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Gradual evolution is a common phenomenon in the fossil record of
marine microplankton, yet no theoretical model has so far been
presented to explain the observed pattern of unidirectionality in
trait evolution lasting over tens of millions of generations. Recent
molecular genetic data show that the majority of microfossil-
producing plankton groups harbors substantial cryptic diversity.
Here, we examine the effect of cryptic diversity on apparent rates
of lineage evolution. By using a theoretical approach, we show
that under resource competition, an increasing number of sibling
species within a hypothetical lineage leads to an exponential
slowdown of the apparent rate of evolution. This mechanism
explains both the remarkable variation in apparent rates of evo-
lution observed in marine plankton, as well as the presence of long
gradual evolutionary trends.

evolutionary rate � foraminifera � fossils � diversity � ecological dynamics

The fossil record of marine microplankton has been instru-
mental in providing quantitative data on the rates and

patterns of morphological evolution. Contrary to terrestrial and
shallow-marine settings, deep-sea sediments routinely provide
long, well dated, continuous sequences documenting changes in
the morphology of the fossilized remains of marine plankton at
the resolution of a few thousand years (1). The data on evolu-
tionary rates of marine microplankton (mostly planktonic fora-
minifera) derived from the fossil record indicate a striking range
of rates of lineage evolution: whereas some transitions are
completed in �105 to 106 generations [assuming a monthly
reproductive cycle in planktonic foraminifera (2)] (3–5), long
unidirectional trends in morphological traits have been docu-
mented to last �107 or even 108 generations (6–10) (Fig. 1).

The remarkably slow rate of morphological evolution in some
marine microplankton lineages has attracted considerable at-
tention, particularly because long-lasting gradual trends are not
easy to accommodate within neo-Darwinian evolutionary mech-
anisms (11). However, no appropriate explanation has ever been
put forward. The apparent rate of morphological evolution in
these lineages appears much slower than predicted by classical
evolutionary theory (12). Lande (13) postulated that the gradual
patterns could represent random genetic drift, but increasingly
sophisticated statistical analyses of the Contusotrucana lineage
(10) (Fig. 1), for example, indicated a significantly directional
component deviating from random null models (14, 15). An
explanation involving the tracking of a gradually shifting opti-
mum by the evolving lineages is equally illusory: on geological
time scales, the variance in surface ocean properties is domi-
nated by orbitally driven insolation changes with periods be-
tween 20 and 400 kyr, as was the case for the late Cretaceous
habitat of the Contusotrucana lineage (16).

All earlier interpretations of gradual trends in fossil micro-
plankton relied on the assumption that each of the evolving
lineages represented a single (chrono-) species. The discovery of
a prevalent cryptic genetic diversity within species of planktonic
foraminifera (17) and other fossil-producing plankton (e.g., ref.
18) implies that evolutionary patterns extracted from fossil

microplankton may represent the development of a cohort of
cryptic sibling species. Available data indicate that, in many
cases, these sibling species can be genetically and ecologically
distinct, but the morphologies of their fossilized remains cannot
be distinguished (19–22). Importantly, the cryptic genetic diver-
sity within morphologically defined species appears finite; for
example, so far only two to seven genetic types have been
described per morphospecies of planktonic foraminifera, with as
many as four co-occurring at the same location (17). The
existence of such cryptic diversity implies that the observed
morphological evolution in marine microplankton lineages may
need to be subdivided among the contributions of several
coevolving species, whose interactions may have an impact on
how, and how fast the consortium evolves.

Although the discussion of mechanisms explaining the pattern
of continuous evolutionary change and stasis in fossil lineages
has recently received renewed attention (e.g., 23, 24), none of the
models presented to date explicitly accounts for the ecological
interaction between coevolving (sibling) species. Therefore, they
overlook frequency dependence processes, that is, how popula-
tion dynamics are affected by the frequency of each morph in the
population. Here, we investigate explicitly the consequences of
cryptic diversity for the apparent rate of evolution. To do so, we
formulate a theoretical model for a number of interacting
morphologically cryptic species and analyze the model to deter-
mine quantitatively how cryptic diversity can affect the rate of
evolution within the system. In this model, instead of an absolute
fitness measure that depends only on the trait of an individual,
we use a relative fitness measure that depends on the value of all
of the other traits and the frequency at which they occur.

