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c Mechanistically derived functional response describing prey switching by a predator.
c Functional response suitable to describe predators feeding on many prey species.
c The functional response avoids inconsistencies pertinent to other approaches currently in use.
c Predictions from the functional response are consistent with experimental data
a r t i c l e i n f o

Article history:

Received 23 May 2012

Received in revised form

21 December 2012

Accepted 8 February 2013
Available online 17 February 2013

Keywords:

Prey similarity

Functional response

Frequency-dependent selection

Adaptive foraging

Search image
93/$ - see front matter & 2013 Elsevier Ltd. A

x.doi.org/10.1016/j.jtbi.2013.02.003

esponding author. Tel.: þ44 1784414189.

ail address: edwinvanl@gmail.com (E. van Lee
a b s t r a c t

We develop a theory for the food intake of a predator that can switch between multiple prey species.

The theory addresses empirical observations of prey switching and is based on the behavioural

assumption that a predator tends to continue feeding on prey that are similar to the prey it has

consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From

a predator’s dietary history and the assumed similarity relationship among prey species, we derive a

general closed-form multi-species functional response for describing predators switching between

multiple prey species. Our theory includes the Holling type II functional response as a special case and

makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis

of the derived functional response enables us to highlight the following five main findings. (1) Prey

switching leads to an approximate power-law relationship between ratios of prey abundance and prey

intake, consistent with experimental data. (2) In agreement with empirical observations, the theory

predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations

from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict

the diet composition of a predator feeding on multiple prey species from diet observations for predators

feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less

pronounced prey switching than predators foraging on fewer prey species, thus providing a natural

explanation for the known difficulties of observing prey switching in the field.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

A predator (or a heterotrophic species in general) is said to be
switching between prey (or resource) species if the relative rate
with which it attacks a prey species is disproportionally large
when that prey species is relatively abundant and disproportion-
ally small when that prey is relatively rare (Murdoch, 1969).
While we use the term ‘‘prey species’’ throughout this study for
ll rights reserved.

uwen).
the sake of brevity, it must be borne in mind that such prey
switching can just as well involve several types of prey within a
species or functional groups comprising several prey species. Prey
switching has been documented for a range of predator species
(Greenwood and Elton, 1979; Gendron, 1987; Allen, 1988). It is a
form of adaptive foraging and leads to frequency-dependent
selection. It has been associated with community permanence
(Roughgarden and Feldman, 1975; May, 1977; van Leeuwen et al.,
2007) and with polymorphism in prey (Allen, 1988; Bond and
Kamil, 2006). As such, it is of general importance for the dynamics
of food webs. Prey switching has also found wide use as a
mechanism to stabilise population dynamics in food-web models

www.elsevier.com/locate/yjtbi
www.elsevier.com/locate/yjtbi
http://dx.doi.org/10.1016/j.jtbi.2013.02.003
http://dx.doi.org/10.1016/j.jtbi.2013.02.003
http://dx.doi.org/10.1016/j.jtbi.2013.02.003
mailto:edwinvanl@gmail.com
http://dx.doi.org/10.1016/j.jtbi.2013.02.003


E. van Leeuwen et al. / Journal of Theoretical Biology 328 (2013) 89–9890
(Drossel et al., 2001; Kondoh, 2003; Brose et al., 2006; Uchida
et al., 2007; Rossberg et al., 2008; see also Valdovinos, 2010;
Loeuille, 2010 for a recent review). If predators switch between
multiple prey, larger and more complex communities can persist
(Drossel et al., 2001; Kondoh, 2003) because individuals of rare
species are then less at risk of being predated upon than
individuals of abundant species. Against this background, it is of
critical importance that multi-species population-dynamical
models account for prey switching, in order to avoid over- or
underestimating the stability of real ecological communities.

Incorporating good descriptions of prey switching is often
difficult, however, as food-web models are intrinsically mathe-
matically complex and computationally costly, even without the
inclusion of mechanistically detailed descriptions of prey switch-
ing, which would substantially aggravate these burdens.
The functional responses used in food-web models to describe
prey switching are therefore often simplified in a heuristic
manner. Examples of heuristic functional responses used in
food-web models are Greenwood and Elton’s (1979) power-law
model, type III functional responses (Murdoch, 1969; van Baalen
et al., 2001; Williams, 2008), or adaptations of ‘‘effort’’-based
models (Drossel, 2001; Drossel et al., 2001; Kondoh, 2003; Uchida
et al., 2007). However, heuristic attempts to generalise classical
single-prey functional responses to many prey species can easily
lead to inconsistencies. For example, if a single prey population
were arbitrarily split into two equivalent groups, some heuristi-
cally derived models would predict the predator to switch
between these two arbitrary subpopulations of the same species.
Avoidance of this problem is known as the ‘‘common sense’’
condition on multi-species functional responses (Arditi and
Michalski, 1995; Berryman et al., 1995). In an attempt to resolve
this inconsistency, similar prey species are sometimes grouped
into ‘‘prey trophic species’’ and the whole group is treated as a
single prey species with respect to switching (Matsuda and
Namba, 1991; Rossberg et al., 2008). While this may offer a
practical ad hoc solution, such groupings of prey species are not
typically derived from underlying principles.

