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Regulation of predator-prey systems through spatial interactions: 
a possible solution to the paradox of enrichment 

V. A. A. Jansen 

Jansen, V. A. A. 1995. Regulation of predator-prey systems through spatial interac- 
tions: a possible solution to the paradox of enrichment. -Oikos 74: 384-390. 

Many natural predator-prey systems oscillate but persist with densities staying well 
away from zero. Non-spatial predator-prey models predict that in environments where 
prey on itself can do well, a predator-prey system can oscillate with troughs in which 
the populations become vanishingly small. This phenomenon has become known as 
the paradox of enrichment. In this paper the role of space in bounding overall popula- 
tion oscillations is analysed in the simplest version of spatial predator-prey models: a 
two-patch model for a Lotka-Volterra system and a Rosenzweig-MacArthur system 
with logistic prey growth and Holling type I1 functional response of predator to prey 
density within each patch. It was found that the spatial interactions can bound the fluc- 
tuations of the predator-prey system and regulate predator and prey populations, even 
in the absence of density dependent processes. The spatial dynamics take the form of 
locally asynchronous fluctuations. Enrichment of the environment in a two-patch 
model does not necessarily have the paradoxical consequence that the populations 
reach densities where extinction is likely to occur. 

1/: A. A. Jansen, Theoretical Biology Section, Inst. of Evolutionary and Ecological Sci- 
ences, Leiden Univ., Leiden, The Netherlands and: NERC Centre for Population Biol- 
ogy, Imperial College at Silwood Park, Ascot, Berks., U.K. SL5 7PY (correspondence). 

Many natural predator and prey populations persist densities can reach values where natural populations 
while their densities show sustained oscillations. Hence would certainly go extinct. Enrichment of the-environ- 
these populations must be regulated in such a way that ment for the prey species thus makes life for prey worse, 
the densities are k e ~ t  awav from the values where ex- not better. This has become known as the paradox of en- 
tinction is likely to occur. In contrast to this, predator- richment (Rosenzweig 1971). 
prey systems that are kept in the laboratory tend to show Predator-prey models offer a good description of the 
fluctuations in densities that are severe enough to drive changes in numbers of laboratory predator and prey pop- 
them to extinction (Gause 1934, Huffaker 1958, Huf- ulations (Maly 1969). It is rather unlikely though, that 
faker et al. 1963). such models faithfully describe natural predator and 

Rosenzweig-MacArthur models for predator-prey prey populations because one would then be forced to 
systems can produce dynamics where densities show assume that these are described by parameters only com- 
bounded fluctuations around an unstable equilibrium ing from the narrow range where oscillations with a 
point. Only the amplitude of the fluctuations changes small amplitude are possible. Therefore, natural preda- 
rapidly with the models parameters. The parameter re- tor-prey systems must be regulated through a mecha- 
gion where predator-prey models allow oscillations with nism that is not described in the Rosenzweig-MacArthur 
a relatively small amplitude is very restricted. For in- predator-prey models. Since the amount of space that 
stance, the amplitude increases with carrying capacity of laboratory populations live in is small compared to those 
the prey population. For large carrying capacities the of natural populations, one is readily led to the hypothe- 
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sis that spatial interactions must contribute to the regula- 
tion of natural predator-prey systems. 

In this paper I investigate how and when spatial inter- 
actions can regulate predator prey populations using 
simple models for spatial predator-prey systems. Others 
have addressed this question before using verbal argu- 
ments (Nicholson and Bailey 1935, Den Boer 1968) and 
model studies. Models for spatial predator-prey systems 
date back to the 1970's. Spatial versions of the Lotka- 
Volterra model were formulated by Comins and Blatt 
(1974) and Steele (1974). Recently Hassell et al. (1991) 
and Comins et al. (1992) showed that models for host- 
parasitoid systems can persist on a large grid, where the 
non-spatial models drive themselves to extinction. This 
also holds for a two-patch host-parasitoid system (Adler 
1993). Most of these models are discrete in time and 
therefore are more appropriate for host-parasitoid inter- 
action. De Roos et al. (1991) and Wilson et al. (1993) 
demonstrated the stabilising influence of a diffusion lim- 
ited predator-prey interaction. 

