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Static latency is the hallmark of all herpes viruses. The varicella
zoster virus, for instance, causes varicella (chickenpox), and after a
latent phase of between 5 and 40 years, it can give rise to herpes
zoster (shingles). This latency and the subsequent reactivation has
intrigued and puzzled virologists. Although several factors have
been suggested, it is unknown what triggers reactivation. How-
ever, latency can be explained with a simple evolutionary model.
Here, we demonstrate that a simple, yet efficient, bet-hedging
strategy might have evolved in a number of viruses, especially
those belonging to the herpes virus family and most importantly
in varicella zoster virus. We show that the evolution of latency can
be explained by the population dynamics of infectious diseases in
fluctuating host populations.
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S tatic latency (1, 2) is a characteristic feature of all herpes
viruses; whereas herpes simplex 1 and 2 and varicella zoster

virus (VZV) stay latent in cells of the nervous system, and
cytomegalovirus and Epstein–Barr virus establish themselves in
cells of the immune system (1, 2). Their latency is static in the
sense that no virus is produced and that latency seems to be
actively maintained by a number of viral genes (3–7). In contrast,
dynamic latency (2) involves an actively replicating virus that is
kept at bay through the host’s response and not because of the
virus’s replication strategy. The latency of the HIV is an example
of dynamic latency (8). Here, our main interest is in trying to
understand when and why latency evolves rather than in the
molecular mechanisms involved in establishing, maintaining,
and controlling latency. These are very different questions, not
least because the former approach already postulates that la-
tency is a useful strategy for the virus.

We focus on VZV because it displays the longest latency
period and may thus serve as a canonical example for latent
behavior. During the latent phase, VZV resides in neurons in the
dorsal root and trigeminal ganglia (5, 6). It does not seem to
replicate until it reactivates and the clinical symptoms of herpes
zoster develop; reactivation is not normally associated with a
particular inciting event (2). Waning immunity, predominantly
with age, has been suggested as a factor that can trigger
reactivation (2, 4), especially early reactivation (9). VZV [like
herpes simplex virus (HSV) 1 and HSV2] can, however, reacti-
vate even in the presence of cellular and humoral immune
response (9, 10). Exposure to chickenpox can be ruled out as a
likely cause for reactivation, as the epidemiology of shingles does
not follow the periodic pattern typical for chickenpox (2, 9). It
therefore seems that static latency has evolved as an active
strategy of the virus (1), where the virus colonizes immunoprivi-
leged sites and stays dormant until reactivation (1, 2, 7, 10).

Previously, research into latency has focused largely on mo-
lecular mechanisms of latency and reactivation of latent virus.
Arguments for the evolution of latency have stressed the im-
portance of latency for persistence of the viral species in small
host populations (2, 11, 12), thus the search for genes that
maintain and regulate viral latency. But while we observe VZV
today because it has persisted throughout human history, this
does not make persistence the reason for the evolution of

latency. Such teleological (including ‘‘good for the species’’)
arguments are untenable from a modern evolutionary perspec-
tive; selection does not operate on the species or a group of
viruses but on individual viral genes (13). Here, we show that the
evolution of latency can be understood by considering the life
history of a latent virus in a stochastic environment. We show
that static latency can confer a selective advantage over other,
nonlatent strains of the same virus.

Theory: An Effective Model for VZV Epidemics
Like plants in dry regions (14, 15) or investment fund managers
in the city, parasites are frequently faced with unpredictably
fluctuating environments (16–19). In the case of VZV (or HSV1
and HSV2), f luctuations in the effective number of susceptible
hosts because of lifelong immunity upon initial infection con-
front the virus with a highly stochastic environment, in addition
to the stochasticity intrinsic in the infection process. Normally,
90–95% of the population is immune against VZV (9), and the
disease can only temporarily spread again if a new cohort of
uninfected individuals has grown large enough. Such a cohort of
susceptibles can disappear suddenly if a local outbreak of VZV
occurs. Changes in the number of susceptible hosts are unpre-
dictable from the point of view of the individual virus. The small
size of early human populations and the corresponding random
fluctuations in the number of available susceptible hosts will also
have contributed to such changes.