Power-law models of prey switching emerge as phenomen-
ological models for empirical observations. For a predator switch-
ing between two prey species, double-logarithmic graphs relating
the ratio of consumed prey to the ratio of available prey generally
exhibit near-linear relationships, implying power-laws on linear
axes (Greenwood and Elton, 1979; Elliott, 2004, 2006).
The exponent of such a power law is used as a measure of the
strength of prey switching; a value of 1 implies an absence of prey
switching, since the ratio of consumed prey is then proportional
to the ratio of available prey. When the exponent is larger than 1,
the predator exhibits prey switching. When the exponent is
smaller than 1, the predator is said to exhibit negative prey
switching because it consumes disproportionately less of the
more available prey (Abrams et al., 1993; Weale et al., 2000;
Rindorf et al., 2006).

These findings are difficult to translate directly into a multi-
species setting, however, as an inconsistency arises when
attempting to combine power-law models. Specifically, if one
chooses three prey species A, B and C such that the exponents for
switching between A/B and between B/C are identical, then it
follows that the predator will always switch between A/C with
exactly the same exponent. This cannot be true in general because
one must expect that switching becomes the stronger the more
two prey species differ in terms of traits that are relevant for the
predator’s prey choice. If such traits for B are intermediate
between those of A and C, then switching between A/C must be
expected to be stronger than that between A/B and B/C. For plain
power-law switching, this is never possible. Uchida et al. (2007)
showed that effort-based models can produce power-law
switching by introducing a non-linear trade-off between the
foraging efforts put into different prey species. Yet, even with
this model it appears difficult to describe foragers that switch
between different pairs of prey with different switching
exponents.

Here we address and overcome the two aforementioned
problems: analytic intractability of mechanistically detailed mod-
els of prey switching on the one hand, and mutual inconsistency
of simplified models of prey switching based on power laws on
the other. Building on earlier work by Oaten and Murdoch (1975)
and van Leeuwen et al. (2007), we develop a generalized theory of
predators that switch between multiple prey species. An impor-
tant feature of this functional response is that it tracks the order
in which prey are encountered and attacked and, therefore, allows
the incorporation of behaviour based on dietary history. It is
based on a Holling type II functional response and also includes
attack rates and handling time, which allows one to include prey
preference. Based on this theory, we derive a closed-form multi-
species functional response that incorporates prey switching and
is suitable for incorporation in complex food-web models. By
deriving this functional response from basic assumptions on
individual foraging behaviour, we ensure that conceptual incon-
sistencies, such as those described above, do not arise.
The empirically important case of predators switching between
two prey species is analysed in detail. In particular, we determine
when prey switching is well approximated by a power law, and
when such an approximation fails. For completeness, we also
consider predators switching among multiple prey species.
Finally, a worked example is presented that shows how our
model can be calibrated to experimental data and used to make
testable new predictions, by forecasting outcomes of experiments
in which predators can choose among more than two prey
species.
2. Methods

After introducing our modelling framework in Section 2.1,
Section 2.2 highlights our key simplifying assumption, which is
that predators do not prefer cycling through a list of prey species
in forward order over cycling in reverse order.

2.1. Model description

To construct a functional response that incorporates switching
between multiple prey species, we follow Oaten and Murdoch
(1975) and van Leeuwen et al. (2007) in modelling a predator’s
diet such that it incorporates the order in which it encounters and
successfully attacks prey. As a simplifying assumption required
for analytical tractability, only the last consumed prey is taken
into account. Foraging individuals can then be modelled by a
Markov process (a fundamental class of stochastic processes in
which transitions to future states only depend on the current
state, and hence are independent of previous states). Markov
processes have often been used to derive functional responses;
the most famous such derivation may be that of the Holling type
II functional response, or ‘‘disk equation’’ (Holling, 1959; Metz
and Diekmann, 1986). Through the feedback of the population
dynamics the functional response tends to converge to a Holling
type II functional response. Yet, it was shown in van Leeuwen
et al. (2007) that this same functional response can also exhibit
Holling type III like behaviour, if one prey type is kept constant, as
this functional response allows for a form of learning (van
Leeuwen and Jansen, 2010).

In our theory, each predator is assumed to be in one of several
states that reflect whether it is searching or handling prey of a



Fig. 1. Diagram depicting the behavioural model underlying the functional

response (Eq. (1)). Each node represents different states of the predator and the

arrows indicate rates of transition between states. A searching predator (P0i) that

previously consumed species i will attack prey j at a rate dependent on its attack

rate aji and the density of prey j (Nj). Similarly, a predator handling prey will

become a searching predator at a rate (1/Tij) depending on the prey i it is currently

handling and the prey j last consumed. To keep the diagram readable we grouped

all predators currently handling the same prey together, independent of the

previous prey (Pix). In the important special case that handling times depend only

on the current prey, the diagram is exact.
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certain species (Fig. 1). A predator’s state depends on the previous
prey that it has handled. When a searching predator successfully
attacks a prey, it enters a new state in which it is handling the
captured prey. The rate at which a predator successfully attacks
an individual of prey species i is proportional to this prey species’
density Ni and to the predator’s attack rate aij on individuals of
prey species i, given that it has last consumed an individual of
prey species j. Thus, the transition rate from a searching state to a
state handling prey species i is aijNi. Prey switching results if
predators exhibit some inertia in their choice of prey species, so
that in each column of the matrix (aij) the diagonal elements aii

exceed the other elements. To complete the definition of our
Markov model, we assume that a predator currently handling
prey species i becomes a searching predator at a rate defined by
its handling time Tij, which may (but does not have to) depend on
the prey species i it is currently handling and on the prey species j

it has handled before.
Our Markov model implies that the durations predators spend

continuously in any given state are exponentially distributed,
with a mean duration equal to the inverse of the total transition
rate for leaving that state. As this contrasts with the usual notion
of a handling time, we highlight that this assumption of expo-
nentially distributed durations is not crucial, as long as the mean
duration spent in a state equals that described by the Markov
model (Acevedo et al., 1996). The resultant class of stochastic
processes is known in the mathematical literature as semi-
Markovian (Koroliuk and Limnios, 2005).

