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Abstract

The characteristics governing the dynamics of populations can evolve and this evolution can either be towards stability or chaos.

Yet it is not obvious how or why such population characteristics can evolve through selection on individuals. In this paper we

construct a mathematical model, inspired by experimental results, illustrating the dynamics of a population of competing

Drosophila. We demonstrate how selection of life history characteristics and stability influence one another as a population interacts

with its environment. We generalize this result and show that population stability can evolve as a consequence of selection on

individuals.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The evolution of stability in populations has received
much attention in population biology (for reviews see
Ferriere and Fox, 1995 and Mueller et al., 2000). If
unstable populations are less likely to persist one could
even speculate that evolution would lead to population
stability (Stokes et al., 1988; Thomas et al., 1980;
Berryman and Millstein, 1989). This is essentially a
group selection argument that has been challenged
(Allen et al., 1993; Rosko et al., 1994) as such a
mechanism can only work under very restrictive
conditions (Mueller et al., 2000). Evolution generally
works on the traits of individuals and not on the
characteristic of populations. Therefore, one cannot
expect that stability will necessarily evolve. However, as
empirical evidence by Prasad et al. (2003) shows,
selection on individual traits can alter population
characteristics. Here we investigate how evolution
e front matter r 2005 Elsevier Ltd. All rights reserved.
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affects stability properties, in a simple population model
for intra-specific competition, and clarify why stability
evolves.
As well as stability, limit cycles and chaotic popula-

tion dynamics can evolve depending upon the exact
form of the trade-off between the reproductive capacity
and the ability to cope with unfavourable circumstance
(Metz et al., 1992). Using a similar mathematical model
Doebeli and Koella (1995) found that, without con-
straints, parameters under selection evolved to reduce
fluctuations in population size by moving to regions of
parameter space associated with stable equilibrium
dynamics. However, lack of density dependence un-
realistically allowed selection for ever increasing equili-
brium densities. What caused these tendencies was not
obvious; which makes it hard to generalize Doebeli and
Koella’s findings beyond their model. Mueller (1988),
and Jansen and Sevenster (1997) formulated models of
population dynamics of Drosophila spp. in food-limited
environments. In both these models high female
fecundity and strong larval competition lead to unstable
population dynamics. Female fecundity and compe-
titive ability are important components of fitness and,
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therefore, it can be hypothesized that selection upon
these two traits will have consequences on the dynamics
of a population. This was investigated experimentally by
Mueller et al. (2000) who found that feeding rates, which
are an important component of the competitive ability
in this system (Jansen and Sevenster, 1997), altered in
response to larval density over time. Although identify-
ing the importance of female fecundity on population
stability no direct evidence of selection affecting the
dynamics was found.
Often a change in the genetic make-up that changes

one characteristic will also change the other. Here we
will assume that an increase in competitive ability will
generally decrease fecundity. Although there is no
equivocal evidence of the quantitative details of this
trade-off, this is motivated by two observations: Firstly,
one can expect energetic constraints will dictate such a
trade-off (Joshi and Mueller, 1996), and secondly, if
more competitive individuals would also be more
fecund, this would lead to the evolution of a Darwinian
demon: a type that is both maximally competitive and
maximally fecund. As fecundity and competitive ability
are, in reality, constrained we shall assume that more
competitive larvae are less fecund. To describe the
evolution of population characteristics, and to interpret
previous experimental results, we construct a mathema-
tical model based on the biology of competing
laboratory Drosophila. We will show that there exists a
simple connection between the dynamics of a population
and traits under individual selection and also how life
history characteristics evolve in the presence of a trade-
off amongst traits.
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Fig. 1. Graph showing how larval survival, W, changes with the

amount of food per larva, j for f max ¼ 100 Q ¼ 1:4 m ¼ 0:35; b ¼

400; V ¼ 0:21 and W max ¼ 1:
2. The model

The life cycle of Drosophila can be simplified into
three stages: larval, pupal, and adult. In laboratory
populations of Drosophila competition among larvae for
food is the main force regulating the population
(Bakker, 1961). Crowding during one stage of a life
cycle has consequences on the population at another.
Adult fertility is influenced by pre-adult density. The
fecundity of adult females is greatly dependent on their
size (Prout and McChesney, 1985; Mueller, 1988) which,
in turn, is dependent upon the population density during
the larval stage owing to competition for food.
Competitive ability does not only influence fertility
levels but also the likelihood of larvae to survive
(Bakker, 1961; Mueller, 1988). When resources are
limited individuals in a population will be forced into
competition as the population grows in size. If the
selective values of the individuals’ phenotypes respond
differently to population size then density-regulated
selection will occur.
3. Model for a single strain

