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Abstract

In a model for bacterial infections with various mutants we find the epidemiological system evolving towards cri
without outer tuning of a control parameter. This is an indication for self-organized criticality. The epidemic mod
susceptible–infected–recovered hosts system (SIR) for the harmless agent infecting hostsI , acting as a background to a muta
strainY which occasionally creates severely affected hostsX. The full system of SIRYX is described in the master equa
framework, confirming limiting assumptions about a reduced YX-system with the SIR-system in stationarity. In this l
case we can analytically show convergence to power law scaling typical of critical states. Furthermore, in this appro
we can show analytically that the control parameter, the pathogenicity in this model, evolves to be predominantly in it
value zero. These findings are then confirmed by simulations of the full SIRYX-system.
 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The universality of critical phenomena in pha
transitions has attracted attention from physicists
more than 25 years [1]. Soon after its importance
came clear also the relevance for epidemiological a
in general, birth–death processes was recognized [
For a recent popular account of universality see
Not only criticality as such but also development
a system towards criticality has been postulated
physical systems [5,6] with the paradigmatic syst
of a sand pile (see for an overview [7]). This scena
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of a system evolving on its own towards criticality
called self-organized criticality, SOC.

We investigate an evolutionary biological mod
describing the epidemiological interactions of a h
population subject to asymptomatic bacterial inf
tion. We then include mutations of these bacte
which sometimes lead to disease with often fatal c
sequences. This is effectively a negative selection
these mutant bacteria in the epidemiological proce

The probability rate of hosts being infected w
mutant bacteria making the transition to the diseas
called pathogenicity. We show explicitly that the sta
of small pathogenicity is critical, and furthermor
that the system evolves towards this state of sm
pathogenicity in the host population.

Our model is designed along the realistic int
actions in the epidemiology of meningococcal d
.
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ease caused by the bacteriumNeisseria meningitidis,
named in 1879 after its discoverer Albert Neisser [
Infection with the bacterium normally is harmless a
leads to asymptomatic carriage. Occasionally, h
ever, infection can lead to menigococcal disease.
ferent strains of the bacterium differ in their prope
sity to cause disease. The model is parametrized
could, in principle, be tested with empirical epidem
ological data as it uses realistic parameters for the
sic epidemic processes [9,10]. However, this sys
is of broader interest, since it potentially provides
explanation for uncertainties and huge fluctuations
more general models in evolutionary biology. This a
proach is more realistic than previous attempts in s
plified evolutionary models [11,12]. We show expli
itly that a parameter is automatically driven towar
its critical value. The pathogenicity evolves to sm
values near its critical value of zero. In the analy
it evolves to zero, since for analytic treatability w
use approximations which show the qualitative beh
iour correctly. In the full system the pathogenicity w
evolve to small values, in the order of magnitude
the mutation rate where competing strains can rep
each other.

Epidemics with critical fluctuations have been d
scribed before [13,14] in forest fire like scenarios
p. 68]. We present a non-spatial stochastic mo
in the form of a master equation (time-continuo
Markov process), leading in criticality to power law
with exponents of mean field type (essentially
branching process exponent 3/2 [15]), confirming that
the system under investigation establishes critical fl
tuations with fat-tail behaviour.

A spatial system analysis would require a renorm
ization approach to path integrals which are deriv
from the spatial master equation. This method is s
under controversial debate, even in chemical syste
analysis [16–18].

2. The meningitis model

Since meningitis and septicaemia are two forms
meningococcal disease we will refer to the model
describe as the meningitis model. It has been descr
in its basic structure and first analysis of the criti
state in an earlier paper [10]. We derive here for
first time the evolution of a mixture of mutant bacte
with initially different pathogenicities towards th
critical state of vanishing or small pathogenicity.

We start with a basic SIR-system for asym
tomatic infection, for which the infected hosts a
called I , susceptible hostsS and recovered and im
mune hostsR. Then in the next section we introdu
one competing strain with non-vanishing pathogen
ity. This gives the two new host classes of infec
with the mutant strain,Y , and disease casesX, to wich
theY hosts can change with small transition rateε, the
pathogenicity. Finally, in the last section we consid
an ensemble of mutant infected hosts with a variet
pathogenicities, henceY (ε), and investigate the distr
bution of infected hosts with eachε.

