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Abstract

In a model for bacterial infections with various mutants we find the epidemiological system evolving towards criticality
without outer tuning of a control parameter. This is an indication for self-organized criticality. The epidemic model is a
susceptible—infected—recovered hosts system (SIR) for the harmless agent infectirlg &ctitg as a background to a mutant
strainY which occasionally creates severely affected hast3he full system of SIRYX is described in the master equation
framework, confirming limiting assumptions about a reduced YX-system with the SIR-system in stationarity. In this limiting
case we can analytically show convergence to power law scaling typical of critical states. Furthermore, in this approximation
we can show analytically that the control parameter, the pathogenicity in this model, evolves to be predominantly in its critical
value zero. These findings are then confirmed by simulations of the full SIRY X-system.

0 2003 Elsevier B.V. All rights reserved.

1. Introduction of a system evolving on its own towards criticality is
called self-organized criticality, SOC.

We investigate an evolutionary biological model
describing the epidemiological interactions of a host
population subject to asymptomatic bacterial infec-
tion. We then include mutations of these bacteria
which sometimes lead to disease with often fatal con-
sequences. This is effectively a negative selection of
these mutant bacteria in the epidemiological process.

The probability rate of hosts being infected with
mutant bacteria making the transition to the disease is
called pathogenicity. We show explicitly that the state
of small pathogenicity is critical, and furthermore,
that the system evolves towards this state of small
mspondmg author. pathogenicityip the hpst population. o

E-mail addresses: nks22@cam.ac.uk (N. Stollenwerk), Our model is designed along the realistic inter-
vincent.jansen@rhul.ac.uk (V.A.A. Jansen). actions in the epidemiology of meningococcal dis-

The universality of critical phenomena in phase
transitions has attracted attention from physicists for
more than 25 years [1]. Soon after its importance be-
came clear also the relevance for epidemiological and,
in general, birth—death processes was recognized [2,3].
For a recent popular account of universality see [4].
Not only criticality as such but also development of
a system towards criticality has been postulated for
physical systems [5,6] with the paradigmatic system
of a sand pile (see for an overview [7]). This scenario
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ease caused by the bacterilNa sseria meningitidis, with initially different pathogenicities towards the
named in 1879 after its discoverer Albert Neisser [8]. critical state of vanishing or small pathogenicity.
Infection with the bacterium normally is harmless and We start with a basic SIR-system for asymp-
leads to asymptomatic carriage. Occasionally, how- tomatic infection, for which the infected hosts are
ever, infection can lead to menigococcal disease. Dif- called I, susceptible host§ and recovered and im-
ferent strains of the bacterium differ in their propen- mune hostsR. Then in the next section we introduce
sity to cause disease. The model is parametrized andone competing strain with non-vanishing pathogenic-
could, in principle, be tested with empirical epidemi- ity. This gives the two new host classes of infected
ological data as it uses realistic parameters for the ba- with the mutant strainy, and disease casés to wich

sic epidemic processes [9,10]. However, this system theY hosts can change with small transition ratéhe

is of broader interest, since it potentially provides an pathogenicity. Finally, in the last section we consider
explanation for uncertainties and huge fluctuations for an ensemble of mutant infected hosts with a variety of
more general models in evolutionary biology. This ap- pathogenicities, hencé(e), and investigate the distri-
proach is more realistic than previous attempts in sim- bution of infected hosts with eaeh

plified evolutionary models [11,12]. We show explic-

itly that a parameter is automatically driven towards 2.1. The SR-model for asymptomatic infection

its critical value. The pathogenicity evolves to small

values near its critical value of zero. In the analysis The basic SIR-model for a host population of size
it evolves to zero, since for analytic treatability we N divided in subclasses of susceptible, infected and
use approximations which show the qualitative behav- recovered hosts [19] is constructed as follows. With
iour correctly. In the full system the pathogenicity will  a ratex a resistent host becomes susceptible, or as a
evolve to small values, in the order of magnitude of reaction schemer —%> . Then, a susceptible host
the mutation rate where competing strains can replace jeets an infected host with a transition rateand

eachother. _ proportional to the fraction of infected hosts in the
Epidemics with critical fluctuations have been de- B

scribed before [13,14] in forest fire like scenarios [7, POPulation. As a reaction scheme we have / —
p. 68]. We present a non-spatial stochastic model I + I. Finally, infected hosts can recover and become
. . , _ _ y

in the form of a master equation (time-continuous temporally resistent with the rate, hencel — R.
Markov process)’ |eading in criticality to power laws We could caII this basic SIR-model also SIRS-model,
with exponents of mean field type (essentia”y the since transitions fronR to S are allowed, but use SIR,
branching process exponeMlS]),confirming that since later in an SIRYX-model paraIIeI transitions
the system under investigation establishes critical fluc- Prohibit a simple way of labelling. Hence, here SIR
tuations with fat-tail behaviour. just means that we have three classes of hdstg,