Simulation models have the disadvantage that impor- 
tant aspects of the dynamics may be missed. Therefore I 
will apply recently developed methods for automated bi- 
furcation analysis (Khibnik et al. 1993). These make a de- 
tailed description of the behaviour of a dynamical system 
possible and can reveal qualitative behaviour that is easily 
overlooked when one is limited to simulations alone. 

Two-patchmodels 
The models I will analyse here are the simplest spatial 
models possible. They describe a predator-prey system 
with two identical compartments. Individuals move be- 
tween the two compartments with a constant probability 
per unit of time. Such models allow for two different 
sorts of interpretations. The two patches can be viewed 
either as a predator-prey metapopulation consisting of 
two local populations coupled through migration, or a 
predator-prey system living in a space discretised in the 
two compartments. Whenever spatial effects occur in a 
two-compartment system, they can be expected to occur 
as well for finer discretisations. Two-patch models thus 
give an insight in how and when spatial interactions can 
influence population densities. 

Because the patches are identical the densities in both 
patches can be equal. When this is the case the densities 
of course stay equal for ever after and the population 
densities behave as in the non-spatial case. These solu- 
tions are symmetrical solutions because patches behave 
exactly the same. To identify the effect caused by spatial 
interactions the stability of symmetrical solutions is 
studied. A symmetrical solution is stable when it is sta- 
ble in the non-spatial case and when small differences 
between the patches disappear instead of amplify. 

The models in this paper are very simple forms of 
metapopulation models. It is often argued that metapop- 
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ulations fluctuate less than a single well mixed popula- 
tion because the local populations will fluctuate out of 
synchrony and therefore dampen the fluctuations in the 
densities of the population as a whole. A bit of a weak 
point in this reasoning is that it is not always clear why 
the local populations in a metapopulation should fluctu- 
ate asynchronously. In the models presented here the 
densities of the local populations can fluctuate in syn- 
chrony in the symmetrical solutions. Whenever asyn- 
chronous fluctuations are an intrinsic property of preda- 
tor and prey populations in a patchy habitat they should 
emerge in the form of long lasting non-symmetrical so- 
lutions in the model. 

A two-patch Lotka-Volterra model 
The classic Lotka-Volterra model is based on the as-
sumptions that the prey density grows exponentially in 
the absence of predators and that the predator density de- 
cays exponentially in the absence of prey. The contact 
rate of prey and predator is linear. For a two-patch ver- 
sion of the Lotka-Volterra model the additional assump- 
tion has to be made that the prey and predators react to 
local densities, i.e. the densities in their patch, only. The 
patches are coupled through migrating individuals. The 
model given here is a special case of the model formu- 
lated by Comins and Blatt (1974). The equations read as 
follows: 

dN,  
-d t  = riV, -NzPz -t d,,(AT,-AT2) 

where N, and P, denote the density of, respectively, the 
prey and the predator in patch i. The constant r is the 
growth rate of the prey population in absence of preda- 
tors and p the death rate of predators. The contact rate 
between prey and predators is set to unity by a scaling of 
the densities. The migration rate of the prey is given by 
(I, and that of the predator by d,].Every individual has a 
constant probability of leaving. The net effect of, for in- 
stance, prey migration in patch one then is d,(N2-N,). 
Note that if N ,  = N and P,  = P, the migration terms are 
zero and the populations in both patches obey equal rates 
of change, hence the densities will stay equal. 

It is well known that the solutions of models in which 
the spatial domain is continuous (instead of being dis- 
crete as it is in this paper) and in which the local interac- 
tions are given by the Lotka-Volterra model, are asymp- 
totically spatially uniform. Spatial variation decreases 
over time and in the end every solution becomes spa- 
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tially homogeneous (Murray 1975). The densities 
change over time but will behave like a stiff board mov- 
ing up and down. The two-patch Lotka-Volterra model 
can be seen as a discretisation of such a model. Not sur- 
prisingly it has a similar property: for all solutions of 
system (1) with positive initial conditions and at least 
one positive migration rate, any differences between the 
patches will eventually disappear (Jansen 1994a). 