2.1. The SIR-model for asymptomatic infection

The basic SIR-model for a host population of s
N divided in subclasses of susceptible, infected
recovered hosts [19] is constructed as follows. W
a rateα a resistent host becomes susceptible, or
reaction schemeR

α−→ S. Then, a susceptible ho
meets an infected host with a transition rateβ and
proportional to the fraction of infected hosts in t

population. As a reaction scheme we haveS + I
β−→

I + I . Finally, infected hosts can recover and beco

temporally resistent with the rateγ , henceI
γ−→ R.

We could call this basic SIR-model also SIRS-mod
since transitions fromR to S are allowed, but use SIR
since later in an SIRYX-model parallel transitio
prohibit a simple way of labelling. Hence, here S
just means that we have three classes of hosts,S, I

andR to deal with, as opposed to 5 classes in the m
complicated model [10].

The corresponding deterministic ordinary differe
tial equation (ODE) system reads

dS

dt
= αR − β

I

N
S,

dI

dt
= β

I

N
S − γ I,

(1)
dR

dt
= γ I − αR,

and describes merely the dynamic of the mean va
for the total number of susceptibles, infected and
covered under the assumptions of mean field be
iour and homogeneous mixing, hence mean value
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products can be replaced by products of means in
nonlinear contact term(β/N)IS.

2.2. Stochastic modelling of demographic noise

We include demographic stochasticity in the d
scription of the epidemic. Since we will describe flu
tuations near critical states we have to consider
chastic models, Markov processes explicitly form
lated in master equations, as used in physics and ch
istry (see, e.g., [20]). As such, for the basic SI
model we consider the dynamics of the probabi
p(S, I,R, t) of the system to haveS susceptibles,I in-
fected andR recovered at timet , which is governed by
a master equation [20,21], and in a recent applica
to a plant epidemic model [22,23]. For state vectorsn,
here for the SIR-modeln = (S, I,R), the master equa
tion reads

(2)
dp(n )

dt
=
∑
ñ�=n

wn,ñp( ñ ) −
∑
ñ�=n

wñ,np(n ),

with transition probabilities corresponding to the on
described above for the ODE-system. Here the r
wñ,n are

w(S+1,I,R−1),(S,I,R) = αR,

w(S−1,I+1,R),(S,I,R) = β
I

N
S,

(3)w(S,I−1,R+1),(S,I,R) = γ I,

from which the rateswn,ñ follow immediately as

w(S,I,R),(S−1,I,R+1) = α(R + 1),

w(S,I,R),(S+1,I−1,R) = β
I − 1

N
(S + 1),

(4)w(S,I,R),(S,I+1,R−1) = γ (I + 1).

This formulation defines the stochastic process c
pletely and will be the basis for the extended SIRY
model for competing bacteria strains.

Now, we introduce pathogenic mutant strains wh
infect hosts in the same way as the asymptom
strain does, but occasionally cause disease, and a
for mutation transitions between the two strains.
will call the additional host classes for the infecti
with mutant bacteriaY hosts, and diseased casesX.
With this model we can show that huge fluctuatio
occur when the chance of a mutant causing a dise
case, called pathogenicity, is small [10]. For sm
-

values of the pathogenicity we can furthermore sh
power law behaviour of the size distribution of ep
demics (see [10] for details), hence demonstrate
the system is in criticality.

2.3. The SIRYX-model for infection with competing
strains

In order to describe the behaviour of pathoge
strains we add a new classY of individuals infected
with a potentially pathogenic strain to the basic S
system. We will assume that such strains arise by,
point mutations or recombination through a mutat

process with a rateµ in the schemeS + I
µ−→ Y + I .

For symmetry, we also allow the mutants to mut
back with rateν, henceS + Y

ν−→ I + Y .
The main point here in introducing the mutant

that the mutant has the same basic epidemiolog
parametersα, β andγ as the original strain and onl
differs in its additional transition to pathogenicity wi
rateε. These mutants cause disease with rateε, which
will turn out to be small later on. Hence the reacti
scheme isS + Y

ε−→ X + Y . This sends susceptib
hosts into anX class, which contains all hosts wh
develop symptomatic disease. These are the c
which are detectable as opposed to hosts in classY

andI who are asymptomatic carriers who cannot
detected easily.