We have condensed an epidemiological model (20) into an
effective model of latent infection dynamics; each infected case
can produce a certain amount of infective capacity immediately
after initial infection, and it can produce some infective ability
after latency. This decreases the environmental uncertainty but
also creates a tradeoff for the virus because its carrier may die
during the quiescent phase. However, if infected hosts survive
the latent period, they can then give rise to a secondary infection
(i.e., shingles) after a latency period, t. There are two reasons for
making the assumption of this underlying tradeoff between
investment of infectious potential and latency that can be
motivated from the epidemiology and immunology of the virus,
respectively: (i) herpes zoster is caused by reactivated virus
leaving cells of the nervous system that were infected during the
initial bout and thus were unable to contribute to spreading the
infection to other hosts; thus, we have to assume that not all of
the available virus was invested into transmitting disease to
other, previously unchallenged hosts (11); and (ii) latency is a
costly strategy and is maintained by a host of viral genes (5, 7).
Our assumption of the tradeoff is, we believe, the most parsi-
monious way to investigate the competition between latent and
nonlatent strains of the same virus. Our model can incorporate
the effects of reduced transmissibility from acute herpes-zoster
cases compared with varicella cases.

We model environmental stochasticity by randomly setting the
fitness of each period to either a high value or a low value,
indicating, respectively, high or low availability of susceptible
hosts. The delicate interplay between environmental factors and
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availability of susceptible individuals is summarized by randomly
assigning one of two values for the effective transmission rate, rb
for ‘‘bad’’ (few susceptible hosts) and rg . rb (many susceptible
hosts) for ‘‘good’’ conditions, to each period. The probability
that a good period will occur is P, and consequently the
probability that a bad period will occur is 1 2 P; we have chosen
these probabilities to reproduce the observed frequency of
outbreaks (every 2–3 years). This qualitatively describes the
otherwise rather complicated and involved population feedback
process that regulates the number of susceptibles (20). The
outcome of the procedure is the effective number of infections,
Nt, in each period t:

Nt 1 1 5 rt~c1Nt 1 c2mtNt 2 t!. [1]

Here, c1 is the infective potential invested in infections during
chickenpox while a second bout of infection during shingles has
an infective potential of c2. The probability of surviving one
period is given by m, where m # 1. Iterating Eq. 1 allows us to
extract the geometric mean growth rate of a population with
latency t, lt (the geometric mean growth rate is defined as
limt3`(NtyN0)1/t). In the Appendix, we show how Eq. 1 can be
derived from standard, discrete-time epidemiological models.

In the effective model, we implicitly assume that the number
of susceptibles is controlled by a virus with arbitrary but constant
latency. For reasons of clarity and computational simplicity, we
will assume that the dominant strain has no latency (t 5 0). A
strain with a different latency can only invade, i.e., succeed in the
environment that is shaped by the presence of a nonlatent virus,
if its growth rate exceeds the growth rate of the dominant strain
(21–23). We assume that the only evolutionary freedom for the
virus is adjusting the length of the latent period t during which
it lies dormant in the (seemingly recovered) host. We can then
calculate lt, i.e., the growth rate of a virus, which ‘‘waits’’ for t
periods after its initial infective period before it becomes effec-
tive again (the average time from the recovery from chickenpox
to the appearance of shingles) as the geometric mean growth rate
of Nt through Eq. 1 (18).

Results
In the nonlatent case, the geometric mean growth rate is given
by l0 5 (c1 1 c2)r g

prb
1 2 p. If there is a latent period, t . 0, then

the geometric mean growth rate cannot be calculated by ana-
lytical means, and we use numerical methods to establish the
mean growth rate. Here, we show how the growth rate changes
with the length of the latency period. The details of the model
can be adjusted to describe the duration of the latent period, the
infectivity, and the frequency of reactivations of different vi-
ruses. Here, we have chosen parameters that loosely try to
capture the epidemiology of VZV.

