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Many animal paths have an intricate statistical pattern that
manifests itself as a power law-like tail in the distribution of
movement lengths. Such distributions occur if individuals move
according to a Lévyflight (amode of dispersal inwhich the distance
moved follows a power law), or if there is variation between indi-
viduals such that some individuals move much farther than others.
Distinguishing between these two mechanisms requires large
quantities of data, which are not available for most species studied.
Here, we analyze paths of black bean aphids (Aphis fabae Scopoli)
and show that individual animals move in a predominantly diffu-
sivemanner, but that, because of variation at population level, they
collectively appear to display superdiffusive characteristics, often
interpreted as being characteristic for a Lévy flight.

animal movement | diffusion | random walk | statistical inference |
movement ecology

Following the suggestion by Mandelbrot (1) that animal move-
ment shows scale invariance and fractal properties, the study of

animal movement has attracted much attention (2–9). Several
studies have reportedmovement length distributionswith a fat tail,
corresponding to a power law,which could be indicative of a fractal
movement pattern known as a Lévy flight (2). The agreement
between a power law distribution and the data are sometimes very
good (e.g., see the top right panel of figure 4 in ref. 4); however,
often the rate of decay in bout duration frequency is best described
by a power law with an exponential cutoff, i.e., a power law-type
rate of decay for intermediate bout durations, and an exponential
rate of decay for long bouts (5, 7, 9–12).
There are two potential explanations for such distributions.

One possibility is that the long movements are overrepresented
for all individuals, for instance, because all tracks have Lévy flight
characteristics (13). Alternatively, there is variation between
individuals, such that some individuals move much longer and
farther than others, and the population aggregate appears to show
a fat tail, but individual’s bout distributions do not (14–16). One
can distinguish between these mechanisms by rescaling the tra-
jectories, such that the mean bout length is the same for all tra-
jectories. If one then aggregates these rescaled distributions
and the resulting aggregate is fat tailed, the “fat-tailedness” is
a property of the individual trajectories. If, on the contrary, the
population distribution loses its fat tail after rescaling, the fat tail
is caused by variation between trajectories (Fig. 1).
We used this idea to analyze walking tracks of apterous black

bean aphids. Aphids are small insects that feed on plants and walk
to locate suitable feeding places and to reposition themselves
on the plants on which they live. They are convenient to study
walking behavior because they are small, easy to rear, and walk
over small distances, which makes it easy to gather and analyze
data. Moreover, they walk through alternating bouts of directed,
fast movement, with periods of slow, undirected movement, and
the length distribution of these bouts of directed movement is fat-
tailed and best described by a power law with exponential cutoff
(Fig. 2A) (9).

Individual Variation Between Individuals
We will first demonstrate that there is substantial variation be-
tween individuals. For this, we used a bootstrapping procedure
for which we constructed tracks in which the bouts were randomly
drawn from the observed aggregate distribution of bouts in the
population. We then rescaled the artificial tracks and the original
tracks as described in Materials and Methods and in SI Appendix,
Statistical Analysis of Data. This showed that the original scaled
tracks differ significantly from a population in which the bouts are
all drawn from the same distribution. Next, we constructed tracks
from exponential distributions with a parameter equal to that es-
timated from the original track. After scaling, the aggregates
showed no significant difference from the original scaled tracks (SI
Appendix, Bootstrapping Procedure to Test Whether Bouts Within
Tracks Are Exponentially Distributed). This suggests that movement
lengths within tracks are exponentially distributed, but differ in the
parameter of this exponential distribution, and that the power law
with exponential cutoff in the population data results from a su-
perposition of these exponential distributions. We confirmed this
by plotting the rescaled bout distribution, which agrees with an
exponential distribution (Fig. 2B). We also estimated the param-
eter of the exponential distribution for all individual tracks (SI
Appendix, Theoretical Prediction of ψ(λ) and Scaled Bout Distribu-
tion), and this demonstrates there is considerable variation (Fig.
2C). Because the scaled individual bout durations have no in-
dication of a fat tail, but the distribution of parameters has sub-
stantial variation, this gives further support to the statement that
the approximate power law in the bout distributions originates
from the differences between individuals.