A spatial system analysis would require a renormal- andR to deal with, as opposed to 5 classes in the more
ization approach to path integrals which are derived complicated model [10].

from the spatial master equation. This method is still  The corresponding deterministic ordinary differen-
under controversial debate, even in chemical systems’ tial equation (ODE) system reads
analysis [16-18]. ds i
—=aR - 8-S,
dt N
2. The meningitis model i _ B ! S 1
' a PNCTUh
Since meningitis and septicaemia are two forms of 4R =yl —aR, (1)

meningococcal disease we will refer to the model we 4!

describe as the meningitis model. It has been describedand describes merely the dynamic of the mean values
in its basic structure and first analysis of the critical for the total number of susceptibles, infected and re-
state in an earlier paper [10]. We derive here for the covered under the assumptions of mean field behav-
first time the evolution of a mixture of mutant bacteria iour and homogeneous mixing, hence mean values of
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products can be replaced by products of means in thevalues of the pathogenicity we can furthermore show

nonlinear contact terrg3/N)IS.
2.2. Sochastic modelling of demographic noise

We include demographic stochasticity in the de-
scription of the epidemic. Since we will describe fluc-
tuations near critical states we have to consider sto-
chastic models, Markov processes explicitly formu-

power law behaviour of the size distribution of epi-
demics (see [10] for details), hence demonstrate that
the system is in criticality.

2.3. The SRYX-model for infection with competing
strains

In order to describe the behaviour of pathogenic

lated in master equations, as used in physics and chem-strains we add a new clags of individuals infected

istry (see, e.g., [20]). As such, for the basic SIR-
model we consider the dynamics of the probability
p(S, I, R, t) of the system to havé susceptibleg] in-
fected andr recovered at time, which is governed by

a master equation [20,21], and in a recent application
to a plant epidemic model [22,23]. For state vecigrs
here for the SIR-model = (S, I, R), the master equa-
tion reads

dp(n) y
G = 2 wnap(i) = Jwip(n),
n#n n#n
with transition probabilities corresponding to the ones

)

with a potentially pathogenic strain to the basic SIR-
system. We will assume that such strains arise by, e.g.,
point mutations or recombination through a mutation
process with a ratg in the schemes + 1 Ly 41

For symmetry, we also allow the mutants to mutate
back with ratev, henceS + Y —> I + Y.

The main point here in introducing the mutant is
that the mutant has the same basic epidemiological
parameters, 8 andy as the original strain and only
differs in its additional transition to pathogenicity with
ratee. These mutants cause disease with ¢atehich
will turn out to be small later on. Hence the reaction

described above for the ODE-system. Here the ratesscheme isS + ¥ — X + Y. This sends susceptible

wj , are
W(s+1,1,R-1),(S,I,R) = AR,

1
W(S—1,1+1,R),(S,I,R) = B NS’
(3

W(S,I-1,R+1),(S.I,R) =V I,

from which the rates,, ; follow immediately as
W(S.1.R).(S-1.1.R+D) = ¢(R +1),

I-1
W(S,I,R),(S+1,I-1,R) = ﬂT(S +1),
(4)

This formulation defines the stochastic process com-
pletely and will be the basis for the extended SIRY X-
model for competing bacteria strains.

Now, we introduce pathogenic mutant strains which
infect hosts in the same way as the asymptomatic

W(S,1L,R),(S,1+1,R—1) =y (I +1).

hosts into anX class, which contains all hosts who
develop symptomatic disease. These are the cases
which are detectable as opposed to hosts in claBses
and 7 who are asymptomatic carriers who cannot be
detected easily.