Our model contains seven parameters (rg, rb, c1, c2, m, p, and
t). Three of these parameters, c1, c2, and t, embody life-history
decisions of the virus. We will assume that these life-history traits
are independent. We are interested in whether strains that have
a latent period can invade a viral population in which no latency
occurs. If this is the case, then latency can evolve as an adaptation
to environmental f luctuations. We therefore consider the ratio
of ltyl0. If this is greater than 1, then a latent virus will invade
a population of a nonlatent virus; if it is less than 1, then it will
become extinct.

In Fig. 1, we investigate different environmental conditions. In
Fig. 1a, we consider the case in which the ratio between rgyrb .
13 was chosen to roughly reflect the observed difference be-
tween the susceptibility to chickenpox in human populations
which have not been exposed to chickenpox (100%) and in which
chickenpox is endemic (5–10%). The length of a time step was
set to be 1 year, and the survival probability m was chosen
to reproduce a possible case of average host life expectancy,

40 years, corresponding to m 5 1 2 1y40 5 0.975. The infective
potential invested into the primary infection was chosen to be c1
5 0.9, and the infective potential for the second bout was c2 5
0.1 (Fig. 1a, l). A choice of equal probability of good and bad
years, P 5 1y2, was chosen to ensure that the model reflects the
observed periodicity of 2–4 years in VZV epidemics. The three
different lines represent different survival probabilities, m, and
different fractions, c1, c2. We found a maximum in ltyl0 at t 5
5. This indicates that under conditions similar to those in recent
human populations, a latent strategy confers an evolutionary
advantage to the virus. It can also be seen that if the survival
probability is decreased, the maximum growth rate is found for
a shorter latent period (Fig. 1a, *). If the infective potential used
for chickenpox, c1, is increased while the total infective potential
(c1 1 c2) is kept constant, then the maximum growth rate is
found for longer latencies (Fig. 1a, f).

In Fig. 1 b and c, we changed the ratio of viral reproductive
potential to illustrate how parameter choices influence the
evolutionary dynamics of this system. We have chosen rgyrb . 7
in Fig. 1b and rgyrb . 40 in Fig. 1c. If the differences between
good and bad years is less pronounced (low value of rgyrb), we
observe that bet-hedging virus cannot invade. If the fluctuations
in the environmental conditions increase, the maximum of ltyl0
moves out to t 5 18. This behavior is confirmed in the two other
cases investigated here. Fig. 1 a and c confirms that for a system
where the survival probability is high and investment into direct
offspring is high, it is evolutionarily advantageous to wait longer
if the relative reproductive rate in the ‘‘bad’’ periods is low. We
also find that long latency confers an advantage if bad periods
are more frequent than good periods, if P , 0.5 (Fig. 1d).

We thus find that for risky environments bet-hedging (14, 21)
by adopting a latent strategy confers an advantage, and latent
virus can invade (21, 23) a population with a resident nonlatent
virus. If good periods are sufficiently good and bad periods
sufficiently bad (due to lack of available hosts), then latency
makes sense; hedging one’s bets by waiting for some time before
becoming infectious again is now worthwhile. At the optimal
length of the latency period, the virus strikes a balance between
losing hosts through mortality, which imposes a costs on latency,
and the benefits of latency through bet-hedging. (We have
implicitly assumed that the optimal growth rate is a strategy that
is evolutionary stable and cannot be invaded by other strategies.
This follows from our model if one chooses the strain with the
highest growth rate as the resident strain and assumes that this
strain causes the sequence rt. The geometric mean growth rate
of this strain can then be normalized.) The optimal length of the
latency period decreases with increasing quality of the environ-
ment (that is, availability of susceptible hosts), as bet-hedging
becomes less important when the difference between good and
bad periods is small. We found that the optimum value length of
the latency period decreases if the cost of staying latent is too
high, i.e., if hosts are more likely not to survive until the second
infective stage. Then it is best not to adopt latency but to invest
all infectivity into the first stage. We also found that long latent
periods pay off if the effective potential of the second infective
period is small compared with the first.

