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High-amplitude fluctuations and alternative
dynamical states of midges in Lake Myvatn
Anthony R. Ives1, Árni Einarsson2, Vincent A. A. Jansen3 & Arnthor Gardarsson2

Complex dynamics are often shown by simple ecological models1,2

and have been clearly demonstrated in laboratory3,4 and natural
systems5–9. Yet many classes of theoretically possible dynamics are
still poorly documented in nature. Here we study long-term
time-series data of a midge, Tanytarsus gracilentus (Diptera:
Chironomidae), in Lake Myvatn, Iceland. The midge undergoes
density fluctuations of almost six orders of magnitude. Rather
than regular cycles, however, these fluctuations have irregular
periods of 4–7 years, indicating complex dynamics. We fit three
consumer–resource models capable of qualitatively distinct
dynamics to the data. Of these, the best-fitting model shows
alternative dynamical states in the absence of environmental vari-
ability; depending on the initial midge densities, the model shows
either fluctuations around a fixed point or high-amplitude cycles.
This explains the observed complex population dynamics: high-
amplitude but irregular fluctuations occur because stochastic
variability causes the dynamics to switch between domains of
attraction to the alternative states. In the model, the amplitude
of fluctuations depends strongly on minute resource subsidies into
the midge habitat. These resource subsidies may be sensitive to
human-caused changes in the hydrology of the lake, with human
impacts such as dredging leading to higher-amplitude fluctua-
tions. Tanytarsus gracilentus is a key component of the Myvatn
ecosystem, representing two-thirds of the secondary productivity
of the lake10 and providing vital food resources to fish and to
breeding bird populations11,12. Therefore the high-amplitude,
irregular fluctuations in midge densities generated by alternative
dynamical states dominate much of the ecology of the lake.

Although the possibility of alternative states in ecological systems
has been recognized for several decades13,14, only recently have good
empirical examples been established9,15,16. The most familiar type of
alternative states is alternative stable states in which a system has two
(or more) stable equilibria, with the system settling to one or the
other depending on initial conditions17. Alternative stable states lead
to the possibility that a system may be shifted from one state to
another, less favourable, state by a sudden shock or other distur-
bance, with unfortunate ecological consequences. Once trapped in
the new state, undoing the disturbance will not return the system to
its original (desirable) state, because the system will remain trapped
in the domain of attraction of its new state.

Alternative states, however, need not be stable equilibrium points;
they may instead be dynamical structures such as cycles18–22. Here we
investigate the possibility of alternative dynamical states, in which
one state is an equilibrium point and the other is a high-amplitude
stable cycle. Data on the long-term dynamics of the midge Tanytarsus
gracilentus suggest these alternative states, because they show high-
amplitude fluctuations that are not regularly periodic. In most
populations in nature and in most simple models, if high-amplitude

fluctuations occur, they occur as fairly regular cycles, with the strong
ecological forces that drive the high amplitudes also entraining the
dynamics into a stable limit cycle23.

Tanytarsus gracilentus is the dominant herbivore/detritivore in
Myvatn, comprising roughly 75% of the secondary consumers and
66% of secondary production in this shallow, naturally eutrophic
lake in northern Iceland10. As larvae, T. gracilentus individuals feed
from tubes they construct in the benthic sediment, grazing on both
benthic diatoms (algae) and detritus24 consisting largely of dead
benthic and planktonic algae, and midge frass. They have two non-
overlapping generations per year, with adults forming large swarms
around the perimeter of the lake over two 1–2-week mating periods,
the first in May and the second in July and early August. In genera-
tions with high midge abundance, larvae are limited by food, and
adult size decreases for several generations before the population
crashes. Detailed statistical evaluation of data on population density,
body size and predator abundance suggests that fluctuations in
T. gracilentus populations are driven by consumer–resource inter-
actions, with midges being the consumers and algae/detritus the
resources, as opposed to predator–prey interactions with midges
being the prey25.

We have collected data on the abundance of adult midges since
1977 by using window traps at two locations on the shore of the
lake26. We have fitted these data to a model constructed to describe
the fundamental interactions among midges, algae and detritus (Box
1). In the model, the midge population growth is dependent on
density and is limited by the availability of food. Food consists of
algae and detritus, which may differ in quality for midges. Algae have
density-dependent growth, and detritus is formed from dead algae.
In the model, midge populations are allowed to reach densities at
which all algae are consumed, at which point the midge population
crashes, with the rate of crash being moderated by the presence of
detritus, which serves as an alternative food source. A feature crucial
to the model is that if all algae are consumed, algal populations can
recover through the input of small subsidies from outside the midge–
algae–detritus system. These subsidies represent small influxes of
algae and detritus into the muddy midge habitat from hard-bottom
areas where midges are few. Although we have no direct measure-
ment of this input, much of the algae and detritus in the lake occurs
in areas inaccessible to midge larvae, and the hydrological mixing of
the shallow lake27 makes influxes of small amounts of this material
into the midge habitat a certainty. We added environmental
stochasticity to the model as random variation in per capita changes
in abundances of midges, algae and detritus. Finally, we fitted the
data by using a state-space version of the model28 to incorporate the
measurement error that we knew to be significant (Supplementary
Methods). Predictions by the fitted model about changes in log
(midge populations) from one generation to the next explain 74%
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of the variance in generation-to-generation population fluctuations
(Fig. 1 and Table 1).

