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Populations can persist in an environment consisting of sink
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ABSTRACT Populations that live in environments with
different habitats have to distribute their offspring over these
habitats. When population densities go to equilibrium, the
evolutionary optimum is an ideal free distribution. Under an
ideal free distribution, no offspring should be put into sink
habitats. However, when the environmental conditions in a
habitat are not constant but f luctuate, allocating offspring to
sink habitats can increase the long term growth rate of a
population. We demonstrate this principle in a simple model
for offspring allocation. As a consequence, it is possible that
populations persist in environments that only consist of sink
habitats.

In ecological systems, some habitats are better than others. It
is believed that habitats can differ to the extent that some local
populations act as sinks and only exist because of the spill over
from other, source, populations. Sink habitats, by definition,
are habitats in which populations cannot survive when they are
isolated from other populations (1).

When habitat quality differs, the way in which individuals
distribute their offspring over the different habitats affects the
total number of surviving offspring produced. Individuals who
distribute their offspring differently have different fitnesses. A
genetically determined distribution of offspring is therefore
under evolutionary control. When the environment consists of
habitats of different but constant quality, the evolutionarily
optimal solution is, simply, to put all offspring in the best
habitat. The problem becomes more complicated when the
quality of the habitat depends on the local population density
(the quality of a habitat is the probability that an individual
born in that habitat gives rise to an adult). If every individual
allocated its offspring to the habitat that at that moment is the
best, this habitat would soon degrade to be the worst.

If population densities settle at an equilibrium value, the
solution to this evolutionary problem is to distribute offspring
such that the quality of all habitats becomes equal. When the
quality of habitats differ, any individual that allocates fewer
offspring to the worst habitat and instead allocates them to the
best habitat will have a higher than average reproductive
success. Eventually, evolution thus leads to a distribution of
offspring for which, when the whole population adopts it, all
habitats are of equal quality and for which an individual cannot
improve its reproductive success by using a different distribu-
tion. This evolutionary stable state is known as the ideal free
distribution (2, 3).

When the population is at equilibrium, every individual gives
rise to exactly one adult individual in the next generation.
When an individual has m children, the survival probability of
each child, averaged over all habitats, is 1ym. When the

distribution of offspring is ideal free, the probability of a child
to survive to an adult is the same in all habitats and therefore
it is 1ym in each and every habitat. But when a habitat is the
only one available and every individual is forced to allocate all
its m children to that one habitat, at equilibrium density, the
survival probability of offspring is also 1ym. Therefore, under
an ideal free distribution, local population densities are equal
to what they would be when all habitats were isolated. The
fraction of offspring allocated to a particular habitat, under the
evolutionary stable distribution, is proportional to the equi-
librium density if that habitat were isolated (4, 5). As a
consequence, no offspring should be allocated to a sink habitat
because (by definition) the equilibrium density of a sink
population is zero (6, 5).

The existence of sink populations in nature is well docu-
mented (7, 8). This leaves open the question, ‘‘Why do sink
populations exist at all?’’ A possible answer is that constraints
of various type keep populations from evolving towards the
ideal free distribution (1, 9, 10). Recently, it has been shown
that when population densities f luctuate, the evolutionary
process may lead to distributions in which offspring are
allocated to sink populations (10). The reason for this appar-
ently counter-intuitive result is that when the quality of the
source population occasionally becomes worse than the sink
population, the geometric mean of the reproductive success of
an individual that does allocate to the sink can exceed that of
an individual that only uses the source habitat (11) (Fig. 1).

We will take this idea further in a simple model in which
offspring have to be allocated to two sink habitats. The
population growth rate depends on the way in which offspring
are distributed. Moreover, the optimal distribution can result
in a growing population despite the fact that both habitats are,
on their own, sinks.

A Model for the Allocation of Offspring

Suppose that an individual distributes its offspring over two
types of habitat with different qualities. The probability of
offspring survival differs between the two habitats. For sim-
plicity, we will assume that this probability is independent of
the local population size. One habitat, say habitat 1, is highly
productive but suffers from occasional catastrophes in which
only very few offspring survive. We assume that a population
confined to this habitat cannot persist in the long run. The
other habitat is constant in quality but the quality is low so that
a population that uses this habitat only is doomed to extinction.

