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When individuals migrate in a multi-patch environment, a considerable proportion of their lifetime
might be spent in transit between patches. We investigate the effects such a pool of dispersers can have
on local stability and dynamics for a variety of multi-patch host-parasitoid models. When an arbitrary
number of patches with internal Lotka–Volterra dynamics is coupled via a global pool of dispersers,
the equilibrium is globally stable. The global pool is stabilising if dispersal is by hosts only, by
parasitoids only, or by both hosts and parasitoids. If dispersal is local such that individuals first enter
a pool close to the patch where they originate and then disperse to adjacent pools, the equilibrium is
locally stable. We also analyse the situation where the functional response of parasitoids within a patch
is Holling type II which is known to destabilise host-parasitoid systems. Coupling this single patch to
a pool of dispersers can produce a locally stable interaction, provided the handling time of hosts is not
too long. However, the pool provides a biologically realistic example of an interaction that is locally
stable but not permanent. The longer the handling time, the smaller the region of population densities
within which populations converge to the equilibrium state. In a multi-patch environment with a global
disperser pool, the dynamics of the system are not qualitatively different from the single patch case (i.e.
the equilibrium can be locally stable but the system is not permanent). In a multi-patch environment
with local disperser pools, true spatial interactions between patches can develop. In contrast to the
global pool, local pools can destabilise the stable equilibrium of the single patch case. Limit cycles
develop around this unstable equilibrium that lead to extremely complicated dynamics. In contrast to
the global pool, a system of local pools can exhibit bounded fluctuations so that populations do not
go extinct.
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Introduction

In recent years there has been an extensive interest in
the effects of dispersal on the population dynamics of
predator-prey or host-parasitoid systems (Hassell et
al., 1991a, b; Holt, 1984, 1985, 1993; Jansen, 1994,
1995a, b; Murdoch, 1994; Reeve, 1988, 1990; Taylor,
1990, 1991; Weisser & Hassell, 1996). A major

impetus for this research were the early observations
by Huffaker (1958) and Pimentel et al. (1963) that
interacting populations of predators and prey or of
hosts and parasitoids would persist longer when
individuals had to disperse between different resource
patches.

Population dynamic models that incorporate
dispersal have mainly focussed on the way in which
movement distributes individuals in space. For
example, aggregation of parasitoids in certain host
patches can result in a skewed distribution in the risk
of a host of being parasitized, which has been
shown to have a stabilising effect in a wide range
of non-spatial host-parasitoid models (Sabelis &
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Diekman, 1988; Pacala et al., 1990; Hassell et al.,
1991a, b). In metapopulation models, spatial hetero-
geneity in any of the populations’ vital parameters
(birth, death, immigration and emigration rates) can
result in asynchronous population oscillations so that
the populations can persist on a regional scale even
when local interactions are unstable (McLaughlin &
Roughgarden, 1993; Reeve, 1988, 1990). Here, the
reason for persistence is that the displacement of
individuals prevents diverging oscillations.

Apart from displacing individuals in space,
however, a further consequence of dispersal is the
absence of possibly a large number of individuals
from patches at any one time. Depending on the
spacing of resources, individuals spend different
amounts of time in transit between patches. The
longer the distances between patches, the higher the
proportion of an individual’s life-time that may be
spent searching for a new host patch. For both hosts
and parasitoids, travelling between patches decreases
the time available for breeding activities. Further-
more, travelling between patches entails the risk that
an animal might die before a new patch is reached.
Although data of insect dispersal in the field are
generally scarce, studies such as the one by Driessen
& Hemerik (1992) on dispersal of the Drosophila
parasitoid Leptopilina clavipes suggest that travel
times can cause a high proportion of individuals to be
in transit between patches at any one time (ca. 48%
in Driessen & Hemerik’s most realistic scenario). The
effects of travel time and travel mortality have mainly
been investigated in models of animal foraging
behaviour (e.g. Charnov, 1976; Houston & McNa-
mara, 1986; Weisser et al., 1994). Population models
have focussed on the way travel time changes the
distribution of animals over patches (e.g. Hassell &
May, 1974; Weisser et al., 1997) or the way travel
mortality increases the death rates of a population
(Ruxton et al., 1997).

The existence of a ‘‘pool’’ of migrants, in which
individuals spend some time before they find empty
patches, has been addressed in only a few studies of
single species (Gyllenberg & Hanski, 1992) and
predator-prey systems (Metz & Diekman, 1986;
Diekman et al., 1988; Sabelis et al., 1991; Jansen &
Sabelis, 1992; Jansen, 1994, 1995a; Rinaldi et al.,
1996). In this paper, we investigate the effects of a
pool of dispersers in a variety of multi-patch models.
Our approach differs from the previous studies in that
we concentrate on the effect of dispersal in a system
where local populations do not go extinct so that
there is no recolonisation of empty patches. Weisser
& Hassell (1996) showed that a pool of dispersers can
stabilise the simple Lotka–Volterra model. In this

paper, we extend these results further. We first
consider individuals that emigrate from patches into
a ‘‘global’’ disperser pool from which they are
distributed evenly over patches [Fig. 1(a)], implying
that dispersers from a patch can reach all patches
equally well. In this case it is assumed that mixing is
complete in the global pool so that the formation of
any spatial patterns from local interactions between
patches is prevented. We then test the robustness of
our results and study the case where dispersal is local,
i.e. individuals leaving patches disperse into a local
pool, around the patch from which they originate
[Fig. 1(b)]. For both scenarios, we first investigate the
effects of a pool of dispersers for the case of simple
Lotka–Volterra dynamics within patches. In a second
step, we analyse the case when the functional response
of parasitoids within patches is Holling type II, which
is known to destabilise the local interaction. This
allows us to investigate the strength of the stabilising
effect of a pool of dispersers.