When stripped of environmental stochasticity, the deterministic
skeleton of the model shows alternative dynamical states (Fig. 2a).
There is a relatively high stable point surrounded by a stable cycle of
very high amplitude. The existence of alternative dynamical states
pervades the biologically plausible range of parameter values (white

areas in Fig. 3a), demonstrating that they are a common feature
caused by the general structure of the model rather than phenomena
requiring unlikely parameter values. In the fully stochastic model,
produced by including the level of environmental stochasticity esti-
mated in the fitted model, the population trajectory skips between
the domains of attraction of the two alternative states (Supplemen-
tary Figs 1–9), for some stretches of time fluctuating around the
stable point and for other stretches showing cycles (Fig. 2b). The
amplitude of fluctuations is highly sensitive to the rate of influx of
resources into the system; as the influx of algae and detritus, c,
decreases from 1023 to 1029, the amplitude increases from less than
three orders of magnitude to more than ten orders of magnitude
(Fig. 3b). This occurs because lower subsidies (lower values of c)
allow midge populations to crash to lower levels before they are saved
from extinction by the recolonization of algae. The amount of sub-
sidy needed to save the population is low. The value of c in the model
fitted to Myvatn data, c 5 1026.4, implies that inputs are six orders of
magnitude lower than the abundance of algae at the stable equilib-
rium point. A full pictorial analysis of the deterministic and stoch-
astic behaviours of the model is given in Supplementary Figs 1–9.

Our midge–algae–detritus model is firmly anchored in biology
and fits the data well. The model displays alternative dynamical states
and high-amplitude fluctuations over a broad range of parameter
values governing the influxes of resources into the system (Fig. 3).
This strongly suggests the existence of alternative dynamical states in
the real midge system. We obtained further statistical support for
alternative dynamical states in two ways. First, the model contains
a parameter, q, that dictates the strength of density dependence

Box 1 | The midge–algae–detritus model and alternatives

We constructed a midge–algae–detritus model to give a basic
description of their interactions, attempting to have a minimum
number of parameters that must be estimated from the data. The
midge dynamics are

x(tz1)~r1x(t) 1z
x(t)

R(t)

� �{q

ee1(t) ð1Þ

where x(t) is the abundance of midges in generation t, r1 is the intrinsic
population growth rate, larger values of q produce stronger density
dependence, and e1(t) is a normal random variable representing
stochastic environmental variability. The dimensionless measure of
resource abundance in generation t, R(t) 5 y(t) 1 pz(t), is composed of
algae, y(t), and detritus, z(t), with the parameter p giving the quality of
detritus for midge population growth relative to algae. Because we were
interested in dynamics rather than mean abundance, we ‘non-
dimensionalized’ midge densities to produce equation (1) and used a
separate scaling parameter K when fitting the model so that the observed
log(adult midge density) equalled K 1 log(x(t)) (Supplementary
Methods). Furthermore, the data showed a distinct seasonal pattern in
which spring generations had mean densities 3.4 times higher than
summer densities. This might reflect either true differences in survival
and/or fecundity between generations or sampling bias due to
differences in weather conditions and hence flight activity and
catchability. Because we were interested in long-term, multi-
generational dynamics, we factored out this consistent seasonal pattern
by multiplying summer midge densities by 3.4 before statistical analyses.

Algae dynamics are

y tz1ð Þ~ r2y(t) 1zy(t)ð Þ{1
{

y(t)

R(t)
x(tz1)zc

� �
ee2(t) ð2Þ

where r2 is the algae intrinsic population growth rate and c is the influx
of algae from outside the midge habitat. Because we have no data on
algae abundance available to midges, y(t) is not observed; therefore, in
the model the mean value of y(t) need not be included, and y(t) is
dimensionless. The term [y(t)/R(t)]x(t 1 1) is the amount of resource
consumed, x(t 1 1), scaled by the proportion of that resource which is
algae, y(t)/R(t). A key feature of algae dynamics is that midge
populations can build to sufficient abundance to consume all algae.
When the term for the amount of algae consumed, [y(t)/R(t)]x(t 1 1),

is greater than the amount produced, r2y(t)[1 1 y(t)]21, we assume
that all algae come from influx, so y(t 1 1) 5 c.