To derive the functional response of a predator population
based on this Markov process, we assume that typical predators
consume a large number of prey during their life (which is,
parasites excluded, generally the case). Note that this assumption
is also made when deriving the Holling type II function response
(Metz and Diekmann, 1986). On population-dynamical time
scales, the Markov process will then be in what is known as a
stochastic quasi-equilibrium. Once we know this equilibrium
state for given states of the prey populations, we can derive the
aggregated intakes of a predator and hence its functional
response with respect to all these prey populations. Oaten and
Murdoch (1975) have proposed a model of multi-prey foraging
based on similar ideas, but were unable to derive an explicit
expression for the resulting functional response.

2.2. Inversion indifference

It appears that the problem of determining the equilibrium
state for multiple prey populations is too complex in its full
generality to allow the derivation of an easily evaluated, explicit
analytic solution. This complexity can be overcome, however, by
assuming that predators will consume three prey species i, j, k

with the same probability (or rate) in the order i, j, k, i as they
would consume them in the inverse order i, k, j, i, i.e. the predator
is indifferent to inversion of the prey order. That is, predators
have no preference for cycling through any given list of prey
species in forward order as opposed to going through the same
list in reverse order. The benefits of making this rather innocuous
assumption are remarkable, as the aforementioned Markov model
can now be solved analytically; this, in turn, allows the long-
sought derivation of a closed-from multi-species functional
response. Note that the order of attack is distinct from the order
of preference of a predator, i.e. a predator can prefer prey i over
prey j and k, while still being indifferent to the order it encounters
the prey. As such this assumption does not affect the possibility to
account for prey preference in the functional response. In this way
our model extends optimal foraging theory, which is largely based
on the order of preference, but which does not normally take the
temporal order of prey intake explicitly into account (van
Leeuwen and Jansen, 2010). See Section 4.4 for further discussion.

As we show in Appendix A, indifference of predators to
inverting prey order is mathematically equivalent to the condi-
tion that all attack rates can be written in the form aij¼cisij, where
sij¼sji Z0 for all i and j. We call the parameter ci the predator’s
base attack rate on individuals of prey species i and the dimen-
sionless parameter sij¼sji the similarity between prey i and j with
regard to prey switching. While these terms convey helpful
intuition, it is of crucial importance for appreciating the general-
ity of our theory that they are not misunderstood. Since the
decomposition aij¼cisij immediately follows from the previously,
described inversion indifference, there is no need for the pre-
dators themselves, or for their human observers, to have any
explicit understanding of the regard in which the prey species are
similar. We just formally call the elements of the matrix (sij)
similarities, since they are positive, symmetric, and a lower
similarity sij between prey species implies proportionately rarer
switches of a predator from consuming prey species i to consum-
ing prey species j. In specific applications, these abstract elements
may turn out to be correlated with measurable similarities with
regard to morphologies, defences, locations, habitat choices,
behaviours, or complicated mixtures thereof, but no interpreta-
tion of this kind is required for the successful application of our
theory. All we need is inversion indifference.

The interpretations of the parameters ci as base attack rates
and of the parameters sij as switching similarities are most
straightforward when sii¼1 for any prey species i. In this case,
switching similarity affects relative attack rates equally when
switching from prey i to j and vice versa due to the symmetry
requirement, since sij/sii¼sji/sjj. For example, if prey i and j have a
similarity of 0.1, then a predator that has attacked prey i is 10
times more likely to attack prey i again than a predator that has
attacked prey j is to attack prey i and vice versa. Furthermore,
sij¼1 implies that the two prey species i and j are equivalent from
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the perspective of the predator and no prey switching takes place.
When only prey i is present, ci is simply the conventional attack
rate. To facilitate interpretations of examples, one may thus
choose to set all sii to equal 1. We caution, however, that the
convenient choice of sii¼1 for all i implies additional constraints
on attack rates aij. The decomposition aij¼cisij enables only one
element of s to be chosen freely, e.g., s11¼1, without loss of
generality.

While we have formulated the model above in terms of
different prey species i,j,y, and will maintain this interpretation
below, we reiterate that these indices can just as well represent
different morphs, sexes, or life-history stages within one or more
prey species, when such distinctions matter for predation, or
different functional groups of several prey species, when a
predator distinguishes between such groups, but not among the
species within each group.
3. Results

In Section 3.1, we first present the closed form of the multi-
species functional response implied by our behavioural model
and show that it satisfies the ‘‘common sense’’ condition of multi-
species functional responses described in the introduction.
We then study switching between two prey in Section 3.2 and
switching between any number of prey in Section 3.3.
To illustrate how theoretical predictions can be interfaced with
empirical data, we report in Section 3.4 an attempt to fit the
model to empirical data from prey-switching experiments. In the
final Section 3.5, we relax the assumption of inversion indiffer-
ence required for a closed-form analytical solution, and demon-
strate numerically the robustness of our key findings.