An individual produces in total m offspring, of which a
fraction f is deposited in habitat 1 and the remainder in habitat
2. Let N(t) be the size of the population in generation t and
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Si(t) the survivorship of offspring in habitat i for generation t.
The population size in the next generation is:

N~t 1 1! 5 mfS1~t!N~t! 1 m~1 2 f!S2~t!N~t!. [1]

The variable S1(t) is a stochastic variable which takes value Sa
, 1ym with probability p, and value Sb . 1ym with probability
1 2 p; p is the probability of a catastrophe to occur. We will
choose habitat 2 to be constant and low in quality: S2(t) 5 Sc
, 1ym (i.e., it is a sink). The parameters Sa, Sb, and Sc are all
constants. Assuming that fraction f is genetically determined,
we analyze the optimal genotype f*, which maximizes the
expected long term population growth rate. The long term
average growth rate of the population is given by the geometric
mean of the yearly rates of increase:

G~f! 5 m~fSa 1 ~1 2 f!Sc!
p~fSb 1 ~1 2 f!Sc!

12p [2]

If this quantity exceeds unity the population persists. Maxi-
mizing G(f) is identical to maximizing its logarithm, and
therefore the optimal fraction f* can be calculated from:

d ln G
df

U
f*

5 0

which gives:

f* 5 Sc

~Sb 2 Sc! 2 p~Sb 2 Sa!

~Sc 2 Sa!~Sb 2 Sc!
[3]

This is a unique maximum because

d2 ln G
df2 5 2pS Sc 2 Sa

fSa 1 ~1 2 f!Sc
D 2

2 ~1 2 p!

3 S Sb 2 Sc

fSb 1 ~1 2 f!Sc
D 2

, 0 [4]

The long term growth rate of a population confined to
habitat 1 is given by the geometric mean of its growth rate,
which is G(1) 5 mSa

pSb
12p, whereas for a population confined

to habitat 2 the long term growth rate is G(0) 5 mSc. We will
choose the parameters such that G(0), G(1) , 1, thus
guaranteeing that the population cannot survive in a single
habitat. Hence, both habitats are sinks by definition.

The population will increase in number in an environment
of combined sinks when G(f*) . 1. Because the closed form
expression for this quantity is not very transparent, we will

present our results graphically. In Figure 2a, the geometric
growth rate is depicted for a sink–sink population as a function
of f. Clearly, it is possible to distribute the offspring among the
two sinks in such a way that the population increases. When
catastrophes become more likely, the optimal fraction f* and
the optimal growth rate G(f*) decrease (Fig. 2b).

Strictly speaking, a population that persists should not only
grow away from very small numbers but also be bounded away
from infinitely large numbers (12). This requires density
dependence. Fig. 3 shows a density-dependent analog of our
offspring allocation model. The number of individuals that
survives in a habitat depends on the number of offspring
present in the habitat through the Ricker model. The growth
rates of the model can vary; habitat 1 has a variable growth
rate, whereas habitat 2 has a constant low growth rate. The
figure shows the average population density as a function of f.
The population can persist only when offspring are suitably
distributed over the two habitats.

Discussion

In stable environments, populations can maximize growth
rates by not allocating offspring to sink habitats. However,
when the quality of habitats f luctuates over time, a population
that puts a fraction of its offspring into a sink habitat can have
a higher growth rate than one that only uses sources. When the
main habitat of a species is struck occasionally by catastrophes
so that the population could not survive when confined to this

FIG. 1. Long term population growth rates in a system in which
female butterflies allocate 100 eggs between farmed and wild habitat.
The farmed habitat is mostly high in quality, but in 1 out of 10
generations, all larvae are killed by insecticide spraying or early
harvesting. The wild habitat is of constant but low quality. The optimal
allocation is 80 eggs in the farmed habitat and 20 in the wild habitat.
(After ref. 11).