F. 1. Illustration of patches connected by a global pool (a) and
patches connected by local pools (b).
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Dispersal in a Multi-patch Environment

We model host and parasitoid dynamics for an
environment that consists of n patches. Let Hj and Pj

denote the densities of hosts and paratoids,
respectively, that are in patch j at time t. Within each
patch the dynamics are given by simple Lotka–
Volterra equations. Dispersal of host and parasitoids
is independent of the density of animals in the patch.
Hosts leave a patch at rate o and parasitoids disperse
from patches at rate e. We assume that all travelling
hosts and parasitoids enter a single (global) pool of
dispersers from which they are re-distributed equally
among patches [Fig. 1(a)]. Let R and Q denote the
densities of hosts and parasitoids, respectively, that
are in transit between patches at time t. In the host
pool, let s denote the rate at which hosts are lost from
the system because they do not survive the journey
from one patch to another. Similarly, s denotes the
death rate for migrating parasitoids. Immigration of
individuals into patches is independent of the density
of individuals in the pool. Hosts immigrate into a
particular patch with rate h, and parasitoids with rate
i. With these assumptions, we arrive at the following
set of equations:

H� j = rHj −HjPj − oHj + hR

P� j =HjPj − dPj − ePj + iQ

R� = osn
j=1Hj −mhR− sR

(1)

Q� = esn
j=1Pj − niQ− sQ.

Here, r denotes the rate at which hosts grow in the
absence of parasitoids. The rate at which hosts are
parasitized within a patch j is proportional to the local
density Pj, i.e. we assume a linear functional response;
the attack rate is scaled to unity. The number of hosts
emerging from a parasitized host is assumed to be one
(solitary parasitoids), and the parasitoid death rate
within patches is given by d.

Without dispersal (e= o=0) and immigration
(h= i=0), the system reduces to a number of
uncoupled patches of which the dynamical properties
are well-known (Volterra, 1926). The parasitoid
equilibrium density P*= r, depends on the host
growth rate, and the host equilibrium density H*= d
is dependent upon the parasitoid death rate. This
equilibrium is neutrally stable so that after disturb-
ance, population densities do not converge back to
the equilibrium densities. (In the following, we use the
term ‘‘stable’’ for locally asymptotically stable. With

stabilising we mean the transition from instability or
neutral stability to asymptotic stability.)

If either hosts or parasitoids disperse from a single
patch and form a pool of migrants, the Lotka–
Volterra system is stabilised (Weisser & Hassell,
1996). We now analyse the stability properties of the
multi-patch system (1) where the population dynam-
ics in each patch are modelled explicitly. This system
has an equilibrium in which the parasitoids and hosts
in all patches have identical densities, P* and H*,
respectively. The equilibrium densities of the pools
are given by

Q*=
ne

ni+ s
P* and R*=

no

nh+ s
H*.

Hense the equilibrium densities of animals within
patches are:

H*= d+ e−
nei

ni+ s
= d+

es
ni+ s

(2)
P*= r− o+

onh

nh+ s
= r−

os

nh+ s

The equilibrium is positive provided

rq os

nh+ s
.

Thus, for a given number of patches and a particular
combination of host emigration, immigration and
pool death rates there is a minimum value for the
intrinsic growth rate for the hosts. A low immigration
rate h, a high mortality rate during travelling, s, or
a emigration rate, o, all result in a higher intrinsic
growth rate necessary for a positive equilibrium.
Alternatively, an increase in the number of patches in
the environment lowers the minimum value for the
host growth rate. If the number of patches is
sufficiently large, the equilibrium will be positive even
for very small values of r. In Appendix A we show
that the equilibrium is unique and globally stable in
the first orthant, i.e., after any pertubation that keeps
population densities strictly positive the population
densities will return to the equilibrium values. Thus,
in a true multi-patch environment, the absence of a
fraction of individuals from patches at any one time
can stabilise host-parasitoid systems. Provided the
conditions concerning the host growth rate are
fulfilled, very small rates of dispersal can stabilise the
interaction between host and parasitoids. In Appen-
dix A it is shown that the system remains globally
stable when either hosts and parasitoids are sessile
and do not disperse, provided that initially the
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numbers of the sessile species are positive in all
patches. It is important to note that dispersal here is
not biased with respect to where individuals migrate
to in the environment, and that dispersal is not
density-dependent. Thus, there is no aggregation of
parasitoids in patches and consequently no ‘‘aggrega-
tion of risk’’ (Chesson & Murdoch, 1986; Hassell et
al., 1991a) among host-individuals within patches.

