/F and the number of infected individuals
in the naive population at any one time is on average m/F.
Time is measured in units of average lifetime. (a) Average
waiting time as a function of population size for Wolbachia
with positive, neutral and negative effects on fitness (shZ1,
m/FZ0.1) and (b) average waiting times as a function of
introduction rates for the same values of Wolbachia fitness
effects (shZ1, NZ250). Further details of calculations are
given in the electronic supplementary material.
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They show that populations exposed to a steady influx of

Wolbachia-infected individuals, but where frequencies never

exceed the critical threshold, can become colonized by the

bacterium on medium ecological time scales, especially in

small- to intermediate-sized local populations. But without

better biological insight into the mechanism and rates of

interspecific transfer, it is not possible to make meaningful

predictions about likely waiting times.

By contrast, the stochastic analysis shows that the

spread of a Wolbachia that is beneficial to its host is far

from certain after a low-frequency introduction. Just as a

beneficial allele, the large majority of beneficial Wolbachia

introductions will be lost by chance before they have

become abundant enough to ensure fixation.

Exactly how Wolbachia crosses the species boundary is

unclear, though such transfers are almost certainly rare

events, probably involving only a single or a small number

of infections at one time. The overall probability of a

successful species jump will be influenced by the number

of times a Wolbachia infection occurs in the new species

and the probability of an establishment conditional on a

new infection. Our and earlier results (Rigaud & Rousset

1996) suggest that the latter depends strongly on

population size, the probability being proportional to

NK1/2 for near-neutral bacteria and for low N. But this

does not necessarily mean that species jumps are more

likely to occur in small populations: this depends on the

relationship between population size and the probability
Proc. R. Soc. B (2008)
of an initial infection occurring. One could envisage

situations where transfer dynamics are mass-action and

proportional to population size so that the overall

dependence on population size scales with NC1/2.

Alternatively, one can imagine processes where the

probability of the initial cross-species transfer does not

scale with the size of the recipient population, e.g. if

transfer occurs during rare interspecific matings. In such

cases, the overall dependence on population size might

scale somewhere between NK1/2 and NC1/2, which

includes the case of no influence of population size.

Even when potential host populations are very large, the

probability of invasion may still be substantial if the initial

establishment of the bacterium occurs in much smaller,

partially isolated subpopulations. After this initial establish-

ment, the bacteria can spread through several processes. In

a continuous population, the spatial spread of Wolbachia

has been modelled by Turelli & Hoffmann (1991) as a

‘Bartonian wave’, mathematically analogous to the

spread of an underdominant chromosome (Barton 1979;

Schofield 2002). Alternatively, Wolbachia may spread from

one partially isolated subpopulation to another as in a

stepping stone model, and the theory developed here can be

used to calculate the probability of a step occurring in cases

when migration is insufficient to increase local frequencies

above the threshold. In both the cases, population spread

can be arrested at regions of low population density, which

cannot produce sufficient migrants to breach the threshold

of adjacent high-density populations or regions. A stochas-

tic theory to explore the passage through regions of low

density of waves of advance of underdominant chromo-

somes has been developed (Barton & Rouhani 1991), and

this is likely to prove useful in studying Wolbachia spread,

both in natural situations and in metapopulations of pests or

vectors where managers have to choose populations to be

targeted initially.

Pests and important vectors almost by definition have

large population sizes and hence applied ecologists

employing Wolbachia as a drive element will not normally

need to consider stochastic effects. However, it may be

possible to temporally reduce densities by insecticide

application to a level where relatively small releases cause

the threshold for spread to be exceeded. Alternatively, as

just discussed, small peripheral populations may be

infected, which then act as a bridgehead for further

invasion. In these circumstances, the theory developed

here may be of use to pest and vector managers.

We chose to analyse stochastic spread using two

approaches that have different strengths and in particular

differ in how they treat the relationship between the census

population size (N ) and the variance effective population

size (Ne). If the number of offspring per female is Poisson

distributed, NeZN; but if variance is higher than Poisson,

Ne!N. The Wright–Fisher approach makes no assump-

tion about Ne/N, while the Moran approach assumes a

particular demography with Ne /NZ1/2. The consensus

from data is that Ne /N!1 (Crow & Kimura 1970), and

Ne /Nz0.1 may be common (Frankham 1995). However,

if one is willing to accept its underlying demography, then

the Moran approach allows exact results. Further, more

technical comparisons of the two approaches are given in

the electronic supplementary material, though for most

biological applications either approach can be used and

give similar results.
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Deterministically,Wolbachia spreads because it decreases

the fitness of individuals that do not carry the bacteria.

Several other phenomena have similar properties, speci-

fically providing a frequency-dependent fitness advantage.