FIG. 2. (a) The long term growth rate G(f) of a population
described by equation (1) as a function of f, the fraction of offspring
put in habitat 1. The growth rate has an optimum for f 5 f*. Note:
when all offspring are put in a single habitat, the long term growth is
less than unity, but by distributing offspring over both habitats, the
population can grow. Parameters: mSa 5 0.005, mSb 5 5, mSc 5 0.7,
p 5 1y3. (b) The maximum of growth rate, G(f*), and the fraction of
offspring in habitat 1 for which it is attained, f*, as a function of the
probability of having a catastrophe, p. An increase in risk causes the
maximum growth rate to decrease whereas more offspring are put in
the constant low quality patch. Parameters used are as in a.
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habitat (i.e., it is a sink), populations can persist by spreading
their risk and distributing their offspring over different types
of habitat. When the quality of the other habitats is higher than
that of the source during the catastrophe, population growth
rate is increased by spreading offspring over the habitats.
Surprisingly, these habitats also may be sinks. In other words,
although this population cannot survive in a single habitat, it
may persist in an environment consisting only of sinks.

Although data on the temporal variability in reproduction
success are scarce, catastrophic extinctions of source popula-
tions have been reported (15). A further empirical illustration
of our theoretical example is described in (16): Cakile edula is
an annual plant found in a range of coastal habitats stretching
from open beaches to vegetated dunes. In vegetated areas, the
plants occur commonly although the number of fruits pro-
duced per fruit sown is less than one; hence, these areas are
sinks. On open beaches, the number of fruits per fruit greatly
exceeds one. The dunes are a relatively constant environment
but reproductive success is low probably because of competi-
tion with other plant species. In contrast, the open beaches are
a very productive habitat but reproductive success can be
catastrophically reduced by storms and high sea events that
occur with a high spatial correlation. In the long term, Cakile
edula might therefore not be able to survive when confined to
either dunes or open beaches; nevertheless, it is a common
species on the sandy sea sides of eastern North America.

The mechanism through which such populations persist is
the spreading of risk (13). In its original form, the theory of risk
spreading was a verbal argument explaining the distribution of
offspring over similar but uncorrelated environments (13).

This situation is encountered in classic metapopulation models
(14) in which the geometric mean growth rate of a population
confined to a single patch is zero, due to occasional catastro-
phes. The geometric mean growth rate of a population that
distributes its offspring over many patches depends on the
correlation between the patches and the costs of distributing
offspring. Whether or not the metapopulation persists de-
pends on the balance between these two. When the patches are
sufficiently productive and uncorrelated a population will
persist through the spreading of risk. However, when catas-
trophes are correlated spatially, risk spreading over similar
habitats has little effect. Then, spreading of risk between
different types of habitat will be more effective. Here, we
provide a quantitative description of this idea that enables us
to demonstrate that populations can persist through risk
spreading even if some of the habitats are sink habitats of
constant but low quality. The same result can be achieved by
allocating of offspring to life stages in which the reproductive
success is low but constant as is the case with, for instance,
diapause, dormancy, and seed banks.

The use of source–sink theory is gaining attention in con-
servation biology (17). The underlying assumption is that
environments are stable and densities converge to an equilib-
rium, so that sinks play no role in the survival of the species.
Natural environments can be highly variable. As we have
shown, species can depend on sink habitats for their survival.
When local environments are variable, predictions from stan-
dard source–sink theory may not hold and species can survive
in sinks only.

We thank John Lawton and Bob Holt for comments on the
manuscript.
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FIG. 3. For the density-dependent analog of the model described
by Eq. 1, we replace the survival probabilities Si(t) by the Ricker
functions: S1(t) 5 r1(t)me2fmN(t) with r1 5 Sa with probability p and
r1 5 Sb with probability 1 2 p, and S2(t) 5 Scme2(12f)mN(t). In the
figure, the population densities are shown as averaged over time. The
population becomes extinct when all offspring are allocated to only one
habitat, but when offspring are distributed over the two habitats,
population persistence becomes feasible. Parameters used are as in
Fig. 2, m 5 100.
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