The model we use is loosely based on the model by
Mueller (1988, 2000):

ntþ1 ¼
1
2

F ðntÞW ðntÞVnt. (1)

The model is based on discrete generations where t is the
generation number and nt represents the number of eggs
laid in that generation. F is the mean fecundity of
females, W describes the viability of larvae (the
probability of larvae surviving to adulthood) and both
F and W are density-dependent functions. V is the
probability of an egg reaching the first instar larval stage
and 1

2
signifies the sex ratio. For simplicity the effect of

adult density on fecundity is omitted.
Next we specify the functions for viability, W, and

fecundity, F. The type of competition between larvae is
predominantly of the scramble form. Organisms vying
for food in this manner will consume varying amounts
depending upon their competitive abilities if food is in
short supply (Bakker, 1961; Parker, 2000; Nicholson,
1954). We introduce, j; as the amount of food per larva:

j ¼
b

Vnt

, (2)

where b is the total amount of food available. A
minimum amount of food, m, is required for a larva to
survive. If the amount of food per larva is below m then
none survive. Above this limit larval survival increases,
the further away from m the larvae reach, up to a
plateau at which larvae reach a maximum viability
(Fig. 1). This can be described by

W ðjÞ ¼
ðj� mÞW max

c þ j� m
, (3)

where W max is the maximum survival of larvae and c is
the half saturation constant. If the excess amount of
food per larva, j� m;¼ c then survival is half the
maximum survival. If the amount of food per larva is
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less than m then

W ðjÞ ¼ 0. (4)

By replacing j with Eq. (2) and multiplying the
numerator and denominator by nt we find

W ðjðntÞÞ ¼
W maxðb=V � mntÞ

b=V þ ðc � mÞnt

. (5)
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Fig. 2. Shape of the fecundity, F, curve as it changes with egg number,

n For b ¼ 400; V ¼ 0:21:
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Fig. 3. A Ricker graph for the model showing the dependence of ntþ1

on nt at f max ¼ 100; Q ¼ 1:4; b ¼ 400; V ¼ 0:21; W max ¼ 1 and c ¼

0:4:
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Fig. 4. Various dynamic behaviour observed in m
Fecundity is dependent upon the size of the emergent
adult females which, in turn, is dependent upon the
amount of food each larva consumes.
Introducing j into the fecundity function highlights

this relationship. The saturating response of female
fecundity to the amount of food per larva is described by

F ðntÞ ¼
f maxjðntÞ

Q þ jðntÞ
, (6)

where f max is the maximum fecundity and Q the half-
saturation constant. Fig. 2 shows how the fecundity, F,
depends on egg number.
The population size of the next generation, and its

dynamics, is determined by the population size of the
previous generation (Fig. 3). The population will grow
in size up to a point. After this point, however, larvae
continue to consume the food available until competi-
tion becomes so great that larvae become unable to
pupate to adulthood, causing the population to crash.
Increasing f max leads from population stability to cycles,
chaos and, eventually, extinction (Fig. 4). To quantify
the dynamical behaviour we analyse the stability of the
model. The equilibrium density, n̄; can be found by
solving 1 ¼ 1

2
F ðn̄ÞW ðn̄ÞV (see appendix).

The stability of the equilibrium can be determined in a
standard way by linearizing the dynamics around the
equilibrium point. To do so we introduce the population
growth rate, A;

AðnÞ ¼ 1
2

F ðjðnÞÞW ðjðnÞÞVn. (7)

A small deviation from the equilibrium changes
according to ntþ1 � n̄ ¼ ðnt � n̄ÞS: The resilience, S,
can be found by differentiating Eq. (7)

S ¼
dA

dn

����
n¼n̄

¼
qA

qj
dj
dn

����
n¼n̄

þ
qA

qn

����
n¼n̄

¼
1

2

qF

qj

����
n¼n̄

W ðjðn̄ÞÞ
�

þF ðjðn̄ÞÞ
qW

qj

����
n¼n̄

�
Vn̄

qj
qn

����
n¼n̄

þ 1. ð8Þ

The equilibrium is stable if the multiplier, S, has a value
between �1 and 1. Note that n̄ ¼ 0 implies that S ¼ 1;
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Fig. 5. Where S must reside in order for stability to be maintained.