Movement of Nonidentical Individuals
To interpret this finding, we applied the tools of statistical me-
chanics. A bout of a given duration can be obtained by many
different combinations of steps of various lengths, and which of all
these possible realizations actually happens is not known. How-
ever, in a statistical equilibrium the probability density that a
random sampling of the system will return a bout of length τ is
given by the Boltzmann distribution (17):

ϕðτ; λÞ ∝ expð− λτÞ; [1]

where λ is the parameter quantifying the given equilibrium. This
is a fundamental law of statistical mechanics (SI Appendix,
Movement of Non-Identical Individuals: Model Derivation Using
Statistical Mechanics).
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The results in Fig. 2B justify the assumption that there exists
an ideal distribution of the bout duration, ϕ(τ,λ), given by the
exponential distribution. The parameter of this distribution, λ, is
likely to depend on properties that may affect individual motion,
e.g., body mass, leg or wing length, metabolic rate, motivational
state. If these traits vary among individuals, different individuals
will have different values of λ, and this will make the bout dis-
tribution in the population different from the ideal distribution.
In the population, λ is described by a probability distribution
ψ(λ) (Fig. 2C) rather than a single-valued parameter (16), and
the observed aggregate probability distribution function Φ(τ), of
bout duration is:

ΦðτÞ ¼
ðλmax

λmin

λ expð− λτÞψðλÞdλ; [2]

where λ is distributed over a finite, positive domain. It can be
shown that, for small bout durations, this leads to near linear be-
havior, whereas for large bout durations, we find an exponentially
decaying distribution (SI Appendix, Movement of Non-Identical
Individuals, and SI Appendix, Fig. S2). This observation explains
why power laws are ubiquitous in themovement of a population of
nonidentical individuals, as the crossover of these two asymptotic
behaviors creates the appearance of a power law with cutoff.

This also suggests a procedure to differentiate between the two
possible explanations for fat tailed distributions: either each and
every individual generates bouts from the same distribution Φ
and these bouts are uncorrelated within tracks, or each individual
generates exponentially distributed bouts, but with different
parameters for the exponential and the same aggregate distri-
bution Φ, which we assume has a truncated fat tail. To distinguish
between these two explanations, we will select the one which is
most likely, given the data (Materials and Methods). This pro-
cedure is more conservative than the methods applied earlier and
tends to be biased toward the first explanation for shorter tracks.
However, if we used the tracks with five or more bouts, this
method selected the second explanation, from which we infer that
the tracks are structured according to the Boltzmann distribution.

Discussion
Here we have provided conclusive evidence that, for a population
that has a bout distribution that is fat-tailed, an exponential,
Boltzmann-like distribution of movement bouts can describe the
movement of individual aphids. As a result of variation between
individuals, the population as a whole appears to display a non-
diffusive type of movement.
Distributions of bouts often can be described by a power law

(4) for part of the domain, but also can be fitted reasonably well
by an exponential-type distribution in other parts (10–12), sug-
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Fig. 1. Two possible explanations for fat-tailed movement data: (A) All tracks are similar in that they have bout durations drawn from the same fat-tailed
distribution (blue tracks) or (B) all tracks are diffusive and have movement lengths drawn from exponential distributions, but individuals differ in that some
move much more than others (green tracks). The difference between individuals is chosen such that the aggregated distributions of movement lengths (C) is
identical (over a larger range) and has power-law characteristics, which showas a straight line on a double log plot (blue circles and green triangles represent the
blue and the green tracks). One can distinguish between these two cases by scaling the tracks (here, dividing each value by the trackmean bout duration) so that
they have the same typical length and aggregate the scaled data (D). For the blue tracks, the scaling does not affect the fat tail, whereas for the green tracks,
scaling reveals the exponential nature of the individual bout distributions as a straight line on a semi-log plot (see Inset). The lines show a unit exponential
distribution.
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gesting a power law with exponential cutoff. It has been argued
that such a cutoff should always be present as a result of the
effects of finite space (e.g., animal territory) or at smaller scales
by environmental factors such as distribution of food items (18),
which truncates paths.
Here we have shown that in a population in which the move-

ment characteristics appear to have a fat tail the appearance of a
fat tail is caused by variation between individuals. This shows that
population aggregates of movement data can be very different

from the corresponding data at the individual level. The power
law with a cutoff that we found was not the result of a truncation
or interruption of paths of all individual, for instance, through
encountering the edge of the arena, or because the predator
encounters a prey item, but came from the differences between
individuals.
If a power law is encountered in aggregated data, it need not

mean that individual paths have the same power law signature.
For instance, in Fig. 1, the aggregated bouts obey a shifted power
law resulting from a population of individuals whose bouts come
from an exponential distribution. This shows that one ought to be
cautious in attributing properties of the population aggregate to
the individual. For instance, it has been argued that, if movement
data are distributed according to a power law (with or without
cutoff), the location of prey items under certain conditions is
optimized (3, 18, 19). Therefore, this does not necessarily mean
that, if the population aggregate shows a power law (with or
without cutoff), individuals in this population are optimized with
respect to the location of prey.
Fat-tailed distributions are a fingerprint of a non-Brownian,