The state vector in the extended model is n
n = (S, I,R,Y,X). The mutation transitionS +I

µ−→
Y + I fixes the master equation transition rate

w(S−1,I,R,Y+1,X),(S,I,R,Y,X) = µ
I

N
S.

In order to denote the total contact rate still with t
parameterβ , we keep the balancing relation

w(S−1,I+1,R,Y,X),(S,I,R,Y,X)

(5)+ w(S−1,I,R,Y+1,X),(S,I,R,Y,X) = β
I

N
S,

and obtain for the ordinary infection of normal ca
riage the transition rate

w(S−1,I+1,R,Y,X),(S,I,R,Y,X) = (β − µ)
I

N
S.

Respectively, to denote the total rate of contact
susceptible host can make with any infected, eit
normal carriageI or mutant carriageY , byβ , we obey
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the balancing equation

(6)
∑
m̃ �=m

w(S−1,m̃ ),(S,m) = β
I + Y

N
S

for m = (I,R,Y,X). With the above mentioned tran
sitions this fixes the master equation rate

w(S−1,I,R,Y+1,X),(S,I,R,Y,X) = (β − ν − ε)
Y

N
S.

For completeness, we introduce a recovery from

disease with rateϕ, henceX
ϕ−→ S. With regard to

meningitis and septicaemia in many cases the dis
is fatal, henceϕ = 0. With medication the sufferer
often survive, but are hospitalized for a long tim
and then most of the time will suffer from resultin
impairments. So for the theoretical analysis we w
still keep ϕ = 0, which might be changed whe
analysing more realistic situations or recent data.

For the SIRYX-system the transition probabiliti
wñ,n are then given (omitting unchanged indices inñ,

with respect ton ) by

w(R−1,S+1),(R,S) = αR,

R
α−→ S,

w(S−1,I+1),(S,I ) = (β − µ)
I

N
S,

S + I
β−µ−→ I + I,

w(S−1,Y+1),(S,Y ) = µ
I

N
S,

S + I
µ−→ Y + I,

w(I−1,R+1),(I,R) = γ I,

I
γ−→ R,

w(S−1,Y+1),(S,Y ) = (β − ν − ε)
Y

N
S,

S + Y
β−ν−ε−→ Y + Y,

w(S−1,I+1),(S,I ) = ν
Y

N
S,

S + Y
ν−→ I + Y,

w(S−1,X+1),(S,X) = ε
Y

N
S,

S + Y
ε−→ X + Y,

w(Y−1,R+1),(Y,R) = γ Y,

Y
γ−→ R,
w(X−1,S+1),(X,S) = ϕX,

(7)X
ϕ−→ S,

along with the respective reaction schemes. Ag
from wñ,n the rateswn,ñ follow immediately. This
defines the master equation for the full SIRYX-syste
The ODE system for the SIRYX-model, including a
transitions mentioned above, reads as

Ṡ = αR − β
S

N
(I + Y ) + ϕX,

İ = (β − µ)
S

N
I − γ I + ν

S

N
Y,

Ṙ = γ (I + Y ) − αR,

Ẏ = (β − ν − ε)
S

N
Y − γ Y + µ

S

N
I,

(8)Ẋ = ε
S

N
Y − ϕX,

again assuming mean field approximation.

2.4. The invasion dynamics of mutant strains

Before we proceed with further theoretical analy
of the model we now demonstrate basic proper
of our SIRYX-model in simulations of the mast
equation, using the Gillespie algorithm, also known
minimal process algorithm [24–26]. This is a Mon
Carlo method, in which after an event, i.e., a transit
from staten to another statẽn, the exponential waiting
time is calculated as a random variable from the s
of all transition rates whereupon the next transit
is chosen randomly from all now possible transitio
according to their relative transition rates.