Discussion
Our results indicate that a strategy that combines some infec-
tiousness in a second infective stage with a long delay can have
a competitive advantage over strategies with no delay. It has
previously been suggested (1, 2, 11, 12) that viral latency has
evolved for the virus to persist. This seems unlikely in the case
of VZV. First, the virus spreads very efficiently in respiratory
secretions before the emergence of the symptoms of chickenpox,
but spreads much less efficiently from shingles lesions after
reactivation. Second, latency introduces a delay in the popula-
tion dynamical feedback, which often leads to unstable dynamics.
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Such fluctuations can in fact lead to reduced persistence. Our
results indicate that latency has evolved because in a fluctuating
environment, it makes a virus a superior competitor to nonlatent
competing strains. Therefore, in stochastic environments (which
are not necessarily restricted to small populations), bet-hedging
can form an evolutionary favorable strategy. Applied to VZV,
this means that fluctuations in the number of susceptible hosts
could have favored the evolution and maintenance of latency,
not because the virus would otherwise not persist but because it
outcompetes the competition.

We note that the ability of some viruses (including HSV1,
HSV2, and VZV) to infect neurons already requires them to
carry genes coding for all replicative functions that would
normally be found in other tissues. Neuroinvasiveness (2) must
therefore be seen as a costly strategy, and the evasion of the
host’s immune response may be sufficient to explain why this has
happened. Latency, however, is a separate evolutionary problem
that is best understood in its proper ecological setting of
competing viruses. The small genomes of viruses (typically in the
order of tens or hundreds of genes) make it unlikely that viruses
have developed very refined techniques for dealing with such
unpredictable environments (given the already high cost of
neuroinvasiveness). Moreover, even complex forecasting tech-
niques are not always better, and there may be little incentive for
complex behavior (together with the necessary molecular appa-
ratus) to evolve. (If we grossly extrapolate this statement to the
aforementioned fund manager, then our analysis suggests that in
certain situations a random number generator will outperform
more sophisticated investment strategists.) Simple strategies can

be very effective, and, as we have shown here, a fixed delay
before reactivation may suffice. The flip-side of this is that what
seems to be a very refined mechanism for reactivation may be a
simple timer or even a chance event. The winning strategy
matches the strategy that VZV uses and perhaps, to a lesser
extent, probably also that of HSV1 and HSV2.

Of course, bet-hedging can also have a positive selective effect
in a model that incorporates space explicitly (18); we expect that
in a spatial context, latent virus will also outcompete nonlatent
virus given sufficient demographic stochasticity in the host
population. Here, we have demonstrated that the evolution of
latency can already be understood theoretically without an
explicit treatment of space.

The attraction of the present approach lies also in the fact that
it shows that no particularly refined trigger for the reactivation
of VZV in infected neurons is required to explain the evolution
of latency. As long as the virus stays latent for some time before
reactivation, it can prove superior to nonlatent strains in suffi-
ciently risky environments. It therefore seems that not only do
viruses play games (24), but some viruses also hedge their bets.
The population biology of infectious diseases (20), and not the
molecular biology of viral reactivation, may thus hold the key for
an understanding of viral latency.