3.1. Multi-species functional response and its key properties

In Appendix B, we show that the assumption of inversion
indifference allows the derivation of the resultant multi-species
functional response in a closed analytical form,

f i ¼
ciNi

Pn
k ¼ 1 sikckNkPn

k ¼ 1 ckNkð1þ
Pn

j ¼ 1 skjTkjcjNjÞ
, ð1Þ

where n is the number of prey species, fi is the predator’s intake
rate of prey species i, Ni is the density of prey species i, ci is the
predator’s base attack rate for prey i , and sij is the similarity
between prey species i and j. To simplify the notation, we
introduce the availabilities ~Ni ¼ ciNi of prey species, a notational
change that can alternatively be interpreted as scaling the
densities of prey species with their base attack rates by the
predator.

We first observe that this functional response simplifies to a
Holling type II functional response when all switching similarities
and handling times are independent of previously consumed prey
(sij¼si and Tij¼Ti), since in that case f i ¼

~NisiS
n
k ¼ 1

~Nk=ðS
n
k ¼ 1

~Nkþ

Sn
k ¼ 1

~NkskTkS
n
j ¼ 1

~NjÞ ¼
~Nisi=ð1þS

n
k ¼ 1

~NkskTkÞ. This is always ful-
filled when only one prey species i is present, so our multi-species
functional response naturally comprises n single-species func-
tional responses of Holling type II, f i ¼ sii

~Ni=ð1þTiisii
~NiÞ.

This functional response also exhibits type III like behaviour for
certain parameter combinations and if one prey type is kept
constant (van Leeuwen et al., 2007).

We can furthermore demonstrate that this functional response
satisfies the ‘‘common sense’’ condition mentioned in the Intro-
duction. If we assume that of n prey species that are present
Species 1 and 2 are equivalent with regard to the modelled
predator, we have si1¼si2¼s1i¼s2i, T1i¼T2i, and Ti1¼Ti2 for all i.
It is easy to see from Eq. (1) that the total intake rate fS¼ f1þ f2 of
these two species then depends only on their total availability,
and hence remains unchanged, as it should, when the two
equivalent species are aggregated into a single species with
availability ~NS ¼

~N1þ
~N2.

3.2. Predators switching between two prey species

We now investigate the simplest and best studied case of prey
switching, when only two prey species are involved. Using Eq. (1),
we obtain the diet ratio f1/f2 as

f 1

f 2

¼
~N1ðs11

~N1þs12
~N2Þ

~N2ðs12
~N1þs22

~N2Þ
: ð2Þ

Experimental data are often interpreted, following Greenwood
and Elton (1979), in terms of a power-law relationship between
diet ratios and density ratios. The exponents of such power laws
are used to measure the strength of prey switching. On scales that
are logarithmic in both ratios, the power law simply implies a line
with a slope that equals the power-law exponent. In contrast to
the related power law for diet partitioning that is found in dietary
data at community level (Rossberg et al., 2011), power-law prey
switching is generally observed already at the individual level.

As, according to Eq. (2), our model does not predict an exact
power-law relationship, we define instead the equivalent exponent

b as the local slope of the relationship between diet ratio and
availability density ratio when both are expressed on logarithmic
scales. Unlike a power-law exponent, the equivalent exponent is
not constant, but depends on the availability ratio of the prey
species.

It follows from Eq. (2) that the equivalent exponent is given by

b¼
d logðf 1=f 2 Þ

d logð ~N1= ~N2Þ
¼

s22
~N2

s22
~N2þs12

~N1

þ
s11

~N1

s11
~N1þs12

~N2

: ð3Þ

While the equivalent exponent b would be constant if switch-
ing followed a strict power law, calculating it for two prey species
generally requires knowing their availability ratio (or, equiva-
lently, their density ratio and base attack rates). In the two limits
~N1= ~N2-1 and ~N1= ~N2 -0, the value of b approaches 1, that is,
the effect of prey switching disappears. At ~N1= ~N2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s22=s11

p
, the

value of the equivalent exponent b reaches a global extremum, i.e.
a global maximum for bext41 and a global minimum for bexto1,
and simplifies to

bext ¼ 2ð1þs12=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s11=s22

p
Þ
�1 : ð4Þ

Thus, b reaches a maximal value of 2 when s12¼0 and
approaches 0 as s12-N. For the special case of sii¼1, this global
extremum is reached at ~N1 ¼

~N2. These results are illustrated in
Fig. 2, where we show that a low rate of attacking prey 1 after
prey 2 and vice versa, due to low similarity, results in a high
equivalent exponent. It follows that, in our model, the equivalent
exponent for switching between two prey species can never
exceed 2.

To quantify how closely our model resembles a power law, we
can estimate the range of availability ratios over which b differs
substantially from 1. Specifically, we define the width of the range
over which significant prey switching occurs as the distance
between the two inflection points of b on a log10 availability-
ratio scale (Fig. 3a). Fig. 3b shows this width as a function of the
maximum value of b (Eq. (4)). For modest to strong prey switch-
ing, b is relatively constant and our model can be approximated
by a power law over two orders of magnitude. Since most
available experimental data do not cover more than two orders
of magnitude in density ratios, it will often be difficult to
differentiate between our model and a power law model using
currently available data. We can thus conclude that our model,



Fig. 2. Switching between two prey species for different switching similarities. (a) Diet ratios depending on availability ratios for different switching similarities s12.