A Multi-patch Environment Where Dispersal
is Local

In the above section, we considered the case where
individuals disperse into a global pool and were
re-distributed equally over all patches in the habitat.
This scenario implies that dispersers that leave the
pool are as likely to immigrate into a patch far away
from the one where they originated as they are to
immigrate into a patch very close to their original
patch. An alternative scenario is to assume that
dispersal is mainly local; i.e., that individuals that
emigrate from a patch first enter a local pool around
their original patch [Fig. 1(b)]. The migrants that have
dispersed into this local pool then either return to the
same patch or they migrate further into an adjacent
pool. From there, they might enter the patch close to
the new pool or continue migrating, either back to the
pool where they came from or into another adjacent
pool. In this scenario, therefore, migrants are much
more likely to return to patches close to the patch
where they originated than to patches that are further
away. In species where dispersal abilities are limited,
such a system of local pools might describe the
biological situation better than a model with a global
disperser pool (note that we still assume that dispersal
is undirected and that dispersal rates are independent
of animal densities in either patches or pools).

The multi-patch model with local disperser pools
for hosts and parasitoids has the following dynamics:

H� j = rHj −HjPj − oHj + hRj

P� j =HjPj − dPj − ePj + iQj

R� j = oHj −(h+ s)Rj +mrsn
i=1cijRi

(3)

Q� j = ePj −(i+ s)Qj +mqsn
i=1cijQi.

Here, host dispersal from patch i to patch j pools is
given by mrcijRi where mr is the standard host

migration rate and cij is the relative importance of the
migration from patch i to patch j. All cs form the
matrix C= 4cij5 which describes how the patches are
connected. For instance, a chain of patches has a C
of the following form:

−1 1 0 ............................. 0
1 −2 1 0 .................... 0
0 1 −2 1 0 ...... 0

G
G

G

G

G

F

f

G
G

G

G

G

J

j

. ... ... ... ... ... .
0 ... 0 1 −2 1 0
0 ................... 0 1 −2 1
0 ........................... 0 1 −1

(4)

Parasitoid dispersal between pools is given by mqcijQi

where mq is the standard migration rate of parasitoids
between pools. Appendix B shows that the equi-
librium of system (3) is stable for the simplest case of
two patches connected by local pools. From this it
follows that the system is stable for any number of
patches connected by local pools (Jansen & de Roos,
1998; Jansen, 1998). Thus, if patches are connected
by local pools of dispersers, these local pools also
stabilise the Lotka–Volterra model.

To summarise, if hosts or parasitoids emigrate from
patches and enter a pool of dispersers before they
return to patches, this has a stabilising effect on the
simple Lotka–Volterra model. A pool of dispersers is
stabilising both in the case of global dispersal of
individuals as well as in the case of dispersal into local
pools adjacent to the patches. This suggests that
spatial patterns of local abundance are not possible
under Lotka–Volterra dynamics [see also Murray,
(1975)].

A Destabilising Functional Response

In above sections, we showed that a system of
patches can be stabilised by coupling these patches via
a pool of migrants. We now analyse the effects of a
pool of dispersers in a more complex system. We
assume that within patches, parasitoids are limited in
the number of hosts they can parasitise so that they
show a Holling type II functional response with
respect to host density (Rosenzweig & McArthur,
1963; Hassell, 1978). This functional response is
known to destabilise host-parasitoid systems. Adding
a Type II functional response causes populations in
isolated patches to show diverging oscillations. To
simplify our considerations, we first consider the case
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of a single patch connected to a pool. The functional
response of the parasitoids is now given by:

H
1+ThH

.

Here, Th describes the handling time of the
parasitoids. If we ignore host dispersal, the systems
dynamics can be described as:

H� = rH−
HP

1+ThH

P� =
HP

1+ThH
−(d+ e)P+ iQ (5)

Q� = eP−(i+ s)Q.

The equilibrium values are given by:

Q*=
e

i+ s
P*

P*=
r

1− aTh
(6)

H*=
a

1− aTh

where

a= d+
es

i+ s
,

note that this is the prey equilibrium of system (1).
The equilibrium is positive if Th Q 1/a. Thus, the
longer the handling time of the parasitoids, the less
likely it is that the equilibrium is positive. An increase
in the parasitoid death rate within patches, d, the
parasitoid death rate while travelling, s, or the
parasitoid emigration rate from patches, e, make a
positive equilibrium less likely. On the other hand,
increasing the immigration rate into patches, i,
facilitates a positive equilibrium. Appendix C
analyses the stability of this equilibrium. The
equilibrium is locally stable if

Th Q (d+ e+ i+ s)−1

and (7)

raQ 1
Th0i+ s+

ie
i+ s

−
(1− aTh)(i+ s)

1−Th(d+ e+ i+ s)1
Thus, the longer the handling time, the smaller the
range of parameter-values for which an equilibrium is
locally stable. Holt (1985) has previously analysed the
stability properties of system (5), where, although
formally equivalent, the model was used with a
slightly different interpretation. The dynamic proper-
ties of system (5) are illustrated in Fig. 2. These figures
were obtained by using automated bifurcation
analysis (Khibnik et al., 1993). Figure 2 gives the host
equilibrium density and the limit cycles as a function