Appendix
Our effective model, Eq. 1, relates to standard discrete-time
epidemiological models (20). To illustrate this relation, we use
a S 2 I1 2 I2 2 z z z 2 I11t 2 R model, where S(t) represents the
number of susceptible hosts at time t, and we have introduced a

Fig. 1. Growth rates versus latency t. We plotted average values of ltyl0 for three fluctuating environments. (a) rg 5 3.65, rb 5 1yrg . 0.274, and P 5 0.5. Different
symbols represent the cases for which (i) m 5 0.975, c1 5 0.9, and c2 5 0.1 (}), (ii) m 5 0.9, c1 5 0.9, and c2 5 0.1 (*), and (iii) m 5 0.975, c1 5 0.99, and c2 5 0.01
(■). (b) rg 5 2.58, rb 5 0.387, and other parameters are as described in a. (c) rg 5 6.32, rb 5 0.158, and other parameters are as described in a. (d) We have assumed
the same values for rg and rb as described in a, but now bad periods are more likely than good periods with P 5 0.4.
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reservoir, Ii(t) with 1 # i # 1 1 t, for the number of hosts at time
t that were infected i time units ago. R(t) represents the number
of recovered hosts at time t and Q(t) 5 S(t) 1 R(t) 1 ¥i51

11tIi (t)
the total population size. The full epidemiological model is given
by

S~t 1 1! 5 @birth and death# 2 bt@c1I1~t! 1 c2I1 1 t~t!#S~t!
I1~t 1 1! 5 btm@c1I1~t! 1 c2I1 1 t~t!#S~t!
I2~t 1 1! 5 mI1~t!

···
I1 1 t~t 1 1! 5 mIt~t!

R~t 1 1! 5 mI1 1 t~t! 1 mR~t!, [2]

where m is the probability to survive from one time step to the
next, bt is the transmission parameter at time t, and c1 and c2 are
the rates at which new cases develop from acute (varicella) and
latent (herpes zoster) cases, respectively. We have assumed that
the time steps are sufficiently small so that the number of newly
infected individuals is approximately given by the product of the
infectivity produced, c1I1 1 c2I11t, the number of susceptibles,
S(t), and the transmission parameter, bt. We now define the
effective number of susceptibles rt as

rt 5 btmS~t!. [3]

The second equation of Eq. 2 can thus be rewritten as

I1~t 1 1! 5 rt@c1I1~t! 1 c2I1 1 t~t!#. [4]

The population dynamical feedback ensures that the geometric
mean growth rate of I1 equals limt3`(I1(t)yI1(0))1/t 5 1 (23). In
the case of no latency (t 5 0), the geometric mean growth of I1
equals the geometric mean of rt times c1 1 c2.

Next, consider a new virus strain with a different latency that
is introduced into a population that already harbors a strain that
has epidemic behavior described by the system (2). We are

interested in whether such a strain will decrease and eventually
disappear or increase and invade the population. We therefore
consider the growth of this strain of the virus when it is rare. If
a strain is rare, then it will have negligible effect on the number
of susceptible hosts. The number of newly infected cases result-
ing from the rare virus strain, I*1, is

I*1~t 1 1! 5 rt@c1I*1~t! 1 c2I*1 1 t~t!#, [5]

where rt is given by Eq. 3 and therefore independent of I*i. The
value of I*1 1 t(t) follows straightforwardly from the value of I*1t
generations ago, i.e., I*1 1 t(t) 5 mtI*1(t 2 t). By substituting Nt
5 I*1(t), we obtain our effective epidemiological model (1).

If a strain has a growth rate that exceeds unity, it can invade
the population and possibly replace the resident strain. In this
way, a replacement dynamics can be constructed that only stops
when a strain evolves with a growth rate that is so high so that
a viral population consisting of this strain cannot be invaded by
strains with different latencies.

The combined stochasticity in bt and S(t) determines the
stochastic behavior of rt. In this article, we are not concerned
with deriving details of this distribution. Instead, we assume (in
an ad hoc manner) that the behavior of rt can be caricatured in
a simple manner; in particular, we assumed that rt takes the
values rg with probability P and rb with probability 1 2 P and that
the values of rt for different times are uncorrelated. Our results
hold for epidemiological models that produce such time-series
behavior for rt. This offers a conceptually simple and general
framework to study the effect of unpredictability in the number
of susceptibles. The simple effective model does, however, retain
the essential dynamics of more complicated epidemiological
models of latent viral infections.
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