When the densities in both patches are equal the den- 
sities oscillate in synchrony around an equilibrium 
value, exactly as in the non-spatial Lotka-Volterra 
model. Since there exist no long lasting non-symmetri- 
cal solutions, what remains to be assessed is the stability 
of the symmetrical solutions. This might seem a super- 
fluous exercise since if all orbits converge towards sym- 
metrical solutions there obviously must exist symmetri- 
cal solutions which attract. The point is though, that 
some of the symmetrical solutions can be unstable and 
will not appear in long term dynamics. 

The non-spatial Lotka-Volterra model has a neutrally 
stable equilibrium point, surrounded by neutrally stable 
closed orbits. A neutrally stable closed orbit is an orbit 
to which nearby orbits always stay close without having 
to converge to it. Small perturbations from such a closed 
orbit need neither disappear nor amplify and can thus in- 
duce a small change in the amplitude of the orbit. 

In the spatial Lotka-Volterra model the symmetrical 
equilibrium point is the only possible positive equilib- 
rium. It is always neutrally stable, just as in the non-spa- 
tial Lotka-Volterra model (Nisbet et al. 1992). Symmet- 
rical closed orbits with a small amplitude, i.e. orbits 
close to the equilibrium, are neutrally stable as well. For 
the two-patch Lotka-Volterra model neutral stability 
means in particular that when small differences in densi- 
ties between the patches are introduced they will disap- 
pear but that they might induce small changes the ampli- 
tude of the symmetrical closed orbit. Not all closed or- 
bits need to be neutrally stable: those with small ampli- 
tude are but larger ones can be unstable. Then, small dif-
ferences in density between the patches will amplify and 
cause large changes in amplitude. Hence almost all or- 
bits starting close to an unstable symmetrical closed or- 
bit grow away from it. 

As seen above, every solution eventually must lose all 
differences in densities and thus every orbit eventually 
must approach a (neutrally stable) symmetrical orbit. 
Therefore system (1) must have orbits that form connec- 
tions between large unstable orbits and neutrally stable 
orbits. Fig. 1 shows a solution with a part of one such 
connecting orbit. It starts with very little differences in 
densities between the patches and fluctuations with a 
large amplitude. The differences then get larger from os- 
cillation to oscillation and the amplitude decreases. Fi- 
nally the differences disappear as the orbit runs into a 
symmetrical closed orbit with a small amplitude. 

Large amplitude orbits do not become unstable for all 
combinations of the migration rates. What is typically 
needed is little or no prey migration and intermediate 

Fig. 1. The total prey (solid line) and predator (dashed line) den- 
sities in two patches, N,,+N2 and P , + P, (upper), and the differ- 
ences between the dens~ties in the patches of prey (drawn line) 
and predator (dashed line), N ,  -N, and P I  - P2 (lower), versus 
time for a solution of system (1) with r = 1,p = 1,do= 0, d,= 0.7. 

predator migration. This gives a hint to the mechanism 
that underlies this instability. During a part of a large os- 
cillation the predator densities are very low. The prey 
density then grows almost exponentially. With little or 
no prey migration, a small difference in prey density 
also grows exponentially. After the prey densities have 
built up, the predator density increases, causing a subse- 
quent decrease in prey density. The patch that initially 
had more prey will produce more predators. The in- 
crease in predator density is fast and hence migration 
will have little impact. After the prey density has 
dropped the predators will die off exponentially. The dif- 
ference in predator densities will decrease during this 
phase due to predator migration and mortality. However, 
the difference in predator densities will now cause dif- 
ferences in prey densities between the patches. For very 
low values of predator migration the differences be- 
tween initial prey densities will not be carried over from 
one patch to the other and for very high predator migra- 
tion rates the difference in predator densities will disap- 
pear very fast so that the predator densities in both 
patches are practically the same. For intermediate values 