Results
Little is known about the ecological interaction between con-
temporary foraminifera, and even less information is available
about the interactions between fossil species. Not knowing any
details, we will describe the interactions with the Lotka–Volterra
interaction model, which provides a general template to describe
the interactions between species (25). In the absence of any
details, we postulate that the interaction between foraminifera
is dominated by competition for resources and formulate a
model that captures the essence of competition for resources
among morphologically cryptic sibling species. This chosen
model is considered representative inasmuch as we expect that
the general findings derived from it would be qualitatively
similar to those derived from other or more complex models. We
then proceed to extract the selection pressure on the different
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species from this model and use this to make inferences about the
effect of diversity on the rate of evolution. Our model consists
of a number of cryptic foraminifer species that can coexist and
compete for food particles of different size, and therefore
energetic value. The species differ in the spectrum of particles
they ingest and we assume that the mean size of food particles
they ingest (�i) can evolve. This formalism assumes frequency-
dependent selection, where the variation in the population is
partitioned among the different cryptic species and that new
forms are generated that differ marginally from existing cryptic
species. First, we will present the results obtained from a
deterministic, analytical approach, which we will then supple-
ment by numerical simulations.

One could study other traits involved in resource competition
in a similar fashion. The rate of evolution depends on the
ecological dynamics of the species in the ecosystem that are
affected by one another, which is insensitive to the exact details
of the interaction; therefore, different models that account for
several interacting species can be expected to give similar results.
The one exception is if different species in an ecosystem all
perform different tasks, each of which is essential for the survival
of all of the species. If that is the case the rate of evolution for
all species will decrease with diversity.

For our model, it is possible to calculate analytically the rate
of evolution of all species (see The Model and SI Text Appendix
A). This allows us to compare the evolutionary dynamics of the
trait in a system with a one species to the evolutionary dynamics
of a system with three species. In both cases, we change the
environment by gradually increasing smax, the maximum size of
the food particles in the system (Fig. 2). We find that in a system
with a single species, the evolution is fast and the single species
can track the change in the environment in real time. However,
if three species are competing for food in the system, only the
most competitive species evolves rapidly, whereas the subdomi-
nant competitors change much more slowly. There is thus an
asymmetry in the evolutionary responses of the species. This is
because more diverse communities of competing species have a
larger proportion of the population that is competitively inferior.
These populations tend to have smaller population sizes and
smaller selection differentials (Fig. S1), indicating that the
observed slowdown of the evolutionary response in the sub-
dominant species is not simply a function of their population size.
The same phenomenon can also be demonstrated by considering

the dominant eigenvalue of the Jacobian of the evolutionary
rates vector (see The Model and SI Text Appendix A, Calculating
the selection differential and the evolutionary rate), which reflects
the mean evolutionary speed of the system. We find that there
is an exponential decay in the evolutionary rate with the increase
in the number of cryptic species (Fig. 3). As discussed above,
subdominant competitors can only evolve if the dominant com-
petitors have vacated empty niche space through adapting to
larger food particles. Note that we obtain qualitatively similar
results by decreasing smax. This result concerning the evolution-
ary slowdown is fundamentally different from models that use a
single species where an increase in the variation of the trait would
lead to an increase in the evolutionary rate. The deterministic
approach allows us to derive analytical results on the rate of

Fig. 1. Gradual increase through time in shell conicity of the planktonic foraminifer Contusotruncana at two distant locations in the Late Cretaceous Atlantic
Ocean (data from ref. 10) compared with the estimated duration of morphological transitions in a range of Cenozoic planktonic foraminifer lineages (Right).
Arrows indicate minimum durations due to incomplete coverage of the lineage by the study (Fohsella) and the extent of the transition to the present day
(Globoconella). The transitions represent: a shell coiling parameter in Globoconella (8, 39), development of engulfing last chamber in Orbulina (5), transition
in shell outline and size between G. plesiotumida and G. tumida (3), the divergence in shell form of G. truncatulinoides (40), change in shell outline in Fohsella
(41), G. crassaformis (9), G. conomiozea and G. pliozea (39), and the development and size of supplementary apertures in Sphaeroidinella (3).