To investigate the dynamics of the infection w
mutants, classY , in relation to the normal carriag
I with harmless strains, we first fix the basic SI
subsystem’s parameters to the valuesα := 0.1, β :=
0.2 andγ := 0.1. The endemic equilibrium of the SIR
system is given by

S∗ = N
γ

β
, I∗ = N

α

β

β − γ

α + γ
,

(9)R∗ = N
γ

β

β − γ

α + γ
,

as can be seen from Eqs. (1) setting the left-hand
of each subequation to zero. As for the parame
used, we find in equilibrium a normal level of carria



N. Stollenwerk, V.A.A. Jansen / Physics Letters A 317 (2003) 87–96 91

p-
d

the
he
-
ues

he

e
uta-

ic-
ke

of
In

hly

r

the
r
of

e-
is-
of harmless infection of about 25% in our total po
ulation of sizeN . This is in agreement with reporte
levels of carriage forNeisseria meningitidis [8]. We
assume the duration of immunity to be the same as
duration of carriage. In equilibrium this results in t
ratio of S∗ : I∗ : R∗ = 2 : 1 : 1. However, the qualita
tive results are not affected by these parameter val
but rather the order of magnitude.

After fixing the basic epidemic parametersα, β

and γ for the SIR-subsystem, we now consider t
mutation towards infected in theY -class, fixing the
mutation rateµ := 0.0001 to be orders of magnitud
smaller than the infection process, and foreward m
tions equal to backward mutationsν = µ.

Interesting behaviour is observed if the pathogen
ity ε is too large for the hyperinvasive strain to ta
,

over but small enough to create large outbreaks
mutant infectedsY before becoming extinct again.
Fig. 1 we show two simulations in thisε-region, first
ε = 0.05, Fig. 1(a), (b), then a ten times smallerε,
Fig. 1(c), (d). For high pathogenicityε we find rela-
tively low levels of mutantsY , in Fig. 1(a) less than
20 cases, and at the end of the simulation roug
between 15 and 80 hospital casesX, Fig. 1(b). For
smaller pathogenicityε, Fig. 1(c), we find much large
fluctuations in the number of mutantsY with peaks
of more than 80 mutant infected hosts. Though
probability rate to cause diseaseε is ten times smalle
than in the previous simulation we find at the end
this simulation similar numbers of disease casesX,
Fig. 1(d). We observed larger fluctuations and som
times a much higher number of outbreaks of d
(a) (b)

(c) (d)

Fig. 1. (a) Time series of ten runs showing the mutant carriageY for pathogenicityε = 0.05. (b) Number of seriously diseased casesX for
pathogenicityε = 0.05. (c) and (d) as (a) and (b) with pathogenicity ten times smaller, henceε = 0.005. Although the pathogenicityε is of the
factor ten smaller, the damage in the number of seriously diseased casesX remains high and even varies more than for largerε.
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smaller.

This counter-intuitive result can be understood
considering the dynamics of the hyperinvasive line
in detail. We will do so by analyzing a simplifie
version of our SIRYX-model analytically.

2.5. Dynamics of mean numbers of infected

For pathogenicityε larger than the mutation rat
µ the hyperinvasive lineage normally does not att
very high densities compared to the total populat
size. Therefore, we can consider the full system
composed of a dominating SIR-system which is
really affected by the rareY and X cases, calling it
the SIR-heat bath, and our system of interest, nam
the Y cases and their resulting pathogenic casesX,
considered to live in the SIR-heat bath.

Taking into account Eqs. (9) for the stationa
values of the SIR-system we obtain for the transit
rates (compare Eqs. (7)) of the remaining YX-syste

w(S∗,Y+1),(S∗,Y ) = µ
S∗

N
I∗ =: c,

w(S∗,Y+1),(S∗,Y ) = (β − ν − ε)
S∗

N
Y =: bY,

w(S∗,X+1),(S∗,X) = ε
S∗

N
Y =: gY,

w(Y−1,R∗),(Y,R∗) = γ Y =: aY,

(10)w(X−1,S∗),(X,S∗) = ϕX = 0.