superdiffusive motion (a spread faster than through diffusion)
(20, 21). Our results suggest that, at the time scale at which we
made our observations, individual movement has diffusive char-
acteristics, yet at population level, the movement characteristics
appear to have superdiffusive properties. A similar result was
presented for the movement of humans, traced by their mobile
phones’ position (22); however, human individual movement
could be characterized by a Lévy flight up to a certain scale. Al-
though it is no surprise that mobile phone movement is different
from that of insects, it is interesting to observe that superdiffusive
movement in both cases could be explained by population-level
variation. This is also supported by a number of other studies in
which considerable variation in movement parameters between
individuals was observed, with distributions that resemble power
laws with cutoffs, even though it was not always established
whether individuals move diffusively (23–27). These observations,
combined with our finding that individual movement has diffusive
characteristics, raise the question in how far the behavior of other
animals truly has fractal properties, or whether this is a result of
the pooling of data across individuals together with individual
variation (14, 15).
This observation has important consequences for movement

and spread of populations of organisms. For instance, if certain
individuals move more than others, and thus make more contacts,
this would provide a mechanistic underpinning for the existence of
“superspreaders,” which can enhance the spread of disease. It has
also been suggested that superdiffusive movement has evolved to
the extent that it optimizes search efficiency (3, 19). If it is indeed
the case that not the individual trajectories, but rather the pop-
ulation aggregate, is optimal, it is feasible that there is selection for
individual movement characteristics of a scale that complements
that of the population ensemble. This would open the way to
formulate a mechanistic framework to explain animal searching
behavior and generate novel hypotheses about its evolution.

Materials and Methods
Black bean aphids (Aphis fabae Scopoli) were reared on bean plants (Vicia faba
L.) as described previously (28). Aphidswere taken from theplant andplaced in
9-cm Petri dishes on filter paper in groups of 10 and 20 and video-recorded
using a Watec 902 camera with HF9HA-1B Fujinon lens (ALRAD). Paths were
calculated from the records with GMimPro software (http://www.nimr.mrc.ac.
uk/gmimpro/) (29). Paths consisted of alternated intervals of high and low
speed. A walking bout was defined as a movement of at least 3 s in which the
speedexceeded0.3mm/s at every second (9).Weanalyzed 171paths consisting
of three or more bouts, and a total of 800 bouts over all paths.

To rescale the tracks and to estimate the exponential parameter from the
data, we had to take into account the discretisation andminimal length of the
data. To rescale the bout length τ we used the following formula:

Fig. 2. The data of aphid tracks with at least three bouts per track (A)
Distribution of the bout durations fitted with distributions based on the
exponential (dashed line), power law (dotted line), and power law with
exponential cutoff (solid line) functions by using maximum likelihoods. The
power law with exponential cutoff provides the best fit: the maximum log
likelihoods are −2,708, −2,672, and −2,623, respectively, giving the power
law with exponential cutoff (∼τ−1.19e−0.03τ) an Akaike weight of 1.0. (B) Bout
durations scaled as described in Materials and Methods. Because bouts are
at least 3 s, the scaled bout duration underrepresents short-scaled bouts.
The straight line is a unit exponential, scaled to account for the bouts
shorter than 3 s. The curve is a theoretical prediction (SI Appendix, Theo-
retical Prediction of ψ (λ) and Scaled Bout Distribution) of the scaled bout
duration distribution based on the best fit distribution used in A. (C) Fre-
quency of the exponential parameter λ: the curve is the theoretical pre-
diction (SI Appendix) of the exponential parameter based on the best fit
distribution portrayed in A. Inset: Distribution of the predicted mean bout
lengths ð~λ− 1Þ for the tracks.
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τ′ ¼ 1þ ~λz
�
τi þ 1

1− e− ~λ

�
[3]

where ~λ ¼ n− 1
n

ln ð1þ n
s− 3nþ n− 2Þ, n is the number of bouts in the track,

and s is the sum of all bout lengths in the track (SI Appendix, Statistical
Analysis of Data, describes justification and derivation).

To establish the likelihoods of the hypotheses (first, that the tracks are
unstructured, and second, that the tracks are structured according to the
Boltzmann distribution), the following procedure was implemented. Let the
likelihood of hypothesis i given the data in track j, Tj, be given by Φtr

i ðTjÞ,
then the likelihood is ΠM

j¼1Φ
tr
i ðTjÞ, with M the number of tracks. The calcu-

lation of the track likelihood under the first explanation follows from the fact
that all bouts are uncorrelated and drawn from the aggregate distributionΦ.
For the calculations, we assumed that Φ followed a discretized power law
with exponential cutoff (9). The likelihood tofind the bouts in the track under
the second explanation follows from the assumption that they are all drawn
from the same exponential distribution. Details of the calculation are ex-
plained in SI Appendix, Inferring the Structure Within Tracks.
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