F. 2. Host equilibrium density H* and limit cycles of system
(5) as a function of handling time Th for three values of a. Thick
lines represent stable equilibria, thin lines unstable equilibria.
Parameter values. r=1, e=1, i= s=0.2, for the curve labelled
a: d=1.5 (a=2), the curve labelled b: d=0.75 (a=1.25), and the
curve labelled c: d=0.25 (a=0.75). The curves labelled a', b' and
c' represent the maximum and minimum of the host density H over
the limit cycle for the corresponding parameter values. The thicker
part of these curves represents stable limit cycles, the thinner parts
unstable limit cycles.

of Th. For Th =0 (Lotka–Volterra case), there is no
limit cycle and the system is globally stable. This is the
situation analysed by Weisser & Hassell (1996).
Figure 2 suggests that for Th q 0, the locally stable
equilibrium is surrounded by an unstable limit cycle.
The amplitude of the limit cycle decreases as the
handling time increases and the limit cycle approaches
the equilibrium point towards the Hopf bifurcation.
In effect, the existence of an unstable limit cycle
around the equilibrium means that stochasticity of
sufficient magnitude would cause populations to leave
the region in which densities converge back to the
equilibrium point. Once the densities have left the
domain of attraction of the stable equilibrium the
populations show diverging oscillations leading to the
extinction of both hosts and parasitoids.

Figure 2 shows that in a limited region of
parameter-space, the locally unstable equilibrium is
surrounded by a stable limit cycle. The limit cycle is
stable before it folds back into an unstable limit cycle.
In the region in parameter space where the unstable
equilibrium is surrounded by a stable limit cycle, the
host-parasitoid association can oscillate without
becoming extinct. However, the stable limit cycle is
always surrounded by an unstable limit cycle so that
again added stochasticity of sufficient magnitude
would cause the populations to become extinct.
Figure 2 also shows an example where there is only
an unstable limit cycle around the equilibrium. From
our simulations it appears that the regions of
parameter space for which we find stable limit cycles
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are rather small so that the dynamic behaviour of the
model is mostly dictated by the stable equilibrium.

Figure 2 illustrates the difference between local
stability and permanence (uniform persistence) of
interactions between species. Permanence implies that
if all species are present initially, even if only at low
densities, then after some time a sizeable amount of
each will be present (Hofbauer & Sigmund, 1988).
For our system, the pool can cause local stability of
the equilibrium point, but the interactions between
hosts and parasitoids are not permanent, as
perturbations might bring the population densities
into a region where divergent oscillations will cause
the extinction of the populations.

In the next section, we extend this single-patch
model to a multi-patch model, both for the case of
dispersers emigrating into a global disperser pool and
for the case of local dispersal. We analyse if this
increase in spatial complexity extends the regions of
parameter space where the populations can coexist.

A Multi-patch Model with a Destabilising Functional
Response

Spatial interactions can bound fluctuations in a
coupled Lotka–Volterra model, even in the absence of
density-dependent processes (Jansen, 1995b). Poten-
tially, a coupling of two or more patches with a type
II functional response could lead to solutions in which
the interactions between the patches keep the densities
from going to infinity. We first consider the case of the
global disperser pool. A system of two identical
patches coupled by a single pool of dispersing
parasitoids, Q, is given by (j=1,2),

H� j = rHj −
HjPj

1+ThHj

P� j =
HjPj

1+ThHj
−(d+ e)Pj + iQ (8)

Q� = e
P1 +P2

2
− (i+ s)Q.

In this notation, Q is the average number of dispersers
per patch in the pool so that the total number of
dispersers is 2Q. We chose this form of notation for
the pool because it facilitates a comparison with the
one-patch model analysed above. One equilibrium of
the system is given by H*1 =H*2 =H*,
P*1 =P*2 =P*, Q=Q*; i.e., the densities of hosts
and parasitoids in both patches are identical. Local
stability analysis (Appendix D) of the equilibrium
shows that the equilibrium is stable under conditions
(7) that ensured stability for the single patch case.
However, this does not exclude the existence of other
stable solutions, such as stable limit cycles or other

attractors. A possible way in which these could come
into existence would be through a symmetry-breaking
bifurcation from limit cycles or from equilibria in
which all patches have equal densities. Figure 3 shows
the results of automated bifurcation analysis (Khib-
nik et al., 1993) of system (8). This shows that the
dynamics of the model are much more complicated
than a local stability analysis of the equilibrium would
suggest. Although we found symmetry-breaking
bifurcations that potentially could lead to persistence
of interactions, we did not find a persisting interaction
in any of our simulations. Thus, our host-parasitoid
association does not become more persistent as we
increase the level of spatial complexity.

Finally, we analyse the multi-patch model with a
destabilising response when dispersal is local [Fig.
1(b)]. As above, we simplify the considerations by
assuming that the hosts are sessile and only the
parasitoids disperse. Under these assumptions, the
systems dynamics are given by

H� j = rHj −
HjPj

1+ThHj

P� j =
HjPj

1+ThHj
−(d+ e)Pj + iQj (9)

Q� j = ePj −(i+ s)Qj +mqsn
i=1cijQi.