The grey area indicates the range of possible relationships resulting from our model for (positive) prey switching. In contrast, an equivalent exponent (local slope) b of less

than 1 indicates negative prey switching; this occurs for s124
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s11s22
p

in general and for s1241 in this figure. (b) Equivalent exponents b depending on availability ratios

for the same set of switching similarities as shown in panel (a). Other parameters: s11¼s22¼1.

Fig. 3. (a) Illustration of the method for characterizing the range of approximate power-law switching: we consider the dependence of the equivalent exponent b on the

availability ratio and measure this range’s width by the distance, on a logarithmic scale, between the two inflection points. This width can then be used to indicate the

range, in terms of the orders of magnitude it covers, over which our model can be approximated by a power law. (b) Relationship between this width and the extremum

bext of the equivalent exponent b. For prey switching of intermediate strength, the power-law range is most narrow. Other parameters: s11¼s22¼1.
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which satisfies the ‘‘common sense’’ condition by consistently
describing the effects of extreme abundance ratios, is compatible
with all empirical data that does not probe extreme abundance
ratios.
3.3. Predators switching between multiple prey species

Most data on prey switching come from laboratory experi-
ments. This is partially because data acquisition in the field is
difficult and laborious, but perhaps also due to the nature of prey
switching itself. To understand how hard it can be to detect prey
switching in the field, we can express the diet ratio f1/f2 of two
prey species as a function of the availabilities of all n prey species,

f 1

f 2

¼
~N1ðs11

~N1þs12
~N2þ

Pn
k ¼ 3 s1k

~Nk Þ

~N2ðs12
~N1þs22

~N2þ
Pn

k ¼ 3 s2k
~NkÞ

: ð5Þ
From this expression it becomes clear that, when the sums
over the remaining species k¼3,y,n contribute substantially to
the expressions in the parentheses, prey switching is bound to
become less pronounced compared to situations in which only
two prey are present. As a general rule, prey switching is less
pronounced when the predator consumes many different prey
species and when no single prey species accounts for a large share
of the predator’s diet. Fig. 4 illustrates this point for three species
by varying the availability of the third species. The degree of prey
switching depends on the similarities between the two focal
species and the third species. If the third species is not overly
abundant and very dissimilar from Species 1 and 2 (Fig. 4a), a
predator that forages for Species 1 or 2 will continue doing so for
a while, so the influence of Species 3 on the predator’s rate of
switching between Species 1 and 2 is comparatively weak. When
the third species is intermediate in its character, so that it is
rather similar to both Species 1 and 2, even though Species 1 and



Fig. 4. Switching between two prey species when a third prey species is present at varying availabilities. In all cases, switching between the first two prey species becomes

less pronounced at higher availabilities of the third prey species. (a) Switching between the first two species when the third species is very dissimilar from either of them

(s13¼0.1 and s23¼0.1). (b) Switching between the first two species when the third species is similar to both of them (s13¼0.9 and s23¼0.9). (c) Switching between the first

two species when the third species is dissimilar from the first species, but similar to the second species (s13¼0.1 and s23¼0.9). In this last case, the effect of the third

species is more pronounced at high availability ratios ~N 1= ~N 2 than at low availability ratios. Other parameters: ~N 1þ
~N 2 ¼ 100, s12¼0.1 and sii¼1 for i¼1,2,3.

Table 1
Parameter values for prey switching by the fifth instar of the sand fly Rhyacophila

dorsalis between large and small Chironomus larvae and between large Chironomus

larvae and Baetis larvae. The table shows the maximum-likelihood estimates for

four parameters of our model, as well as their 5th and 95th percentiles as

described in Appendix C.

Parameter Maximum-likelihood estimate 5th percentile 95th percentile

~c1 n.a. (set to 1) n.a n.a
~c2 0.785 0.776 0.835
~c3 1.326 1.294 1.394
~s12 0.154 0.096 0.164
~s13 0.010 0 0.043
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2 are dissimilar from each other, then the effect of the third
species is particularly evident (Fig. 4b). The reason is that Species
3, when abundant, mediates transitions between the two focal
species. Finally, a much lower similarity between Species 1 and
3 than between Species 2 and 3 will cause prey switching
between Species 1 and 2 to be much more pronounced at lower
availability ratios ~N1= ~N2 (Fig. 4c). This can be understood from
Eq. (5), too, since a comparatively large value of ~N2 is required to
dominate the contribution of the third species in the denomi-
nator, while a smaller value of ~N1 is sufficient to dominate its
contribution in the numerator.

3.4. Calibration to empirical data

To clarify how our results can be fitted to experimental data
and how the predictions can be interpreted, we fit it to data on
diet ratios and density ratios from a laboratory experiment by
Elliott (2006) on prey switching by the fifth instar of the sand fly
Rhyacophila dorsalis between large Chironomus sp. larvae (Type 1)
and small Chironomus larvae (Type 2) and between large Chir-

onomus larvae (Type 1) and Baetis rhodani larvae (Type 3). The
raw data from these experiments are not available any more, but
Prof. J. Malcolm Elliott has kindly provided the summary statistics
on the data, such that at each ratio we know the mean number of
prey attacked for both species and the associated standard
deviations. These experimental results are not rich enough to test
if our model provides a better fit than other models. Therefore,
the calibration of our model to empirical data presented below
serves as a proof of concept and as a demonstration of possible
results, the achievable accuracy, and the implied predictions.
Details of the model-fitting procedure are provided in Appendix C.