All terms not involving Y or X vanish from the
master equation, since the gain and loss terms ca
each other out for such transitions. If we neglect
recovery of the disease cases to susceptibility, a
reasonable for meningococcal disease, henceϕ = 0,
we are only left withY -dependent transition rate
Hence, for the YX-system we get the master equat

d

dt
p(Y,X, t)

= (
b(Y − 1) + c

)
p(Y − 1,X, t)

+ a(Y + 1)p(Y + 1,X, t) + gYp(Y,X − 1, t)

(11)− (bY + aY + gY + c)p(Y,X, t).

This gives for the marginal distributionp(Y, t) :=∑∞
X=0 p(Y,X, t) the master equation for a simp

birth–death process with birth rateb := (β −ν −ε)S∗
N

,

s

l

death ratea := γ and a migration ratec := µS∗
N

I∗.
In the definition of the marginal distribution we tak
the upper limit of the summation to infinity, sinc
we assume numbers ofX and Y cases to be wel
below the stationary values of the SIR-system, i
they will not be affected by any finite upper bounda
We will check the validity of this assumption later wi
simulations of the full SIRYX-system.

Hence, we have

d

dt
p(Y, t) = (

b(Y − 1) + c
)
p(Y − 1, t)

+ a(Y + 1)p(Y + 1, t)

(12)− (bY + aY + c)p(Y, t)

for Y ∈ N, and as boundary equation, i.e., forY = 0,

(13)
d

dt
p(Y = 0, t) = ap(Y = 1, t) − cp(Y = 0, t).

For the ensemble mean〈Y 〉 :=∑∞
Y=0 Yp(Y, t) we

obtain, using the above master equation,

(14)
d

dt
〈Y 〉 = (b − a)〈Y 〉 + c.

We can simplify further by neglecting the mutatio
and backmutation terms, hencec = 0, andν = 0 in
the definition forb, and solve the ODE for the mea
〈Y 〉(t), noticing that

(15)b − a = (β − ε)
S∗

N
− γ = −ε

S∗

N

is proportional toε. We setg := ε S∗
N

. The ODE then
reads

〈Ẏ 〉 = −g〈Y 〉
under suitable initial conditionY (t = 0) = 1. The
solution is

(16)〈Y 〉(t) = e−g(t−t0).

For non-vanishing mutation rateµ we obtain as
solution

(17)〈Y 〉(t) = c

g

(
1− e−g(t−t0)

)
.

We will use Eqs. (16) and (17) to analyse the beh
iour of an ensemble of different pathogenicitiesε in
the next section.
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2.6. Power law at criticality

We have shown previously that the probability
the final size of the epidemics follows a power la
as observed in branching processes [10]. These p
laws are a characteristic sign for criticality.

In a simplified model, where the SIR-subsystem
assumed to be stationary (due to its fast dynam
we can show analytically divergence of variance a
power law behaviour for the probability of the size
the epidemicsp(X) as soon as the pathogenicity is d
veloping towards zero. Hence the counter-intuitiv
large number of disease cases in some realization
the process can be understood as large scale flu
tions in a critical system with order parameterε to-
wards zero (see [10] for details).

For the final size distribution of the epidemic w
get power law behaviour

(18)

pε(X) := lim
t→∞p(Y = 0,X, t) ∼ 1

2
√

πβ
ε1/2X−3/2,

for ε → 0 and largeX [10]. The exponent−3/2
is exactly the one given in [15] for the critica
branching process. This behaviour near criticality
also observed in the full SIRYX-system in simulatio
where the pathogenicityε is small, i.e., in the range o
the mutation rateµ. In spatial versions of this mode
it is expected that the critical exponents are those
directed percolation [29], see also [27].

3. Evolution towards criticality

In sand pile models two time scales appear,
slow time scale of sand dropping onto the sand
and the fast time scale of avalanches running down
pile. In simulations and theoretic models often the
time scales are separated by making the avalan
infinitely fast. Likewise, in our epidemic model w
have the slow time scale of mutations of differe
bacteria strains, characterized by the mutation ratµ,
and the fast time scale of the infection process
these strains, characterized by the contact ratβ

(and ratesα and γ ). The former parameterε, the
pathogenicity, will now become a state variable wh
the system adjusts on its own, like the slope of
r

f
-

sand pile being adjusted on its own in the paradigm
model of SOC.