The state vector in the extended model is now
n=(S,1,R,Y, X). The mutation transitiofi + I ——
Y + I fixes the master equation transition rate

1
W(S-1,1,R,Y+1,X),(S,I,R,Y.X) = MNS~

In order to denote the total contact rate still with the
parameteg, we keep the balancing relation

W(S—1,1+1,R,Y,X),(S,I,R,Y,X)
(5)

and obtain for the ordinary infection of normal car-

1
+ W(S—1,1,R.Y+1,X),(S,I.R.Y.X) = ’BNS’

strain does, but occasionally cause disease, and allowyjage the transition rate

for mutation transitions between the two strains. We
will call the additional host classes for the infection
with mutant bacteri& hosts, and diseased caseés

1
W(S—1,/1+1R.Y.X),(S,I.R,Y,x) = (B — M)NS'

With this model we can show that huge fluctuations Respectively, to denote the total rate of contacts a
occur when the chance of a mutant causing a diseasedsusceptible host can make with any infected, either
case, called pathogenicity, is small [10]. For small normal carriagd or mutant carriag&, by 8, we obey
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the balancing equation W(X—1,5+1),(x,5) = ¢ X,

I+Y x5 s, 7
Z W(S—1),(S,m) = ,3—5 (6) %
fF#m along with the respective reaction schemes. Again

from wj; , the ratesw, ; follow immediately. This
defines the master equation for the full SIRYX-system.
The ODE system for the SIRYX-model, including all
B—v— 8)_ transitions mentioned above, reads as

form = (I, R, Y, X). With the above mentioned tran-
sitions this fixes the master equation rate

W(S—1,1,R,Y+1,X),(S,,R,Y,X) =

For completeness, we mtroducearecoveryfrom the S=aR — ;‘3—(1 +7Y)+ X,

disease with rate, henceX -, 5. With regard to . S S
meningitis and septicaemia in many cases the diseasel = (8 — M)—I —-yl+ VN
is fatal, hencep = 0. With medication the sufferers
often survive, but are hospitalized for a long time
and then most of the time will suffer from resulting y — (g —, — g)ﬁy —yY + Mil,
impairments. So for the theoretical analysis we will N
still keep ¢ = 0, which might be changed when =5£Y —0X, @)
analysing more realistic situations or recent data.

For the SIRYX- -system the transition probabilities again assuming mean field approximation_
wj , are then given (omitting unchanged indicesin

with respect to:) by 2.4. Theinvasion dynamics of mutant strains

R:ya+m—a&

W(R— =aR, . . .
(R=L5+D),(R,5) Before we proceed with further theoretical analysis

o
R— S, of the model we now demonstrate basic properties
of our SIRYX-model in simulations of the master

_ =B —wn—=S=s, . . . . .
W(s-L.1+0).(5.0) = (B M)N equation, using the Gillespie algorithm, also known as

s+1P% 40,

1
ws— =u—=_S,
(S=LY+D.(5.1) = My
S+1-5% vy,
W(-1,R+1),(I,R) =V 1,
1 -5 R,
WES-1,Y+1),6S,v) =B —v— 8)NS’

s+y "y 4y,

W(S—1,1+1).(5.1) = VNS’
S+Y -5 1+,

W(S—1,X+1),(5,X) = 8NS’
S+Y -5 X+,

W(y—1,R+1),(¥,R) = V7Y,
Y 4 R,

minimal process algorithm [24—26]. This is a Monte
Carlo method, in which after an event, i.e., a transition
from staten to another statg, the exponential waiting
time is calculated as a random variable from the sum
of all transition rates whereupon the next transition
is chosen randomly from all now possible transitions
according to their relative transition rates.

To investigate the dynamics of the infection with
mutants, clas¥’, in relation to the normal carriage
I with harmless strains, we first fix the basic SIR-
subsystem’s parameters to the valaes= 0.1, 8 :=
0.2 andy :=0.1. The endemic equilibrium of the SIR-
system is given by

st=nY,  proniPY
p Ba+y’