To estimate all parameters in Eq. (1), absolute-intake data are
required. Relative intakes are already fully determined by the
values of the parameter combinations ~sij ¼ sij=

ffiffiffiffiffiffiffiffiffi
siisjj
p

and
~ci ¼ ci

ffiffiffiffiffi
sii
p

=c1
ffiffiffiffiffiffiffi
s11
p

for all i and j, and hence only these can be
estimated from relative intake data. The value of ~sij can be
interpreted as a normalized switching similarity (with ~sii ¼ 1
being implied for all species or, in the present case, types i),
while the value of ~ci scales the predator’s base attack rate for
type i. For example, a predator foraging on two equally abundant
prey types consumes these at equal rates if and only if their scaled
base attack rates ~c1 and ~c2 are equal. The scaled parameters
therefore allow meaningful ecological interpretations, without
fully specifying the functional response. Furthermore, since the
number of scaled parameters is lower than that of original
parameters, higher estimation accuracies can be achieved.

Table 1 reports the parameter values estimated by maximum-
likelihood methods. Fig. 5 shows the original empirical data
alongside with new model predictions for the estimated para-
meter values. Our estimates show that the predator is predis-
posed to attacking large Chironomus larvae over small Chironomus

larvae and Baetis larvae over large Chironomus larvae. Further-
more, large and small Chironomus larvae have a higher normal-
ized switching similarity for this predator than large Chironomus

larvae and Baetis larvae. The latter finding could be related to the
fact that the first pair of prey types are just different size classes
of the same species, while in the second pair the two prey types
belong to different species.

Since the original data did not include an experiment in which
the predator switches between small Chironomus larvae and
Baetis larvae, no estimate is available for ~s23. We consider the
two extremes in which (1) there is no perceived difference
between the two species (~s23 ¼ 1) or (2) the difference is so great
that the predator will not attack Species 2 directly after attacking
Species 3 and vice versa (~s23 ¼ 0). Using these values, we study a
hypothetical three-type experiment in which the densities of
small Chironomus larvae (N2) and Baetis larvae (N3) are kept equal
(N2¼N3). We then vary the combined density N2þN3 relative to



Fig. 5. Switching of the fifth instar of the sand fly Rhyacophila dorsalis between (a) large and small Chironomus sp. larvae and (b) large Chironomus larvae and Baetis larvae.

The thin dashed lines correspond to the absence of prey switching. The points show the average ratio of prey attacked at each abundance ratio. (c) Predicted outcome of a

hypothetical experiment in which all three prey types are present simultaneously.
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the density of large Chironomus larvae (N1), while the total prey
density (N1þN2þN3) is kept constant. As shown in Fig. 5c, the
equivalent exponent for the hypothetical three-species experi-
ment is intermediate between the two experiments with only two
prey species, for both extremes of ~s23.

3.5. Relaxation of inversion indifference

The functional response in Eq. (1) is derived under the
assumption of indifference of predators to prey-order inversion
or, equivalently, the assumption that switching similarities are
symmetric (sij¼sji). This assumption allows the analytic solution
of the Markov model described in Methods. In the general case
(sij a sji), the Markov model can instead be solved numerically to
obtain the predator’s functional response. In this section, we relax
the simplifying assumption of inversion indifference and numeri-
cally study the robustness of the main features of our derived
functional response. As the elements sij no longer allow a natural
interpretation as similarities (since sij a sji), we refer to them as
acceptance rates below.

For our numerical explorations, the acceptance rates sij are
drawn from a uniform distribution between 0 and 1, and we set
sii¼1 for all i. In the general case this can be done without loss of
generality, since setting aij¼cisij, without the symmetry require-
ment, introduces free parameters. Prey availabilities ( ~Ni) for i42
are first drawn from a uniform distribution between 0 and 100.
The value of ~N1 is chosen such as to obtain a given availability
ratio ~N1=Sn

i ¼ 2
~Ni. The diet ratio f 1=S

n
i ¼ 2f i, that is, the intake of the

first species divided by the intakes of all other species (Rossberg
et al., 2011), is then computed as a function of the availability
ratio ~N1=Sn

i ¼ 2
~Ni.. For easier visual comparison, the resultant

relationships between those two ratios are shifted up or down
along the logarithmic diet-ratio axis such that they pass a diet
ratio of 1 at an availability ratio of 1. For communities with two,
three, and 10 prey species, these relationships are estimated for
50,000 random parameter combinations each.