We consider two scenarios to investigate h
the distribution of different mutants with variou
pathogenicities changes with time in the system
our first consideration we look at the case of comp
separation of time scales by making the mutat
process infinitely slow, henceµ := 0. The analytic
solution will be very simple and easy to analyz
showing the evolution towards the critical state withε

towards zero. In the second consideration we ana
the more realistic situation of finite mutation rate, a
still find an analytic solution in terms of an infinit
sum. This solution can be similarly treated as the fi
case, again showing evolution towards criticality.
both cases the above simplifications of stationa
of the SIR-subsystem are used to obtain anal
solutions. And in both cases simulations of the f
SIRYX-subsystem agree well with the analytic resu

3.1. Model 1: Ensemble of initially introduced
mutants

We show now that in a population of equally d
tributed pathogenicityε after a certain period only th
hosts with mutants of low pathogenicity remain in t
system. Therefore, we investigate an ensemble o
alizations each starting with one mutant infected.
each realization the initial mutant infected has pat
genicityε. Now the different realizations have diffe
ent pathogenicitiesε with relative frequencyp(ε, t0)

uniform for starting timet0. We follow the relative fre-
quency of infected with a certain pathogenicity ov
the time course

(19)p(ε, t) := 〈Y 〉(ε, t)∫ εm

0 〈Y 〉(ε, t) dε
.

Analytically, we can approximate〈Y 〉(ε, t) by Eq. (16)

(20)〈Y 〉(ε, t) = e−gt ,

with g := εγ /β , derived from the ODE d
dt

〈Y 〉 =
(b − a)〈Y 〉 with b − a = −g. The result forp(ε, t)

is

(21)p(ε, t) =
γ
β
te

−ε
γ
β

t

1− e
−εm

γ
β

t
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with initial distributionp(ε, t0) = 1/εm for ε ∈ [0, εm]
and for time going towards infinityp(ε, t → ∞) =
δ(ε), hence all mass concentrates atε = 0.

In a full SIRYX-model the present assumption
especiallyI = I∗ as the stationarity for the harmless
infected, would be violated for the pathogenicity bei
in the order of the mutation rate,ε ≈ µ, since the
I can then be completely replaced by theY mutant
infected withI going towards very small numbers
extinction [10]. The distributionp(ε, t) for model 1
from Eq. (21) is shown for three different times
Fig. 2.

3.2. Simulation of the full SIRYX-system for model 1

In simulations of the full SIRYX-system we con
sider a variety of pathogenicitiesεi and for each of
those we perform a large number of runsj , record-
ing the number of mutant infectedYj (εi, t) over time.
Hence the distribution of pathogenicities in an ense
ble of hosts infected with different mutant strains
given by

(22)p̂(εi, t) :=
∑

j Yj (εi, t)∑
i

∑
j Yj (εi, t)"ε

,

with "ε the length of the consideredε-interval times
the number ofε-values. We compare the simulatio
results with the previous theoretical results in Fig.
The simulation results (crosses) lie well in the vicin
of the theoretical curve (full line).

3.3. Model 2: Mutations during the process

In a second consideration we assume that no mu
infected are present initially, but with mutation ra
µ mutants with equally distributed pathogenicity a
created. Since all pathogenicities are equally lik
to appear during mutations, the initial distributio
p(ε, t0) is expected to be uniform. After some tim
the strains with low pathogenicity will create mo
and more mutant infected overruling the newly fe
incoming mutant infected with higher pathogenic
from the mutation process.

Analytically, we take the above definition ofp(ε, t),
and now calculate from Eq. (17)

〈Y 〉(ε, t) = c

g

(
1− e−gt

)
,

Fig. 2. For our first model we show distributionsp(ε, t) for times
t = 1, t = 20, t = 100 (timest = 1, horizontal line,t = 20, slightly
tilted line, andt = 100, where all the probability is going toward
small pathogenicity values).