The detritus dynamics are

z tz1ð Þ~ dz(t)zy(t){
pz(t)

R(t)

� �
x(tz1)zc

� �
ee3(t) ð3Þ

where d gives the retention rate of detritus in the midge habitat. We
assume that the influx rate of detritus equals that of algae, and that
detritus is produced in proportion to the quantity of algae in the
previous generation, y(t). As with algae, if all detritus in the midge
habitat is consumed, then z(t 1 1) 5 c. Because both algae and detritus
were not measured, we assumed for estimation purposes that the
standard deviations of e2(t) and e3(t) are equal: s2 5 s3.

We compared the midge–algae–detritus model to two additional
models. The multidimensional Gompertz log–linear model30 is

u1 tz1ð Þ~b11u1(t)zb12u2(t)zb13u3(t)ze1(t) ð4Þ

u2 tz1ð Þ~b21u1(t)zb22u2(t)zb23u3(t)ze2(t) ð5Þ

u3 tz1ð Þ~b31u1(t)zb32u2(t)zb33u3(t)ze3(t) ð6Þ
where u1(t) 5 log x(t), u2(t) 5 log y(t) and u3(t) 5 log z(t). The
Lotka–Volterra model is

x tz1ð Þ~r1x(t) exp {dzb12y(t)zb13z(t)ze1(t)ð Þ ð7Þ

y tz1ð Þ~r2y(t) exp 1zb21x(t)zb22y(t)zb23z(t)ze2(t)ð Þ ð8Þ

z tz1ð Þ~r3z(t) exp 1zb31x(t)zb32y(t)zb33z(t)ze3(t)ð Þ ð9Þ

In equations (7)–(9), three parameters can be removed to non-
dimensionalize the equations without changing the observed dynamics
of midges; we therefore set b12 5 1 and b13 5 1 (assuming that midges
benefit from both resources) and b21 5 21 (assuming that midges
reduce algae abundance). As with the midge–algae–detritus model,
for both alternative models we fitted the data with a scaling parameter
K to factor out mean midge density. Fitting of all three models was
performed with a state-space approach factoring in measurement
error; see Supplementary Methods for details.
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Figure 1 | Population dynamics of T. gracilentus in Myvatn. The solid line
gives the abundance of midges in each generation, averaged between two
traps. The dashed line gives the predicted ‘true’ (unobserved) abundances
from the model given by Box 1 equations (1)–(3) with parameter values
estimated by maximum likelihood: r1 5 3.873, r2 5 11.746, c 5 1026.435,
d 5 0.5517, P 5 0.06659, q 5 0.9026, K 5 9.613, s1 5 0.3491 and
s2 5 s3 5 0.7499.
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affecting midge growth and reproduction (Box 1). As q decreases and
density dependence weakens in the model, the stable point is lost,
leaving only the high-amplitude cycle. For the model fitted to the
data, the value of q is 0.903, yet the value below which only the high-
amplitude cycle remains is 0.737 (Supplementary Fig. 1). We refitted
the model to the data constraining q to be small enough for only
the high-amplitude cycle to occur, and the fit of the resulting model
was statistically significantly worse than the fit with q 5 0.903 (like-
lihood ratio test, x2 5 6.34, d.f. 5 1, P , 0.012; see Supplementary
Methods). This represents a conservative test because, even for values
of q low enough to rule out alternative dynamical states, the stoch-
astic dynamics nevertheless show many of the same characteristics;
although the deterministic skeleton of the model does not have
alternative states, there is a residual ‘ghost’ that is still detected in
the region surrounding the formerly stable point (Supplementary
Fig. 9).

As a second line of statistical support, we fitted the data to two
additional models and compared the fits with our midge–algae–
detritus model (Box 1). We selected the additional models to have
flexibility in fitting the Myvatn midge dynamics and yet to be

incapable of producing alterative dynamical states. The first is a
three-variable Gompertz (log–linear) model. This model has nine
parameters governing the midge dynamics, in contrast with six in
the midge–algae–detritus model. Furthermore, we did not constrain
the sign of the parameters, so the interactions between the three
variables could be positive or negative. Thus, the three-variable
Gompertz model represents the most general three-dimensional
log–linear model possible, yet because it is log–linear it cannot pro-
duce either stable limit cycles or alternative dynamical states. Our
second additional model is a two-resource, one-consumer Lotka–
Volterra model. Like the Gompertz model, it contains nine para-
meters governing midge dynamics, and these are fitted only with
constraints to guarantee that midges are consumers of the two
resource variables. The Lotka–Volterra model can produce stable
limit cycles, although it cannot have alternative states. Our strategy
was to select additional models that are overparameterized (nine
parameters) and thus should have an advantage over the midge–
algae–detritus model yet cannot produce alternative dynamical
states.