R*:Nzﬂ_y, )
Ba+y

as can be seen from Eqgs. (1) setting the left-hand side
of each subequation to zero. As for the parameters
used, we find in equilibrium a normal level of carriage
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of harmless infection of about 25% in our total pop- over but small enough to create large outbreaks of
ulation of sizeN. This is in agreement with reported mutant infectedy” before becoming extinct again. In
levels of carriage folNeisseria meningitidis [8]. We Fig. 1 we show two simulations in thisregion, first
assume the duration of immunity to be the same as thee = 0.05, Fig. 1(a), (b), then a ten times smaller
duration of carriage. In equilibrium this results in the Fig. 1(c), (d). For high pathogenicity we find rela-
ratio of $* : I* : R* =2:1:1. However, the qualita- tively low levels of mutants, in Fig. 1(a) less than
tive results are not affected by these parameter values,20 cases, and at the end of the simulation roughly
but rather the order of magnitude. between 15 and 80 hospital casks Fig. 1(b). For
After fixing the basic epidemic parameters smaller pathogenicity, Fig. 1(c), we find much larger
and y for the SIR-subsystem, we now consider the fluctuations in the number of mutan¥s with peaks
mutation towards infected in thE-class, fixing the of more than 80 mutant infected hosts. Though the
mutation rateu := 0.0001 to be orders of magnitude probability rate to cause diseasés ten times smaller
smaller than the infection process, and foreward muta- than in the previous simulation we find at the end of
tions equal to backward mutations= u. this simulation similar numbers of disease caXes
Interesting behaviour is observed if the pathogenic- Fig. 1(d). We observed larger fluctuations and some-
ity ¢ is too large for the hyperinvasive strain to take times a much higher number of outbreaks of dis-
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Fig. 1. (a) Time series of ten runs showing the mutant carriader pathogenicitye = 0.05. (b) Number of seriously diseased ca&efor
pathogenicitys = 0.05. (c) and (d) as (a) and (b) with pathogenicity ten times smaller, heac®005. Although the pathogenicityis of the
factor ten smaller, the damage in the number of seriously diseasedXase®ins high and even varies more than for latger
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eased cases though the probability to cause disease igleath ratex := y and a migration rate := ,u%l*.

smaller. In the definition of the marginal distribution we take
This counter-intuitive result can be understood by the upper limit of the summation to infinity, since

considering the dynamics of the hyperinvasive lineage we assume numbers of and Y cases to be well

in detail. We will do so by analyzing a simplified
version of our SIRYX-model analytically.

2.5. Dynamics of mean numbers of infected
For pathogenicitye larger than the mutation rate

u the hyperinvasive lineage normally does not attain
very high densities compared to the total population

size. Therefore, we can consider the full system as

composed of a dominating SIR-system which is not
really affected by the rar& and X cases, calling it

the SIR-heat bath, and our system of interest, namely,

the Y cases and their resulting pathogenic caXes
considered to live in the SIR-heat bath.

Taking into account Eqgs. (9) for the stationary
values of the SIR-system we obtain for the transition
rates (compare Egs. (7)) of the remaining YX-system:

*

S *
W(S*,Y+1),(S*,Y) = MNI =:c,

k
W(s*,y+1),(s%,y) = (B —v — S)ﬁy —:bY,
*
W(s* * =¢g—Y =: Y,
(8%, X+1),(5*,X) N g
Wy—1,R%),(v,R¥) =YY =:a¥,
W(X—-1,5%),(X,5%) = X = 0. (10)

All terms not involving Y or X vanish from the

master equation, since the gain and loss terms cancel

each other out for such transitions. If we neglect the

below the stationary values of the SIR-system, i.e.,
they will not be affected by any finite upper boundary.
We will check the validity of this assumption later with
simulations of the full SIRY X-system.

Hence, we have

d—p(Y, = (b -1 +c)pY —1,1)
+a(Y +Dp(Y +1,1)

— (Y +aY +c)pY,1) (12)

for Y € N, and as boundary equation, i.e., 1o 0,

d

EP(Y =0,)=apY=1,1t)—cp(Y =0,1). (13)
For the ensemble medi) := > 77 o Yp(¥, 1) we

obtain, using the above master equation,

d
—(Y)y=0b-a)(Y)+ec. (14)
dt

We can simplify further by neglecting the mutation
and backmutation terms, henee= 0, andv = 0 in
the definition forb, and solve the ODE for the mean
(Y)(¢), noticing that

* *

b—a=(ﬂ—8)%—y=—8s—

N (15)

is proportional toe. We setg := s%. The ODE then
reads

recovery of the disease cases to susceptibility, as is (y) = —g(y)

reasonable for meningococcal disease, heneeO0,
we are only left withY-dependent transition rates.
Hence, for the YX-system we get the master equation:

d Y,X,1)
dtp”

=B -1 +c)pY —1,X,1)
+a¥+DpY +1, X, 1)+ gYp(¥Y,X —1,1)
— (Y 4+aY +gY +o)p(Y, X, 1). (11)
This gives for the marginal distributiop(Y, ) :=
Y Y-op(Y,X,1) the master equation for a simple
birth—death process with birth rate= (8 — v — e)%,

under suitable initial conditior¥ (r = 0) = 1. The
solution is

(Y)(1) = e 8010, (16)

For non-vanishing mutation ratg we obtain as
solution
(Y)(1) = = (1— e 8C~0), (17)
8
We will use Egs. (16) and (17) to analyse the behav-

iour of an ensemble of different pathogenicitiedn
the next section.
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2.6. Power law at criticality sand pile being adjusted on its own in the paradigmatic

model of SOC.