time (x  1000) -
Fig. 2. (a) The logarithm of the average prey densities versus 
time, for a solution of a non-spatial Lotka-Volterra model with 
noise on the predator death rate. The solutions show unbounded 
drift and attain very low densities. (b) The logarithm of the aver- 
age prey densities over the two patches versus time for a solu- 
tion of system (1) with noise on the predator death rate p. The 
parameters and the noise are chosen identical to those used for 
Fig. 2a. The noise was applied such that the predator death rate 
was distributed uniformly over 1 f 0.1 but that the two patches 
experience identical predator death rates at any time. Although 
the densities still drift they do not reach the extremely low den- 
sities that occur frequently in the non-spatial Lotka-Volterra 
model. Parameter values r = 1,p = 1, d, = 0, rl, = 0.7. 

of predator migration, however, the difference in prey 
densities between the patches can increase from oscilla- 
tion to oscillation. This is supported by the fact that an 
increase in the predator death rate, ,u (which shortens the 
period over which substantial predator migration takes 
place), enlarges the region where unstable symmetrical 
orbits are possible (Jansen 1994a). 

The Lotka-Volterra model has often been discarded as a 
good model for ecological interactions since it is structur- 
ally unstable. Small changes in the model qualitatively al- 
ter its behaviour. Environmental noise, for instance, 
causes the solutions to "drift" away from any orbit, bring- 
ing the densities sooner or later to values where extinction 
is more than likely (Fig. 2a). For the two-patch Lotka-Vol- 
terra this is not the case. The closed symmetrical orbits are 
identical to those of the non-spatial model and will not 
persist (in the sense that although they will only change 
slightly they will not remain closed) and change into an 
orbit on which the densities drift from high to low values. 
The orbits that connect large symmetrical orbits to small 
symmetrical orbits are structurally stable and do persist; 
they will undergo some slight changes as well but will 
still form a connection between symmetrical orbits with 
high and low amplitudes. This makes that the two-patch 
Lotka-Volterra model reacts very differently to environ- 
mental noise from the non-spatial Lotka-Volterra model. 

Fig. 2b shows the dynamics of a perturbed two-patch 
Lotka-Volterra model in which the predator death rate at 
any moment is the same in both patches, but fluctuates 
randomly over time. As in the non-spatial model (Fig. 2a) 
the noise causes drift in the amplitude. However, when 
the fluctuations become very large and some differences 
in densities between the patches still exist, the mecha- 
nism at work in Fig. 1 starts to operate. The differences 
between the patches induce reductions in the amplitude 
from time to time. The densities in the spatial Lotka-Vol- 
terra model therefore rarely reach extremely low values. 

A classical predator-prey model in two patches 
The two-patch variant of a classical Rosenzweig-Mac- 
Arthur predator-prey model can be derived by replacing 
the exponential prey growth function with logistic 
growth and the functional response with a Holling type 
I1 functional response in system (1). This gives the fol- 
lowing equations: 

Here c is the prey's carrying capacity and b the satura- 
tion value of the functional response. The scaling chosen 
is such that the encounter rates and conversion coeffi- 
ciency are scaled out but that the carrying capacity is 
preserved as a parameter. 



Fig. 3. The total prey densities over the two patches (upper) and the difference in prey densities (lower) versus time for various 
solutions of system 2. (a) A quasi periodic solution with r = 1, c = 7, d,  = 0, d, = 0.7, b = 9.96, ji = 1. (b) A "chaotic" solution with r = 
1 ,  c = 5 ,  d,= 0, d,= 0.6,b = 9 . 9 6 , ~= 1.(c) A periodic solution with r = 1 ,  c = 20,d,= 0, dp=0.7, b = 9 .96 ,~= 1 (thedashed lines rep- 
resent total predator densities and difference in predator densities) 

For the non-spatial model a Hopf bifurcation takes 
place for c = bs;it has a stable equilibrium for c < % 
and a stable limit cycle for c > '$. The symmetrical so- 
lutions of this model are identical to those of the non- 
spatial model but can have different stability properties. 
The symmetrical limit cycle, for instance, can become 
unstable for certain parameter combinations, typically 
when the prey migration is low and the predator migra- 
tion rate has an intermediate value (c$ system (I)). 