The top row of Fig. 6 shows the outcome of our numerical
analyses, with the shading indicating the local density of the
resultant relationships. For each parameter combination, the
equivalent exponent is calculated by numerically differentiating
the diet ratio at the availability ratio 1, with the resultant
distributions of exponents shown in the bottom row of Fig. 6.
These numerical results are similar to the analytical predications
derived from the analytically tractable model. In particular, most
equivalent exponents lie between 1 (no switching) and 2, the
upper limit for the simplified model. The maximum exponent also
decreases with the number of involved species: for ten species,
the highest exponent found is smaller than 1.55, underscoring
once again that the number of species involved influences the
strength of prey switching (Fig. 6c).
4. Discussion

We have developed a generic functional response of a predator
switching between multiple prey species. This functional
response was derived from an underlying simple model of
foraging behaviour. Prey switching emerges when the predator’s
probability of attacking a prey species depends on its dietary
history; otherwise, we recover the standard Holling type II
functional response. We have shown that this mechanism leads
to power-law switching over approximately two orders of mag-
nitude, conforming to empirical observations. As the functional
response is derived from an underlying behavioural model, it
fulfils two natural requirements that proved difficult to combine
in previous formulations. First, our functional response satisfies
the ‘‘common sense’’ condition that population dynamics should
be invariant if prey populations with identical properties are
aggregated or split. Second, our functional response allows the
strength of prey switching to differ among pairs of prey species,
thus satisfying a key requirement for matching empirical
observations.

4.1. Model assumptions

The analytical results presented here are based on the assump-
tion of indifference of predators to prey-order inversion, which
implies similarity symmetry (Appendix A). This assumption
seems ecologically plausible, but it need not hold under all
circumstances. The general Markov model underlying our results
does not depend on this assumption, and thus can be analysed
independently of it. The assumption of inversion indifference is
required, however, to obtain a closed-form analytic solution for
the multi-species function response. In Section 3.5, we analysed
the general case numerically and showed that even when relaxing
our simplifying assumption, our qualitative results largely hold.



Fig. 6. Switching between multiple prey species without the simplifying assumption of inversion indifference. The (a,d) left, (b,e) middle, and (c,f) right columns show

results for communities with two, three, and 10 prey species, respectively. Model parameters and prey availabilities were randomly chosen as explained in the text. (a–c)

Using grayscales, the top row shows the density of the resultant dependences of diet ratios on availability ratios. All dependences are normalized so as to pass though the

point (1,1). (d–f) The bottom row shows the corresponding distributions of equivalent exponents at ~N 1=Sn
i ¼ 2

~N i ¼ 1.
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This suggests that the closed-form multi-species functional
response derived here is a good model even in the presence of
deviations from perfect inversion indifference.

Our model is based on the assumption that a predator’s
foraging behaviour is only influenced by the last prey attacked
and not by any preceding prey. This is a simplification of the effect
of dietary history on foraging because, while the last prey attacked
often has the strongest influence (Belisle and Cresswell, 1997;
Melcer and Chiszar, 1989), previous prey will also influence
behaviour (Belisle and Cresswell, 1997). In principle, longer-
lasting impacts of dietary history can be taken into account by
extending the present theory, but such extensions are likely to
considerably complicate the resulting functional response, leading
to higher computational burdens in community models. A related
simplifying assumption of our model is that the influence of the
last prey consumed does not diminish with time. It might be
possible to include such limited ‘‘memory’’ in the Markov model
by adding a state that represents a foraging predator unaffected by
previous history. Understanding the feasibility and implications of
such model extensions are promising topics for future research.

4.2. Computational constraints

Real ecological communities can consist of thousands of
different species. Modelling population dynamics and evolution
of such communities is computationally challenging, so it is
useful to estimate how much computation time rises as the
number n of modelled species increases. For example, for Lotka–
Volterra dynamics of the form dNi=dt¼ rið1þS

n
j ¼ 1f ijÞNi with

fij¼ajiNi for i,j¼1,y,n, the most time-consuming computational
task is to determine the sums over j. In general, the number of
operations this requires in each time step increases as n2 with
community size. If (aji) is a sparse matrix containing on average
only Z{n non-zero elements in each row or column, then sparse-
matrix algorithms can be used, and the computation time per
time step increases only as nZ. The question of how the mean
number of non-zero elements of (aji), which is closely related to
the link density denoted by Z in food-web theory, depends on
community size has long been discussed in the literature (Justus,
2008). Recent analyses suggest that Z remains relatively small and
bounded as community size increases (Rossberg et al., 2011).

Using our derived functional response, Eq. (1), in numerical
analyses of food-web models requires evaluation of the sum
Sn

i ¼ 1f ij for each predator (we have suppressed the index j so
far, focusing our preceding discussions on a single predator). This
sum determines the total rate of food intake by predator j, and a
similar expression determines the total predation mortality
experienced by each prey species. Since the denominator of our
functional response in Eq. (1) does not depend on i, this amounts
to evaluating at most three double sums over n species for each of
n species in a community (for non-predators only one such sum is
required). Without sparse-matrix algorithms, the computation
time for each time step therefore increases as n3 with community
size, potentially rendering numerical analyses infeasible. But if,
for each predator j, the vector cij of its base attack rates is sparse,
that is, if each consumer attacks on average only a small number
Z{n of prey, then all three double sums can be evaluated in a
computation time that grows as Z2. Computation time per time
step then increases as nZ2, imposing more moderate computa-
tional constraints. For Z{n, we can thus be optimistic
that numerical analyses remain computationally feasible even
when the scaling of computation time changes from nZ for
Lotka–Volterra dynamics to nZ2 for the multi-species functional
response we have derived in this study.