We have shown previously that the probability of ~ We consider two scenarios to investigate how
the final size of the epidemics follows a power law the distribution of different mutants with various
as observed in branching processes [10]. These powerPathogenicities changes with time in the system. In
laws are a characteristic sign for criticality. our first consideration we look at the case of complete

In a simplified model, where the SIR-subsystem is Separation of time scales by making the mutation
assumed to be stationary (due to its fast dynamics), Process infinitely slow, hencg := 0. The analytic
we can show analytically divergence of variance and solution will be very simple and easy to analyze,
power law behaviour for the probability of the size of Showing the evolution towards the critical state with
the epidemicg(X) as soon as the pathogenicity is de- towards zero. In the second consideration we analyze
veloping towards zero. Hence the counter-intuitively the more realistic situation of finite mutation rate, and
large number of disease cases in some realizations ofStill find an analytic solution in terms of an infinite
the process can be understood as |arge scale fluctuasum. This solution can be Similarly treated as the first

tions in a critical system with order parameteto-
wards zero (see [10] for details).

For the final size distribution of the epidemic we
get power law behaviour

NN T _ ~ 1/2+y,-3/2
pg(X)._tll)moop(Y_O,X,t) —zms X ,

(18)

for ¢ - 0 and largeX [10]. The exponent—3/2

is exactly the one given in [15] for the critical
branching process. This behaviour near criticality is
also observed in the full SIRYX-system in simulations
where the pathogenicityis small, i.e., in the range of
the mutation ratee. In spatial versions of this model

it is expected that the critical exponents are those of
directed percolation [29], see also [27].

3. Evolution towardscriticality

In sand pile models two time scales appear, the
slow time scale of sand dropping onto the sand pile

and the fast time scale of avalanches running down the

pile. In simulations and theoretic models often these

case, again showing evolution towards criticality. In
both cases the above simplifications of stationarity
of the SIR-subsystem are used to obtain analytic
solutions. And in both cases simulations of the full
SIRY X-subsystem agree well with the analytic results.

3.1. Model 1: Ensemble of initially introduced
mutants

We show now that in a population of equally dis-
tributed pathogenicity after a certain period only the
hosts with mutants of low pathogenicity remain in the
system. Therefore, we investigate an ensemble of re-
alizations each starting with one mutant infected. In
each realization the initial mutant infected has patho-
genicity . Now the different realizations have differ-
ent pathogenicities with relative frequencyp(e, 7o)
uniform for starting timeg. We follow the relative fre-
qguency of infected with a certain pathogenicity over
the time course

(Y)(e,0)

e T mends

(19)

Analytically, we can approximatg’) (¢, t) by Eq. (16)

time scales are separated by making the avalanches

infinitely fast. Likewise, in our epidemic model we
have the slow time scale of mutations of different
bacteria strains, characterized by the mutation rate

(Y)(e,0)=e"%, (20)

with g := ey/B, derived from the ODEZ(y) =

and the fast time scale of the infection process for is

these strains, characterized by the contact ate
(and ratese and y). The former parametest, the
pathogenicity, will now become a state variable which
the system adjusts on its own, like the slope of the

(b — a){Y) with b — a = —g. The result forp(e, 1)
Zte s%t

plet) = 15 - (21)
— €
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with initial distribution p (e, 10) = 1/&y, for & € [0, £] 55 ' ' | '
and for time going towards infinity (e, t — oco0) = %0 1 i
8(¢g), hence all mass concentrateg at 0. 45 7 i
In a full SIRYX-model the present assumptions, 40 7 i
especiallyl = I'* as the stationarity for the harmlessly 35 7 i
infected, would be violated for the pathogenicity being Z 30 7 i
in the order of the mutation rate, ~ u, since the & 25 7 i
I can then be completely replaced by thHemutant 20 1 i
infected with/ going towards very small numbers or 15 1 i
extinction [10]. The distributiorp(e, ) for model 1 10
from Eq. (21) is shown for three different times in 57 i
Fig. 2. 0 ' ' ' '

0 002 004 006 008 0.1
3.2. Smulation of the full SIRYX-systemfor model 1

€
In simulations of the full SIRYX-system we con-  Fig. 2. For our first model we show distributiopse, 1) for times
: ; e t=1,t=20,r =100 (timesr = 1, horizontal line;y = 20, slightly
Skl‘der a Va”et? of patIhOgemCItI%S anfd for each dOf tilted line, andr = 100, where all the probability is going towards
.t ose we periorm a arge_ numper o ruﬁ,srec_or - small pathogenicity values).
ing the number of mutant infected (¢;, t) over time.