Fig. 3. Comparison of simulations of the complete SIRYX-syst
with the theoretical curve from the YX-subsystem and assump
of SIR in stationarity for the first model. Here timet = 100 is shown.

with import rate c = µI∗S∗/N = µI∗γ /β , hence
c/g = µI∗/ε. This is derived from the ODEd

dt
〈Y 〉 =

(b −a)〈Y 〉+ c. The solution can now only be obtaine
numerically (or with

∫
(ex/x) dx as given function).

Explicitly it is

(23)

p(ε, t) := 〈Y 〉(ε, t)∫ εm

0 〈Y 〉(ε, t) dε
=

1
ε

(
1− e

−ε
γ
β

t )
∫ εm

0
1
ε

(
1− e

−ε
γ
β t )

dε
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εm∫

0

1

ε

(
1− e

−ε
γ
β t )

dε

(24)= lim
ε0→0

( εm∫
ε0

1

ε
dε −

εm∫
ε0

1

ε
e
−ε

γ
β

t
dε

)
.

With the substitution in the last integralz := −ε
γ
β
t ,

hence dz
dε

= − γ
β
t we find the exponential integra

function defined as Ei(y) := ∫ y

−∞
ez

z
dz with explicit

series expansion Ei(y) = ln |y| + ∑∞
ν=1

yν

ν·ν! + C.
Hence,

εm∫
0

1

ε

(
1− e

−ε
γ
β t )

dε

(25)= lim
ε0→0


ln(εm) − ln(ε0) +

− γ
β tεm∫

− γ
β

tε0

1

z
ez dz


 ,

and taking the limit

lim
ε0→0

(
ln(εm) − ln(ε0)

+ Ei

(
−γ

β
tε0

)
− Ei

(
−γ

β
tεm

))

(26)=
∞∑

ν=1

(−1)ν+1

(
εm

γ
β
t
)ν

ν · ν! ,

with the result

(27)

p(ε, t) = 1

ε

(
1− e

−ε
γ
β

t )[ ∞∑
ν=1

(−1)ν+1

(
εm

γ
β
t
)ν

ν · ν!

]−1

.

The distributionp(ε, t) for model 2 from Eq. (27) is
shown for three different times in Fig. 4(a).

3.4. Simulation for model 2

In simulations for our second model we start w
a resident strain with vanishing pathogenicity a
allow for mutations to various strains with differe
pathogenicitiesεi . For all strains the mutation rate
the same. Again we consider the distribution of
(a)

(b)

Fig. 4. Second model. (a) Theoretical curves for timest = 1, t = 20,
t = 100 and (b) comparison between model and simulations for
t = 100. Each data point of the simulation is an average over 5
runs, and 50 values forε are taken.

variousεi in a population of mutant infected over tim
(see Eq. (22)) and compare with theoretical result
Fig. 4(b).

Remarkably, the result for the lowest value
ε = 0.002 still is in very good agreement with th
theoretical curve thoughε is only twenty times large
still than the mutation rateµ.

4. Summary

Our results show that in an ensemble of stra
with different pathogenicity the strains which are le
pathogenic are selected over the more pathog
strains. This brings about an evolution towards
duced pathogenicity, and thus, criticality. If no ne
mutant strains are produced eventually the only
maining strains will be completely non-pathoge
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strains. However, small mutation rates will contin
ously produce pathogenic strains of which only
weakly pathogenic ones will remain in the system
some time. In this sense the criticality of this sy
tem is a robust feature and evolution will drive th
system towards criticality. In this sense the men
gitis model provides a biologically realistic examp
of self-organized criticality. Future work to eventua
obtain more formal proofs of self-organized critica
ity, possibly along the lines of work done on simp
models [28], might give a detailed understanding
the mechanisms we found.

Preliminary analysis of empirical data of mening
tis and septicaemia show large outbreaks of often
linked cases between extended periods of silence
dicating that the structural behaviour of the system
be understood from the implications of our model. F
ture work will be spent on the disentanglement of o
model’s features and additional effects like, for exa
ple, seasonality in already seen data and compar
with further data from different climatic and cultur
backgrounds (peoples’ meeting habits seem to h
effects on the contact rate). Parameter estimation t
niques used previously in [22] and [23] could be a
plied to the present system under investigation.
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