Fig. 2. Variation of the average food particle size of species i [�i(t)] in a
system with three species (plain curves) or with one species (dashed curve). At
tvar � 107 years, the system is at equilibrium and we progressively change the
value of smax (the thick curve) from 19 to 20 (in 5 � 106 years). This modifies the
equilibrium values of the traits and mimics a slight environmental change
(here the arrival of larger prey). Parameter values are � � 25 and the mutation
rate � � 10�5 (see The Model).
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evolutionary change. To arrive at such results we assumed that
populations are at their equilibrium and that the trait variance
within a species is proportional to their population size. To
demonstrate that our results are robust against relaxing these
assumptions, we simulated an equivalent system for which these
assumptions were not made. We assumed that there is an
underlying trait that is under selection (exactly as in the deter-
ministic model) and that small mutations in this trait occasionally
occur by chance. To reflect the fact that this trait is correlated,
but not identical, to a morphological variable (such as the
conicity of the shells) we assumed that morphological variables
are normally distributed, with a constant variance and a mean
that equals the value of the underlying trait. Fig. 4 shows two
simulations with such a model, which we set up to accommodate
either a single species or three cryptic species. The underlying
evolutionary dynamics of the trait are very similar to the
dynamics shown in Fig. 2 (for details, see SI Text Appendix B, and
Fig. S2).

Discussion
In this study, we show how taking into account hidden diversity
in an evolving lineage may help to understand patterns of
evolutionary change in marine microplankton. An increase in
cryptic diversity leads to an evolutionary slowdown of the
evolving system through resource competition. The exact mech-
anism can easily be understood by considering the competition
between the cryptic species (Fig. S3). By changing the environ-
mental parameters, the most dominant competitor will respond
first by adjusting its trait. Once this has happened, the next
species in the competitive hierarchy feels the selection pressure
and, consequently, the trait of this species changes. Only then can
the next species in the hierarchy respond and move toward its
new ecological niche. The key point to use in interpreting our
results is the time factor: subdominant species can only evolve
once the dominant species have evolved. For a species that has
i species above it in the competitive hierarchy to evolve, i times
the number of mutations are needed, and the rate of evolution
of the ith species will depend on the product of the phenotypic
variation of the i best competitors. This creates the observed
exponential decay. This mechanism is not restricted to cryptic
sibling species. However, because sibling species can be expected
to compete for resources much more intensely than nonsibling
species of foraminifera, the evolutionary slowdown will be more
pronounced for sibling species, than similar effects resulting
from competition with other organisms.

A secondary effect that explains the relatively slow evolution
of assemblages of cryptic species is that these species are likely

to have less phenotypic variation per species, simply because the
cryptic species will differ from one another. Lumping several
cryptic species together into a single morphospecies will drasti-
cally overestimate the amount of variation within that mor-
phospecies. Arguments about the rate of evolution based on the
evolution of a single species thus overestimate the rate of
evolution when applied to an assemblage of cryptic species.

Our model shows how and why the presence of cryptic species
in an evolving lineage leads to a slowdown of apparent morpho-
logical evolution. Despite the lack of parameterization, we
observe remarkable consistency between the predictions of our
model and fossil data. First, analytical solutions of our theoret-
ical model indicate that a two-orders-of-magnitude slowdown in
a system with four cryptic species and a three-orders-of-
magnitude slowdown could be achieved in a system with only
seven cryptic species; both the implied variation in rates of
evolution (Fig. 1) and number of cryptic species (17) agree with
observations. Second, the model predicts an asymmetrical pat-
tern in the evolution of the lineage with a more rapid change at
one end of the morphospace. This feature has been observed in
the Contusotrunacana lineage (Fig. 1).