Hence the distribution of pathogenicities in an ensem- 60 ! ! ! !
ble of hosts infected with different mutant strains is
given by 50 -
R 2 Y .
p(ei,t):= / ) (22) 40
> Zj Yi(ei, t)As =
. . . . < 30 -
with Ae the length of the consideredinterval times %
the number ofs-values. We compare the simulation 20 L
results with the previous theoretical results in Fig. 3.
The simulation results (crosses) lie well in the vicinity 10 L
of the theoretical curve (full line).
0
3.3. Model 2: Mutations during the process 0 0.02 004 006 008 0.1

In a second consideration we assume that no mutant €

infected are present initially, but with mutation rate Fig. 3. Comparison of simulations of the complete SIRYX-system
u mutants with equally distributed pathogenicity are with the theoretical curve from the YX-subsystem and assumption
created. Since all pathogenicities are equa"y Iikely of SIR in stationarity for the first model. Here time= 100 is shown.

to appear during mutations, the initial distribution

p(e, 1o) is expected to be uniform. After some time, with import rate c = ul*S*/N = ul*y/B, hence
the strains with low pathogenicity will create more ¢/g = ul*/e. This is derived from the OD%(Y} =
and more mutant infected overruling the newly few (b —a)(Y)+c. The solution can now only be obtained
incoming mutant infected with higher pathogenicity numerically (or with/ (¢*/x) dx as given function).

from the mutation process. Explicitly it is
Analytically, we take the above definition pfe, ¢), )
and now calculate from Eq. (17) . (Y)(e, 1) %(1 - e*ﬁ’)
pe,t) =

o (V) e.de — [om (1 ok g

c
Y ) =—(1- —8t )
(Y)(e, 1) g( e %) 23)
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Em Em
. 1 1 _.»
— lim (/—ds—f—e Sﬁ’dg) (24)
g0—0 & &
£0 £0

With the substitution in the last integral:= —8%1,
hencefl—g = —%t we find the exponential integral

. . . o y Z . . .
function defined as Ej) := [* < dz with explicit

series expansion Bi) = In|y| + Z‘j‘;lvy_—:! + C.
Hence,

1 _
/—(1— 8ﬂt)de
£
0
7ztem1
= Iim | In(g;n) —In(go) + f —etdz |, (25)
£0—> Ve
—%t&‘o

and taking the limit

lim

£0—

0('”(8m) —In(eo)

o) o)

5’

—§ j( 1)”+l : (26)
V- v'
with the result
1 )’
—s v mg
pe.n=—(1- ‘[2(1)“”,} :
(27)

The distributionp(e, t) for model 2 from Eg. (27) is
shown for three different times in Fig. 4(a).

3.4. Smulation for model 2

In simulations for our second model we start with
a resident strain with vanishing pathogenicity and
allow for mutations to various strains with different
pathogenicitieg;. For all strains the mutation rate is
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Fig. 4. Second model. (a) Theoretical curves for timesl, r = 20,

t =100 and (b) comparison between model and simulations for time
t = 100. Each data point of the simulation is an average over 5000
runs, and 50 values farare taken.

variousg; in a population of mutant infected over time
(see Eq. (22)) and compare with theoretical results in
Fig. 4(b).

Remarkably, the result for the lowest value of
e = 0.002 still is in very good agreement with the
theoretical curve thoughis only twenty times larger
still than the mutation ratg.

4. Summary

Our results show that in an ensemble of strains
with different pathogenicity the strains which are least
pathogenic are selected over the more pathogenic
strains. This brings about an evolution towards re-
duced pathogenicity, and thus, criticality. If no new
mutant strains are produced eventually the only re-

the same. Again we consider the distribution of the maining strains will be completely non-pathogenic
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strains. However, small mutation rates will continu-
ously produce pathogenic strains of which only the
weakly pathogenic ones will remain in the system for
some time. In this sense the criticality of this sys-
tem is a robust feature and evolution will drive this
system towards criticality. In this sense the menin-
gitis model provides a biologically realistic example
of self-organized criticality. Future work to eventually
obtain more formal proofs of self-organized critical-
ity, possibly along the lines of work done on simpler
models [28], might give a detailed understanding of
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