Medea elements are natural or artificial constructs that

in the female heterozygote state place a substance in

individual eggs that kills the zygote, unless either the

father or mother (or both) bears the medea element

(Wade & Beeman 1994; Chen et al. 2007). As in the case

of Wolbachia, a medea element codes for a modifier and

rescue function, and wild-type homozygotes are disad-

vantaged relative to other genotypes. More speculatively,

evolutionary theorists have explored the dynamics of a

dominant gene that it in some way harms individuals that

do not carry it. For this to happen, these individuals must

be recognizable, and it has become customary to call the

identifying trait a ‘green beard’ (Dawkins 1982; Keller &

Ross 1998; Axelrod et al. 2004; Summers & Crespi 2005;

Jansen & van Baalen 2006). Deterministic theory predicts

that both types of gene will spread when initially rare if

they have no costs, while if costs are present there will be a

threshold frequency above which deterministic spread

occurs, analogous to the case of Wolbachia. Although we

have not modelled the detailed dynamics, our results suggest

that the stochastic spread of neutral medea and green beard

genes is similar to that of Wolbachia, with a probability of

establishment that scales with 1=
ffiffiffiffiffi
N

p
.
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APPENDIX A
As described more fully in the electronic supplementary

material, we use the Wright–Fisher and Moran techniques

to derive and approximate the probability of Wolbachia

establishment. In this appendix, we give the main

mathematical results that we use in drawing the figures

discussed in the main text.

For the Wright–Fisher analysis, it is necessary to

specify values for the mean and variance of the change

in frequency per generation, denoted M( p) and

V( p), respectively. To understand the initial spread of

Wolbachia-like infections, the critical factor is accurately

describing the dynamics when the change in frequency

is the lowest. Hence for the case of mZ0, we use the

approximation

MðpÞ

V ðpÞ
zNeðpK p̂Þ

sh
1K sf

; ðA 1Þ

where p̂Z sf =sh is the unstable equilibrium infection

frequency if sfO0. Substituting approximation (3.1) into

the formula for the probability of fixation (Crow & Kimura

1970, ch. 8), given an initial frequency of p0, we find

uðp0ÞZ

Ð p0

0 exp MðxÞ
V ðxÞ

h i
dxÐ 1

0 exp MðxÞ
V ðxÞ

h i
dx

Z
erf

ffiffiffiffiffi
Ne

p
sfffiffiffiffiffiffiffiffiffiffiffiffi

shð1Ksf Þ
p

� �
Kerf

ffiffiffiffiffi
Ne

p
ðsfKp0sh Þffiffiffiffiffiffiffiffiffiffiffiffi
shð1Ksf Þ

p

� �

erf

ffiffiffiffiffi
Ne

p
sfffiffiffiffiffiffiffiffiffiffiffiffi

shð1Ksf Þ
p

� �
Kerf

ffiffiffiffiffi
Ne

p
ðsfKsh Þffiffiffiffiffiffiffiffiffiffiffiffi

shð1Ksf Þ
p

� � ; ðA 2Þ
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where erf(.) denotes the error function. Approximation

(A 2) is extremely accurate for Ne as small as 20, even with

high levels of CI (e.g. shZ1) and considerable fecundity

costs of the infection (e.g. sfZ0.2). Equivalent arguments

for the cases of sf!0 and mO0 are developed in the

electronic supplementary material.

For the Moran model, the probability of fixation can be

found in closed form. Starting with a fraction p0 infected

individuals, the probability that Wolbachia becomes fixed is

(Goel & Richter-Dyn (1974) and see the electronic

supplementary material)

uðp0ÞZ

PNp0K1

jZ0

Qj
iZ1

iqu

ðNKi Þqi

PNK1

jZ0

Qj
iZ1

iqu

ðNKi Þqi

; ðA 3Þ

for mZ0, which simplifies to

uðp0ÞZ
G n; nð1K sf Þ
� �

KG nð ÞG nKNp0; nð1K sf Þ
� �

=G nKNp0

� �
G n; nð1K sf Þ
� �

KG nð ÞG nð1K shÞ; nð1K sf Þ
� �

=G nð1K shÞ
� � ;

ðA 4Þ

where nZN/sh and G(x, y) and G(x) are gamma functions.

When mO0, we obtain

uðp0ÞZ

1C
PNp0K1

jZ1

Qj
iZ1

iðið1Ksf ÞmCðNKiÞÞðNKshiÞ
ðNKiÞiNð1Ksf Þð1KmÞ

1C
PNK1

jZ1

Qj
iZ1

iðið1Ksf ÞmCðNKiÞÞðNKshiÞ
ðNKiÞiNð1Ksf Þð1KmÞ

: ðA 5Þ
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