In Appendix E the stability properties of the
equilibrium a two-patch version of system (9) are
analysed. The results can be easily generalised to any
multi-patch model, using a recently developed

F. 3. A partial bifurcation diagram in the predator handling
time Th of the multi-patch system with a global pool of dispersers
(8). The curves labelled a and a' are the same as in Fig. 2, the curves
labelled with ei represent equilibria, the curves labelled li limit
cycles. Notice that although the diagram is much more complex,
no stable solutions exist other than the ones in Fig. 2. Parameter
values as in Fig. 2, curve a.
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F. 4. A partial bifurcation diagram in the predator handling
time Th of the multi-patch system with a local pool of dispersers
(9). The curves a and a' as in Fig. 2, the curve labelled e represents
an equilibrium, all unlabelled curves limit cycles. Note that the limit
cycle a' that was partly stable in Fig. 2 is now unstable but that
other stable solutions exist.

bifurcation analysis. This diagram is even more
complicated than the previous one. Interestingly,
there are regions of parameter-space where stable
spatially inhomogeneous solutions exist. In these
regions of parameter-space, spatial interactions
prevent the population densities of hosts and
parasitoids from going to infinity (and hence
extinction). Figure 5 illustrates such a situation where
despite local instability the density fluctuations of the
populations are bounded. Thus, in the multi-patch
case with local pools coexistence of hosts and
parasitoids is possible, even for orbits leaving the
domain of attraction of an equilibrium. This was not
the case in the single patch case [system (5)] where the
existence of an unstable limit cycle around the locally
stable equilibrium meant diverging oscillations and
hence extinction when an orbit left the domain of
attraction of the equilibrium.

Discussion

Models of spatial interactions mainly focus on the
outcome of the dispersal process; i.e. the redistribu-
tion of individuals in space. Dispersal, however, can
also have the effect of introducing time-lags in
recruitment. The longer individuals have to travel
between patches, the longer the time before they

method (Jansen & de Roos, 1998; Jansen, in
preparation). In contrast to the situations analysed so
far, it is now possible for a locally stable equilibrium
to become unstable in the transition from the single
patch case to the multi-patch case. The reverse,
however, is not true: the unstable equilibrium of the
single patch case never becomes stable in the
multi-patch case. Figure 4 shows results from our

F. 5. A run showing bounded fluctuations in a two patch model with local pools (9). In this region of parameter-values the equilibrium
is unstable (arrow in Fig. 4). Parameter values as in Fig. 2 curve a, Th =0.2245, mq =0.1.
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reproduce in a new patch. For the individuals, the
journey from one patch to another also bears costs in
terms of mortality risks and time lost for reproduc-
tion. While these effects of travelling between patches
have been extensively explored in models of animal
foraging behaviour (Ayal & Green, 1993; Houston &
McNamara, 1986; Stephesn & Krebs, 1986; Weisser
et al., 1994) and the evolution of dispersal (e.g.
Hamilton & May, 1977; Hastings, 1983; Holt, 1985),
they have been largely neglected in the analysis of
metapopulation systems. Ruxton et al. (1997), using
a discrete-time framework, show that adding travel
mortality to a simple single-species coupled map
lattice changes the nature of unstable dynamics.
Weisser & Hassell (1996) found that adding a pool of
dispersing individuals can stabilise the Lotka–
Volterra model. The main aim of the current analysis
has been to explore the effects of a pool of dispersers
on population dynamics in a more complex setting.
Our first result is that a pool induces global stability
when a number of patches are coupled to a single
(global) pool of dispersers. The dynamics in each
patch are described by identical Lotka–Volterra
equations, dispersal is random, and no heterogeneity
is added to the model. At first sight, this result might
seem to contradict previous findings that a coupling
of patches without spatial heterogeneity cannot
stabilise an unstable equilibrium (e.g. McLaughlin &
Roughgarden, 1993). However, the combination of a
number of patches coupled to a pool of dispersers
results, in effect, in a source-sink structure where the
pool acts as a sink for the individuals. Holt (1984,
1985, 1993) has analysed the dynamics of predator-
prey systems in the context of source-sink systems.
Coupling an unstable source to a sink can stabilise a
predator-prey system (Holt, 1984, 1985). Holt (1984,
1993) discusses the stabilising effect of a sink in terms
of the increased mortality rate experienced by
individuals and the time-lagged recruitment of
individuals to the source. A pool of dispersers damps
the fluctuations in the patches and it introduces
heterogeneity in the birth and death rates of the
populations. Nevertheless, it has to be emphasized
that there is no spatial heterogeneity among any of
the population parameters among the patches.

When the functional response of the parasitoids is
Holling type II within patches, local dynamics are
unstable. The coupling of a such a patch to a pool of
dispersing parasitoids can lead to a stable equilibrium.
Local stability can be induced by the pool if the
handling time of parasitoids is not too long. However,
the dynamical behaviour of the system becomes more
complex than suggested by linearisation around the
equilibrium. In fact, the model provides a good