The major difference between the dynamics of models 
(1) and (2) is that the latter exhibits long-term dynamics 
while differential densities between patches persist. The 
orbits end up on an attractor which is not symmetrical. 
Clearly, a non-symmetrical attractor must exist when 
the symmetrical limit cycle is unstable. However, a 
non-symmetrical attractor can also occur when the sym- 
metrical limit cycle is stable. It typically exists in and 
around the region where the symmetrical limit cycle can 
be unstable. 

The dynamics on some of the non-symmetrical attrac- 
tors is depicted in Fig. 3. When there are small differ- 
ences in densities the fluctuations grow in amplitude. 
When the fluctuations have considerable amplitude the 
differences start to increase which dampens the fluctua- 
tions. The dynamics can be quasi-periodic (Fig. 3a), 
"chaotic" (Fig. 3b) or periodic (Fig. 3c). Notice that the 
differences in densities change sign with every next peak 
in the average densities. In terms of density in a patch it 
means that a large peak is followed by a smaller peak. 
The other patch shows a similar but out of phase pattern, 
i.e. a small peak when the other patch has a large peak. 
Thus long term average population densities in both 
patches will be approximately the same. 

On the paradox of enrichment 
Richness in dynamical behaviour can be a delight to the 
mathematician and a nightmare to the ecologist. For the 
latter the mathematical trees probably only obscure the 
view of the forest. I will therefore not present a stability 
analysis of the different solutions but concentrate on an 
ecologically important feature of the model. Interested 
readers can find a detailed numerical bifurcation analy- 
sis of system (2) in Jansen (1994b). 

The ecological relevance of these models lies first and 
foremost in the fact that the fluctuations in the average 
densities are often less extreme than in the non-spatial 
models. This is due to the fact that spatial models allow 
for non-symmetrical solutions. When the peaks and 
troughs in densities do not coincide the amplitudes of the 
fluctuations in the average densities are reduced. This 
means that populations in a two-patch system are less 
likely to go extinct than they would in a single patch. 

I will demonstrate this by investigating the dependence 
of the amplitude of the fluctuations in model (2) on the 
carrying capacity. In the non-spatial analogue of model 
(2) the amplitude increases rapidly with carrying capacity. 
Fig. 4a shows the minima and maxima of the logarithmic 
prey density of the non-spatial variant of system (2), 
which is identical to the symmetrical solution of (2). For 
small carrying capacities the equilibrium is stable and the 
minima and maxima coincide. For increasing carrying ca- 
pacity the equilibrium becomes unstable, a limit cycle 
forms and the minimum prey density decreases rapidly 
with carrying capacity. The non-spatial model clearly 
shows the paradoxical consequence of enrichment of the 
environment (Rosenzweig 1971, May 1974). 



-
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Fig. 4. (a) The minimum and maximum average prey density for 
the symmetrical attractors of system (2) versus carrying capac- 
ity. For carrying capacities on the left of the dashed line the at- 
tractor is an equilibrium, for carrying capacities on the right it is 
a stable limit cycle. For very large values of the carrying capac- 
ity logarithm of the minimum prey density is less than -15. (b) 
as (a) for all attractors of system (2). The thin line that is also de- 
picted in (a) gives the minima and maxima over the symmetrical 
attractors. The thlck lines give minima and maxima over non- 
symmetrical attractors. Between the dashed lines no non-sym- 
metrical attactors were found. Non-symmetrical attractors on 
the far left and right are periodic, closer to the dashed lines the 
attractors are quasi periodic or chaotic. Parameter values: r = 1. 
dn=0,(1,=0.7,b=9.96.p= 1. 