The phenomenon of cryptic (or sibling) species is well docu-
mented in the plankton (26), but it is by no means restricted to
this ecological group, nor is there any evidence that it is more
common among protists (most literature on cryptic species
actually derives from insects; see, e.g., ref. 27). Therefore, in
theory, our model could be applied to any group of organisms.
There is, however, one major limitation: to engage in competi-
tion, the cryptic sibling species in our model must occur in
sympatry and share the same resources. This often holds in the
pelagic environment, which is relatively unstructured spatially.
In a large compilation of fossil data, Hunt (28) shows that
gradual unidirectional evolution is rare, in general, but appears
more frequent among planktonic organisms. This could indicate
that the mechanism described by us may be more pertinent for
this environment.

It is increasingly recognized that ecological feedback can
have profound effects on the evolution of traits. These insights

A

B

Fig. 4. Stochastic simulation of the evolution of trait �i in a system with one
(A) or with three species (B). At t � 107 years (horizontal line), we gradually
change smax from 19 to 22 (in 106 years). The average value of the trait (bold
gray line) evolves more slowly when there are more species in the system. In both
A and B, � � 25 and � � 10�5. For further details, see SI Text Appendix B.

Fig. 3. Influence of the number of species on the evolutionary speed of the
system. The log-linear relationship is y � 0.42 � 0.40x (R2 � 0.987). Parameter
values are smax � 20 and � � 20 (we choose this value instead of 25 to allow the
coexistence of �3 species in the system).
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have been supported by both theoretical and experimental
studies (29–35). Here, the application of the competition con-
cept to a consortium of cryptic sibling species offers the first
theoretical explanation for the existence of long unidirectional
patterns of trait evolution observed in the fossil record of marine
microplankton.

The Model
Our model has N species, where individuals of each species i are
characterized by the mean size of the food particles they ingest
(�i). This leads to N ordinary differential equations that describe
the dynamics of the population density of species i denoted xi(t)
and one partial differential equation to describe the change in
the amount of food particles of size s denoted n(s,t). The
equations read:

�n�s, t�
�t

� n�s, t��1 � n�s, t�� � �
j�1

N

xj�t�k��j, s�n�s, t� [1]

dxi�t�
dt

� xi�t��
0

smax

k�� i, s�n�s , t�c�s�ds � �xi� t� , [2]

where � is the mortality rate of all species, c(s) is the energetic
value of food particles of size s, and smax is the size of the largest
particles. The kernel function k(�i, s) describes the proportion of
food particles of size s eaten by a species that ingests, on average,
food particles of size �i.

To analyze the above system, we assume a homogeneous
carrying capacity for the food particles population such that,
without consumption, at equilibrium, Eq. 1 becomes ñ0(s) � 1.
(Here, as in the following, tildes indicate equilibrium values.)
Next, as in previous studies (36), we choose a kernel function that
has a double-exponential shape centered around �i (SI Text
Appendix A, Choice of a kernel function). Finally, we choose an
energetic-value function that depends linearly on the food
particle’s size, that is, c(s) � s (taking the energetic value
proportional to volume would not modify the results qualita-
tively and would complicate the calculations).

If the resource population reaches its equilibrium much faster
than the plankton populations [i.e., that n(s, t) � ñ(s)], we can
easily reformulate our equations to a classical Lotka–Volterra
competition model (SI Text Appendix A, Derivation of the Lotka–
Volterra model):

dxi

dt
� xi�R��i� � �

j�1

N

xj�t����i, �j��, [3]

where R(�i) � 	0
smax k(�i, s)c(s)ds � � and �(�i, �j) � 	0

smax k(�i,
s)k(�j, s)c(s)ds. As we show in SI Text Appendix A, Finding the
equilibrium densities of the populations, obtaining the species
equilibrium densities (x̃c) from Eq. 3 is straightforward. Theses
equilibrium densities depend on R(�i) and �(�i, �j).