Despite the advantages of the additional models, the midge–algae–
detritus model outperformed both of them (Table 1), giving evidence
for the plausibility of alternative dynamical states underlying midge
population dynamics. Further support for our model comes by
applying it to a shorter data set from another shallow eutrophic lake
nearby, Lake Vikingavatn (Supplementary Methods). The model fits
well, and the parameter estimates are similar to those from Myvatn,
with exceptions being explained by characteristics such as lake size.

A striking biological conclusion from the model is the sensitivity
of the amplitude of midge fluctuations to very small amounts of
resource input, c (Fig. 3); the resource input sets the lower boundary
of midge abundance and hence the severity of population crashes.
Thus, even though resource input might be six orders of magnitude
less than the abundance of resources in the lake in most years, this
vanishingly small source of resources is nevertheless critical in setting
the depth of the midge population nadir and the subsequent rate of
recovery. This sensitivity to resource subsidies might explain changes
in midge dynamics that have apparently occurred over the last dec-
ades. Although Myvatn has supported a local charr (salmonid) fish-
ery for centuries29, this fishery collapsed in the 1980s, coincident with
particularly severe midge population crashes11. Over the same period,
waterbird reproduction in Myvatn was also greatly reduced during
the crash years12. These changes might have been caused by dredging
in one of the two basins in the lake that started in 1967 to extract
diatomite from the sediment. Hydrological studies27 indicate that
dredging produces depressions that act as effective traps of organic
particles, hence reducing algae and detritus inputs to the midge
habitat. Our model predicts that even a slight reduction in subsidies
can markedly increase the magnitude of midge fluctuations. Such
slight environmental changes can then have seriously negative con-
sequences for fish and bird populations.

Midges are central to the functioning of Myvatn, not only provid-
ing food for fish and birds but also representing most of the second-
ary production in the lake. Our analyses show that the marked,
complex midge population dynamics can be explained by alternative

Table 1 | Goodness-of-fit measures for the midge–algae–detritus and alternative models

Goodness of fit Model Description

Midge–algae–detritus Gompertz Lotka–Volterra

Number of parameters* 6 9 9 Parameters included in the model deterministic skeleton
–2 LL 156.2 174.7 185.5 22 3 log likelihood function
Total R2

0.98 0.98 0.97 1 2 var E(t)/var X(t){
Prediction R2 for X̂X(t 1 1) 0.74 0.57 0.38 1 2 var ÊE(t)/var [X̂X(t 1 1) 2 X̂X(t)]{
Prediction R2 for X(t 1 1) 0.53 0.39 0.25 1 2 var E(t)/var [X(t 1 1) 2 X(t)]

See Supplementary Methods for descriptions of measures, and Box 1 for descriptions of the models.
*Number of parameters in the model determining the dynamics. There are six additional parameters in each model for the scaling term K, process variation for midges (s1) and algae/detritus
(s2 5 s3), and initial densities for midges, algae and detritus.
{ E(t) 5 X(t) 2X̂Xp(t), where X̂Xp(t) is the one-step-ahead prediction of log(midge abundance) made by models in Box 1.
{ ÊE(t) 5 X̂X(t) 2X̂Xp(t), where X̂X(t) is the one-step-ahead prediction of log(midge abundance) after being updated by the observed value of X(t) to account for measurement error.
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Figure 2 | Simulated dynamics of the model given by Box 1 equations
(1)–(3) for 50 generations. a, Dynamics in the absence of environmental
stochasticity (e1(t) 5 e2(t) 5 e3(t) 5 0). b, Dynamics in the presence of
environmental stochasticity. In a, two midge population trajectories starting
from different initial values are illustrated. Parameter values are equal to
those estimated from the data: r1 5 3.873, r2 5 11.746, c 5 1026.435,
d 5 0.5517, P 5 0.06659, q 5 0.9026, K 5 9.613; in b, s1 5 0.3491 and
s2 5 s3 5 0.7499.
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states, with one state a stable point and the other a stable cycle.
Alternative dynamical states mean that the character of the dynamics
(relatively constant versus cyclic) may change abruptly yet naturally.
Moreover, the amplitude of the cycle is highly sensitive to small
subsidies of resources into the midge habitat that rescue crashing
midge populations. From a conservation perspective, this represents
a challenge. Not only are midge dynamics inherently unpredictable,
they may also be extremely and unexpectedly vulnerable to small
disturbances to the lake.
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fishing, and sustainable egg harvesting: patterns of Viking Age inland wild
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