example of the difference between local stability and
permanence. The combined effect of the stabilising
effects of a pool and the destabilising effects of the
functional response are population dynamics which
converge to equilibrium if the initial conditions are
chosen close to the equilibrium, and which result in
increasing fluctuations if the initial conditions are
chosen further away from the equilibrium. Thus, a
pool of dispersers can stabilise the interaction between
hosts and parasitoids, but does not make it
permanent. The domain of attraction to the
equilibrium goes to infinity in the case of a zero
handling time [the situation analysed by Weisser &
Hassell (1996)], and decreases with increasing
handling time. Thus, for non-zero handling times,
stochasticity of large enough amplitude would always
be expected to bring population dynamics into the
regions of population densities where violent oscil-
lations causing the extinction of the populations set in.
There are regions in parameter-space where stable
limit cycles surround the equilibrium. However, if
population densities do not fall within their rather
small domains of attractions, increasing fluctuations
are again the result. These results do not qualitatively
change when further patches are added to the model.
Although the dynamics become extremely compli-
cated when a system of patches within which the
functional response of the parasitoids is Holling type
II is coupled to a single pool, no bounded fluctuations
were found except the ones where initial population
densities were within the domain of attraction of the
stable equilibrium or limit cycle. Thus, as far as the
persistence of the host-parasitoid interaction is
concerned, the metapopulation with a global pool is
qualitatively not different from the non-spatial case.

In our second scenario, migrating individuals first
disperse into local pools around the patches from
which they originate [Fig. 1(b)]. These units, each
consisting of a patch and its local pool, are coupled
by individuals migrating between adjacent pools. In
this scenario, there is an explicit spatial dimension as
dispersing individuals are more likely to immigrate
into nearby patches than into patches further away.
If, within patches, there are Lotka–Volterra dynam-
ics, the stability properties of the multi-patch case
(where a number of units are coupled by dispersal) are
identical to the stability properties of a single unit.
Thus, in the Lotka–Volterra case, no true spatial
interactions develop between the patches, despite the
spatially explicit set-up. If, in contrast, the functional
response of the parasitoids within patches is Holling
type II, the stability properties of the multi-patch
system differ from the properties of the single-patch
system. In the region of parameter space where the
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one-patch-one-pool combination has a locally stable
equilibrium, the equilibrium of the spatial model can
be either stable or unstable. Thus, with local pools,
the transition from a single patch to a multi-patch
situation actually decreases the range of parameter-
values where the equilibrium is locally stable. Allen
(1976) describes how in a system of coupled
Lotka–Volterra patches the equilibrium can be
destabilised when there are large differences between
the dispersal rates of predators and prey. Rohani et
al. (1996) discuss this effect for discrete-time models
of the Nicholson–Bailey type. However, as noted
already by Allen (1975), it is possible that the
instability that arises due to spatial interactions is
only ‘‘local’’ in the sense of the local stability analysis
and that the formerly stable equilibrium is replaced by
a stable limit cycle. Our bifurcation analysis suggests
that this is indeed the case. In the range of parameter
values that we investigated the stable equilibrium of
the single-patch case was replaced by a stable limit
cycle in the spatial case.

The population dynamics of the multi-patch system
with local dispersal become more complicated in the
region of parameter space where the one-patch model
has an unstable equilibrium. Our simulations indicate
that there are regions of parameter-space where the
densities can fluctuate without going extinct. In these
regions, hosts and parasitoids can coexist through the
spatial differences in the system (Fig. 6). Our
simulations were performed for only two patches. If
further patches are added to the system, we expect the
dynamics to become even more complicated and to
give rise to spatial patterns such as the ones described
for discrete-time models (Hassell et al. 1991b). Jansen
(1994, 1995b) describes in more detail the complex
dynamics that arise out of the interactions between
unstable dynamics within the patches and migration
between patches for a predator-prey system without
pools. Note that the bounded fluctuations that arise
in a spatial model should not be confused with
permanence in the mathematical sense. Permanence
requires that if both populations are present at the
start then after some time some sizeable amount of
each will be present, and this should hold for all
conditions in which the initial densities are positive
(Hofbauer & Sigmund, 1988). For ecological systems,
permanence is therefore a much more useful concept
than local stability. Unfortunately, when a system is
not permanent, as is the case in our models with a
type II functional response, one would like to have
information about the size of the domains of
attraction, which is difficult to get.

To summarise, our spatially explicit models show a
range of behaviours. In making the transition from

the metapopulation model with a global pool of
dispersers to a truly spatial model with local disperser
pools we see a general increase in the complexity of
the dynamics. The most important new property of
the spatially explicit model is the emergence of
spatially inhomogeneous solutions through sym-
metry-breaking bifurcations. Although the domains
of attractions of these solutions appear to be tiny in
the two-patch case investigated, they open the door
for the coexistence of hosts and parasitoids.

Pools of some kind will appear in almost all
biological systems. Our paper suggests that such pools
and the associated cost of travelling have a stabilising
influence on population dynamics. Furthermore, the
redistribution of individuals over space can introduce
interesting spatial dynamics. Our analysis emphasises
that the details of the dispersal process determine the
exact nature of host-parasitoid dynamics.
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APPENDIX A

In this section we show that system (1) has a unique
equilibrium which is globally stable. To do this we
define the function

vj(t) =Hj(t)+Pj(t)−H*lnHj −P*lnPj(t). (A.1)

The function V(t) defined as:

V(t)=
h

nh+ s
R(t)−

nhoH*
(nh+ s)2 lnR(t)+

i
ni+ s

Q(t)

−
neiP*

(ni+ s)2lnQ(t)+ s
n

j=1

vj(t)
n

(A.2)

is positive definite when the equilibrium is translated
to the origin. We will show that V(t) is a Lyapunov
function for (1). This can be shown by writing out the
derivative of V with respect to time:

V� =
h

nh+ s
R� −

nhoH*
(nh+ s)2

R�
R

+
i

ni+ s
Q� −

neiP*
(ni+ s)2

Q�
Q

+ sn
j=1

vt j
n

(A.3)

=−
hH*

n
sn

j=1

0R−
no

nh+ s
Hj1

2

RHj

−
iP*
n

sn
j=1

0Q−
ne

ni+ s
Pj1

2

QPj
E 0

Thus, all v-limits of system (1) must lie contained in
the set 4Hj, Pj, R, Q $ R2(n+1)=V� =05 which is identical
to 4Hj, Pj, R, Q $ R2(n+1)=(nh+ s)R= noHj5+ 4Hj, Pj,
R, Q $ R2(n+1)=(ni+ s)Q= nePj5. Clearly, within this
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intersection of sets all Hj are identical and all Pj are
identical and therefore

R� = osn
j=1 Hj −(nh+ s) R= onHj −(nh+ s) R=0

and

Q� = esn
j=1 Pj −(ni+ s)Q= enPj −(ni+ s)Q=0.

Hence all variables are constant within the intersec-
tion. The only invariant subset is the interior
equilibrium. In any other equilibrium the derivative
of the Lyapunov function must be zero. Since the
derivative of the Lyaponuv function is zero in a single
equilibrium this equilibrium must therefore be
unique.

When one of the species, say the predators, does
not disperse, the v-limit set lies contained in 4Hj, Pj,
R, Q $ R2(n+1)=(nh+ s)R= noHj5. In this set all Hj are
equal and R is constant. The only invariant subset in
the interior is the interior equilibrium. Note that other
equilibria exist, for which the predator density is zero,
but that none of these equilibria is stable.

APPENDIX B

In this section we analyse the stability of the equi-
librium of system (3) where each patch is surrounded
by their local pool of dispersers. For the purpose of
the present paper, we only analyse the case of two
patches connected by dispersal via their local pools.
An extensive description of how to derive the stability
criteria for an arbitrary number of patches with an
arbitrary connectivity matrix C will be published
elsewhere (Jansen, 1998). In the case of two patches,

C=0−1 1
1 −11 (B.1)

Because the population dynamics in both patches are
governed by identical equations with identical
parameters there exists an equilibrium in which the
densities in both patches are the same, i.e.
H*1 =H*2 =H*, P*1 =P*2 =P*, R*1 =R*2 =R* and
Q*1 =Q*2 =Q*. For the analysis of stability, we
transform the variables of the system into four
variables that describe the main densities:
H= 1

2(H1 +H2), P= 1
2(P1 +P2), R= 1

2(R1 +R2),
Q= 1

2(Q1 +Q2), and four variables describing the
differences between the patches: DH = 1

2(H1 −H2),
DP = 1

2(P1 −P2), DR = 1
2(R1 −R2), DQ = 1

2(Q1 −Q2).
For analysis of stability we analyse the equations in
the neighbourhood of DH =DP =DR =DQ =0. In the
linearized system the dynamics of H, P, R, and Q are

given by system (3) (with mq =mr =0). The dynamics
of the other four variables are given by

D� H =(r−P− o)DH −HDP + hDR

D� P =PDH +(H− d− e)DP + iDQ (B.2)
D� R = oDH −(h+ s+2mr)DR

D� Q = eDP −(i+ s+2mq)DQ

Note that these equations can be written as
D� = (J(S)+ lM)D, where D=(DH, DP, DR, DQ)T,
S=(H, P, R, Q)T, and J is the Jacobian of system
(3) with mq =mr =0, evaluated at S. The matrix M
is the 4×4 matrix where all entries are zero except
for m33 =mr and m44 =mq. The parameter l is a
non-zero eigenvalue of C. In our case l=−2.

To assess the local stability of the equilibrium of
system (3) it now suffices to analyse system (3) with
mq =mr =0 (this system is always stable) and system
(B.2) at S*= (H*, P*, R*, Q*)T. The Jacobian of the
system (B.2) is given by

G
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−oh
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−ie
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which can be rewritten as

−a11

a21

a31

0

−a12

−a22

0
a42

a13

0
−a34 −2mr

0

0
a24

0
− a44 −2mq

(B.4)G
G

G

F

f
G
G

G

J

j

with a11 = a13a31/a33 and a22 = a24a42/a44. The analysis of
the fourth-order characteristic equation of this matrix
results in rather long algebraic equations. Implement-
ing this in a program for formulae manipulation is
straightforward and reveals that all eigenvalues of the
matrix are negative. Thus, the equilibrium of the
two-patch system is always locally asymptotically
stable. For a multi-patch system where C is different,
local stability of the equilibrium can be assessed in
essentially the same way. The only difference is that
l can now take values different from −2. In general,
once the stability of the two-patch system is known,
the analysis of the stability of the equilibrium (or any
other attractor) is reduced to finding the eigenvalues
of C and performing a scaling operation (Jansen,
1998).
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APPENDIX C