We then use Eq. 3 to derive the invasion fitness function of a
rare mutant. The mean particle food size of a mutant (�*i ) differs
slightly from that of the resident (�i). After some simplification

(SI Text Appendix A, Introducing a mutant), the equation de-
scribing a mutant’s density can be written as

dx*i
dt

� �R��*i � � �
j�1

N

xj���*i, �j��x*i. [4]

The invasion fitness WN of a mutant of resident species i in a
system with N species is given by

WN��1, . . . , �i, . . . , �N,�*i � �
1
x*i

dx*i
dt

. [5]

From Eq. 4, we get

WN��1, . . . , �i, . . . , �N, �*i � � R��*i � � �
j�1

N

x̃j���*i, �j�. [6]

The fact that the mutant is rare (compared with the resident)
allows us to assume that resident species do not ‘‘feel’’ the
presence of a mutant population. If the resident populations are
also at equilibrium, the density values xj can be replaced by their
equilibrium values x̃j.

From Eq. 6, we derive the effect on the invasion fitness of a
mutation causing a small change in a resident trait �i. This
marginal fitness gives us the value of the selection differential
(sd) of a mutant of resident species i, which indicates in which
direction the trait evolves and at which speed. The selection
differential value is obtained by deriving Wi,N with respect to �*i,

sdi,N �
dWN��1, . . . , �i, . . . , �N, �*i �

d�*i
	*�i��i

. [7]

See SI Text Appendix A, Calculating the selection differential and
the evolutionary rate, and Figs. S4 and S5, for further details. If
sdi,N � 0, species i is at an evolutionary equilibrium. If sdi,N � 0,
mutants with �*i � �i will be selected for and if sdi,N � 0 mutants
with �*i � �i will be selected for. Because we have a community
of N species, which may all create mutants, we get N values for
the selection differential of the system.

Knowing the selection differentials allows us to quantify the
rate of the evolutionary process and follow variations in trait
value (�i). Generally, the rate of evolution is the product of the
selection differential and the amount of heritable variation (13,
37, 38). The amount of variation generally will scale with number
of mutations, which is proportional to the size of the population
and the mutation rate (38). Therefore, we can write the rate of
evolution in the mean food particle size of any species i in the
system as

d�i�t�
dt

� �x̃i sdi,N, [8]

where � is a constant proportional to the mutation rate, which is
the same for all species in the community.
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30. Geritz SAH, Kisdi E, Meszéna G, Metz JAJ (1998) Evolutionarily singular strategies and
the adaptive growth and branching of the evolutionary tree. Evol Ecol 4:1–79.

31. Turner PE, Chao L (1999) Prisoner’s dilemma in an RNA virus. Nature 398:441–443.
32. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric speciation.

Nature 400:354–357.
33. Jansen VAA, Mulder GSEE (1999) Evolving biodiversity. Ecol Lett 2:379–386.
34. Kisdi E (1999) Evolutionary branching under asymmetric competition. J Theor Biol

197:149–162.
35. Elena SF, Lenski RE (2003) Evolution experiments with microorganisms: The dynamics

and genetic bases of adaptation. Nat Rev Genet 4:457–469.
36. Roughgarden J (1972) Evolution of niche width. Am Nat 106:683–718.
37. Lande R (1979) Quantitative genetic analysis of multivariate evolution, applied to

brain: Body size allometry. Evolution (Lawrence, Kans) 33:402–416.
38. Dieckmann U, Law R (1996) The dynamical theory of coevolution: A derivation from

stochastic ecological processes. J Math Biol 34:579–612.
39. Wei K, Kennett J (1988) Phyletic gradualism and punctuated equilibrium in the late

Neogene planktonic foraminiferal clade Globoconella. Paleobiology 14:345–363.
40. Lazarus D, Hilbrecht H, Spencer-Cervato C, Thierstein H (1995) Sympatric speciation and

phyletic change in Globorotalia truncatulinoides. Paleobiology 21:28–51.
41. Norris R, Corfield R, Cartlidge J (1996) What is gradualism? Cryptic speciation in

globorotaliid foraminifera. Paleobiology 22:386–405.

12386 � www.pnas.org�cgi�doi�10.1073�pnas.0805039105 Alizon et al.