Fig. 4b shows the minima and maxima of the average 
prey density of all stable solutions of system (2). The 
symmetrical attractor is identical to the attractor in the 
non-spatial variant (Fig. 4a). Note that for the parame- 
ters used here the symmetrical solution keeps its stability 
for all carrying capacities. A non-symmetrical attractor 
(of the types shown in Fig. 3) can exist together with the 
stable symmetrical solution. For many initial values the 
final solutions will oscillate between two lines represent- 
ing the non-symmetrical attractors. The minima of these 
initially decrease with carrying capacity. For higher val- 
ues of the carrying capacity they increase and level out 
at a constant value. Although for certain parameter val- 
ues very low prey densities are still possible, the mini- 
mal prey densities are bounded well away from zero for 
higher carrying capacities. Enrichment of the environ- 
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ment makes prey extinction less likely in spatial preda- 
tor-prey systems and does not have the paradoxical con- 
sequences it has in the non-spatial analogue. 

Discussion 
Spatial models explain the dynamics of natural predator 
and prey populations better than their non-spatial coun- 
terparts. The region in parameter space where spatial 
predator-models have solutions which oscillate without 
reaching extremely low values is larger than it is with 
non-spatial models. Since they are based on an identical 
description of the local interaction this leads to the im- 
mediate conclusion that spatial interactions can be an 
important factor in the regulation of predator and prey 
populations. 

None of the processes in the spatial Lotka-Volterra 
model with environmental noise can be classified as be- 
ing density dependent, yet the densities do not easily 
reach extremely low values. For the spatial classical 
predator-prey model (2) something similar holds: an in- 
crease in the carrying capacity (this amounts to less den- 
sity dependence since the prey equilibrium density is set 
by the predators) can result in smaller amplitude oscilla- 
tions and thus stronger regulation. Migration as de-
scribed in the models in this paper is a density indepen- 
dent process since all individuals have a constant per 
capita probability of leaving a patch, yet it can lead to a 
regulation of the population numbers. Many ecologists 
have tried to explain the regulation of predator and prey 
populations by identifying density dependent processes. 
The models presented here suggest that this approach 
need not be valid and that spatial interactions, based on 
density independent processes. can be the main mecha- 
nism through which these populations are regulated. 

Admittedly, drawing these conclusions from a model 
where the spatial component is reduced to just two iden- 
tical patches is somewhat tentative. However, more de- 
tailed and probably more realistic simulation models 
show that the spatial interactions can dominate the popu- 
lation dynamics of predator and prey (Hassell et al. 
1991, De Roos et al. 1991, Wilson et al. 1993). Of par- 
ticular relevance here are the studies by Hassell et al. 
(1991) and Comins et al. (1992). In their simulations 
they found different spatial patterns, depending on the 
migration parameters used. In a large parameter region 
they found spiral waves and related chaotic patterns that 
moved through space. In other parameter regions a fixed 
spatial pattern was formed. In these simulations the 
probability of the populations getting extinct drops quite 
rapidly with an increase in the number of compartments. 
It can therefore be expected that for the models pre- 
sented here the parameter regions in which dynamics are 
dominated by the spatial interactions will expand rather 
than contract with a finer discretisation. 

No matter how convincing these predictions can look, 
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what ultimately is needed is an empirical test of these 
hypotheses. Although I do not know of any experimental 
results that show that predator-prey systems are more 
persistent in a spatially more complex environment, 
there are indications that they are. Firstly, natural popu- 
lations normally do persist where many predator-prey 
systems are difficult to keep in the laboratory (Huffaker 
1958, Huffaker et al. 1963). Secondly, acarine predator- 
prey systems can persist in greenhouses and show re- 
peated oscillations (Nachman 1991). These oscillations 
can have a large amplitude if the local populations fluc- 
tuate synchronously, or oscillate with a reduced ampli- 
tude if the local populations fluctuate asynchronously 
(Van de Klashorst et al. 1992). In itself this is not very 
surprising since this is what one would expect to happen 
on grounds of simple statistics alone. The striking thing 
is though, that the asynchronous fluctuations can follow 
a period of synchronous fluctuations. Apparently the 
system has two different states it can be in and it can flip 
between those. This qualitatively resembles some of the 
dynamics produced by the models in this paper. 

Acknowledgements - I thank Howard Wilson, John Lawton, 
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