E. van Leeuwen et al. / Journal of Theoretical Biology 328 (2013) 89–98 97
4.3. Transitivity of equivalent exponents or the A–B–C problem

Let us shortly come back to the problem, highlighted in the
introduction, that for some multi-species functional responses the
switching exponent or, by extension, the equivalent switching
exponents are necessarily equal for all three pairings of three
resource species A, B, and C when they are equal for A–B and B–C.
In Appendix D we show that this artifact persists for any kind of
functional response where the prey intake ratio of two species,
say B and C, is independent of the abundances of other species,
such as A. The functional response derived here is more flexible.
Appendix D argues that, in agreement with ecological intuition,
the equivalent switching exponent tends to be larger for A–C than
for the pairings A–B and B–C when A and C are ecologically less
similar to each other than they are to B (specifically, when
~sAB ¼ ~sBC 4 ~sAC).

4.4. Implications for community dynamics

Our model predicts that equivalent exponents approach 1 at
very high and very low relative abundances, so there is only an
intermediate range of abundance ratios over which prey switch-
ing can be observed. This model prediction can be tested empiri-
cally and may have implications for the maintenance of
biodiversity. Equivalent exponents larger than 1 imply that per-
capita predation pressures on a species steadily decrease as its
relative abundance declines and vanishes for vary rare species.
Based on this traditional expectation, rare species involved in
prey switching would experience reduced predation mortality,
which could help them to avoid extinction. In contrast, our results
imply a finite lower limit on the per-capita predation pressures on
a rare species; this limit depends on the abundances of other prey
species and is readily computed from Eq. (1). Our results thus
imply that, in contrast to the traditional theory, prey switching
hardly protects rare species once they have fallen below a certain
relative abundance.

4.5. Prey quality and optimal foraging

For predators, prey quality can be an important factor influen-
cing prey choice. The assumption that prey quality is the main
factor determining prey choice is pursued in optimal-foraging
theory (Emlen, 1966; Charnov, 1976). Under the additional
assumption of a trade-off in attack rates, this leads to prey
switching (Abrams and Matsuda, 2004; Rueffler et al., 2004).
Dynamic implications for this assumption in simple two-resource
one-consumer models were studied extensively by (Abrams and
Matsuda, 2003, 2004; Rueffler et al., 2004; Matsuda, 1985).
A generalisation of these trade-offs to many prey species leads
to effort-based functional responses (Drossel, 2001; Kondoh,
2003; Uchida et al., 2007). The strength of prey switching then
depends on a trade-off in attack rates; however, our knowledge of
the exact nature of these trade-offs is still limited (Palaima, 2007).

Our approach assumes that dietary history affects switching.
One potential underlying mechanism is the trade-off resulting
from the limited total attention a predator can give to prey (Dukas
and Kamil, 2001; Dukas, 2002; Bond, 2007), which leads to the
formation of search images (Tinbergen, 1960; Dawkins, 1971;
Pietrewicz and Kamil, 1979; Melcer and Chiszar, 1989; Reid and
Shettleworth, 1992; Bond and Kamil, 1999; Jackson and Li, 2004;
van Leeuwen and Jansen, 2010). To some degree, the effects of
prey quality can implicitly be incorporated in our model by
multiplicative factors contributing to the base attack rates and/
or switching rates. Through such extensions, our model can be
used to study optimal foraging while relaxing the, often implicit,
assumption that predators have perfect knowledge of prey
densities (Belisle and Cresswell, 1997). Instead predators obtain
knowledge about prey densities through their foraging activity
(Belisle and Cresswell, 1997; van Leeuwen et al., 2007; van
Leeuwen and Jansen, 2010).

It is difficult to differentiate between the two models using
currently available data because qualitatively the predictions
made by the two models are similar. For example, studies
classified as qualitatively consistent with the optimal-foraging
theory in Sih and Christensen, (2001) are also qualitatively
consistent with our model, since the two criteria used in that
study are also satisfied by our model. Firstly, the condition that
predators select for higher quality prey is satisfied in our model
under the assumption that the preferences ~cj for prey species j are
positively related to their quality. Secondly, in both models an
increase in higher quality prey results in a disproportionally
increase of this prey in the predator’s diet. Therefore, it will be
difficult to differentiate between data supporting our model and
optimal foraging, without setting up experiments that specifically
tests for different predictions made by the two models.

4.6. Comparison with empirical observations

Greenwood and Elton (1979) and Elliott (2004, 2006) analysed
a combined total of 24 experiments using Greenwood and Elton
(1979) heuristic model of prey switching. The switching expo-
nents they estimated for those experiments cover the range
between 0.4 and 2.0. This range is consistent with the predictions
of our model, in particular with the finding that the equivalent
exponent will always be smaller than 2 (Section 3.2). This upper
limit essentially persists when the simplifying assumption of
inversion indifference is relaxed (Section 3.5). The fact that our
model accurately predicts this upper bound sets it apart from
other approaches to prey switching.

The upper bound on prey-switching exponents is only one of
several predictions enabled by our theory. It should thus be
possible to corroborate our theory empirically. This would require
modifying existing experimental designs to extend the range of
prey-abundance ratios to about three orders of magnitude or
more. Alternatively or in addition, experimenters could also
systematically confront predators with different combinations of
two, three, or more prey species. It is then straightforward to
compare Eq. (1) or (5) to such data, and thus to assess which of
our theory’s multiple testable predictions are borne out.
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