In this section, we give the stability criteria for
system (5). The coefficients of the characteristic

equation s3
i=0ail

i are:

a0 = ar(1− aTh)(i+ s)

a1 = ar(1−Th(i+ s+ d+ e))
(C.1)

a2 = (i+ s+ d+ e)− a− raTh

a3 =1

The Routh–Hurwitz conditions for local asymptotic
stability are a0 q 0, a2 q 0, and a1a2 q a0. This first
condition is automatically fulfilled if the equilibrium
is positive. The second condition requires

rQ 1
aTh

(i+ s+
ie

i+ s
). (C.2)

The third conditions requires rq f(Th) if Th q
(i+ s+ d+ e)−1 and rQ f(Th) if Th Q
(i+ s+ d+ e)−1 where

f(Th)=

1
aTh0i+ s+

ie
i+ s

−
(1− aTh)(i+ s)

1−Th(d+ e+ i+ s)1 (C.3)

When Th q (i+ s+ d+ e)−1 condition (C.2) and
rq f(Th) cannot be fulfilled simultaneously so that
Th Q (i+ s+ d+ e)−1 and rQ f(Th) are necessary
and sufficient conditions for the positive equilibrium
to be locally asymptotically stable. These are the
conditions given in (7). Note that it is only necessary
to know five of the six parameters.

APPENDIX D

Here, we analyse the stability criteria for system (8).
We transform to the new variables H, P, DH and DP

as defined in Appendix B and linearise around
DH =DP =0 to arrive at the decoupled systems (5)
and:

D� = (r−
P

(1+ThH)2)DH −
H

(1+ThH)2DP (D.1)

D� P =
P

(1+ThH)2DH +(
H

(1+ThH)2 − d− e)DP

Note that this can be written as D� =(J(S)−E)D,
where S=(H, P)T, and the matrix E is the 2×2
matrix where all entries are zero except for e22 = e.
One equilibrium of the system is given by S*=(H*,
P*)T, Q=Q*, DH =DP =0, i.e. the densities of hosts
and parasitoids in both patches are identical. From
the equations it is clear that the subspace DH =DP =0
is invariant. The Jacobian of system (D.1) at S* is:

0 arTh

r− arTh

− a

a− d− e1 (D.2)

There is a Hopf bifurcation at

r=
1

Tha

ie
i+ s

.

The determinant is zero (one eigenvalue equal to zero)
at Th =(d+ e)−1. Comparison with conditions (7)
shows that none of these conditions can be fulfilled
while the equilibrium of (5) is asymptotically stable.
Figure 3 shows an example of a numerical bifurcation
analysis. Indeed, none of the new bifurcations occur
on the stable equilibrium.

APPENDIX E

In this final appendix we analyse the case when
dispersal is into local pools and the parasitoids have
a Holling type II functional response. For simplicity,
we assume that hosts are sessile and only parasitoids
are dispersing between patches.

We proceed as in Appendix B and analyse the
two-patch case first. After transforming the system
and linearising as before, we arrive at system (9) and
the remaining equations are given as D� =DD where
D=(DH, DP, DQ)T. The matrix D is given by

r−
P

(1+ThH)2

P
(1+ThH)2

0

−H
1+ThH

H
1+ThH

− d− e

e

0

i

−(i+ s+2mq )

(E.1)

At equilibrium, the Jacobian is given by

2 arTh

r− arTh

0

−a

a− d− e
e

0
i

−(i+ s+2mq ) 3 (E.2)

F
G
G
G
G
f

J
G
G
G
G
j
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The coefficients of the characteristic equation s3
i=0ail

i

are

a0 = ar(2mqTh(a− d− e)+ (1− aTh)(i+ s+2mq)

a1 =−(a− d− e)2mq

− ar(Th(i+ s+2mq + d+ e)−1)

a2 = i+ s+2mq + d+ e− a(1+ rTh)

a3 =1

The equilibrium is unstable if a1a2 Q a0 (the other
Routh–Hurwitz criteria are always fulfilled) which is
when:

A(2mq)2 +B(2mq)+Cq 0 (E.3)

where

A= a− d− e+ arTh

B=A(i+ s−A)+ arTh(i+ s)

C= ar[(Th(i+ s+ d+ e)−1)(i+ s−A)

+ (1− aTh)(i+ s)].

Note that the non-spatial system is stable if CQ 0.
Spatial interaction can only destabilise the equi-

librium if A and B differ in sign, which happens, for
instance, for the parameter combination used in Fig.
5. Thus, in the case of patches connected by local
pools, the equilibrium of the spatial system is locally
asymptotically stable for a smaller range of parameter
values than the non-spatial system. In the range of
parameter-values where the equilibrium of the single
patch is locally asymptotically stable, the Hopf-bifur-
cations give rise to asymptotically stable limit cycles.
If simulations are started outside the domain of
attraction of either the asymptotically stable equi-
librium or the limit cycle, the population densities of
hosts and parasitoids quickly go to infinity. Thus, in
the range of parameter-values where the equilibrium
of the single patch with its pool was locally
asymptotically stable, two identical patches with local
pools are not more permanent than a single patch
with its pool. In contrast, in the region of
parameter-space where the single-patch case was
unstable, the dynamics of the two patches connected
via local pools are even more complicated than for the
case of two-patches connected by a global pool
(Appendix D). In our simulations we found bounded
fluctuations in a small region of parameter space.
Figure 5 gives an example of such a simulation.