The boundary between extinction and the domain with cycles and

chaos was found by evaluating at which parameter combination the

maximum population size would lead to extinction ðAðmaxðAÞÞ ¼ 0Þ

and therefore, represent a necessary condition for extinction. Here

b ¼ 400; V ¼ 0:21 and f max ¼ 100:
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hence if at the point where a non-trivial equilibrium
comes into existence the multiplier S is 1. Further
evaluation of terms did not lead to transparent results,
hence stability is investigated numerically. Fig. 5
displays the stability and extinction boundaries of S.
4. Model for two competing strains

To study the evolution of stability we next extend the
model to describe competition between strains. The
strains differ in their fecundity and competitive ability.
To quantify competitive ability we introduce larval
feeding rate, r. We will study how a newly appearing
mutant strain, which differs in some aspect from the
other resident strain, fares.
Competitive ability will be determined by how fast the

larvae feed; the faster the feeding rate the more
competitive the larvae (Bakker, 1961; Jansen and
Sevenster, 1997). Differences in competitive ability cause
differences in the amount of food per larva, j; and is
modified to describe both the resident (denoted by
jðn; n�Þ) and the mutant (denoted by j�ðn�; nÞ) for time
food available (dependent upon feeding rates (r, r�) and
population sizes (n, n�)), t. If we assume that larvae have
constant rates of ingesting food, r and r�; then the total
food supply will be finished after b

V ðrnþr�n�Þ
units of time.

The amount of food the resident and mutant larvae get
is therefore

jðn; n�Þ ¼
rb

V ðrn þ r�n�Þ
(9)

and

j�ðn�; nÞ ¼
r�b

V ðrn þ r�n�Þ
, (10)

respectively.
Note that if either resident or mutant is absent the

model reduces to the model for one strain. The model
for two competing strains is now given by

ntþ1 ¼
1
2

F ðjÞW ðjÞVnt, (11)

n�
tþ1 ¼

1
2 F�ðj�ÞW ðj�ÞVn�t , (12)

where

F�ðj�Þ ¼
f �

maxj
�

Q þ j�
¼

f �
max

f max

F ðj�Þ. (13)

To study the effects of fecundity a mutant was
introduced into the model boasting a higher f max while
keeping the feeding rates equal for both strains. As
expected the mutant out-competes, and eventually
replaces, the resident fly when introduced to vie for
the same food supply. Selection always favours more
fecund adults and will drive evolution towards instabil-
ity, chaos and, eventually, extinction.
Investigating the effects of selection on r can be

observed by introducing a mutant amongst a resident
population. A mutation giving a greater competitive
ability out-competes a resident population and, thus,
would be selected for. However, unlike f max; parameter r

does not affect the population dynamics directly, and an
evolutionary change that only affects parameter r will
not change the population dynamics.
Next we study the evolution of the feeding rate, r. We

assume a trade-off exists between fecundity and
competitive ability in Drosophila. This trade-off can be
justified on the basis of energetic constraints (Joshi and
Mueller, 1996) and in order to prevent the emergence of
simultaneously maximally fecund and maximally com-
petitive types. The trade-off between fecundity and
competitive ability is given by

f maxðrÞ ¼
g
ra
, (14)

where g and a parameterise the trade-off; for positive
values of a the maximal fecundity decreases with
competitive ability. The population dynamics of this
trade-off through evolution in r are demonstrated in
Fig. 6.
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5. Fitness

The fitness of a mutant type with feeding rate r�;
which exists in a population dominated by a resident
with a feeding rate of r, can be calculated as the
linearized per capita growth rate of a rare mutant (Metz
et al., 1992). Assuming that the resident is at equilibrium
this is

Zðr�; rÞ ¼ 1
2

F�ðj�ð0; n̄ÞÞW ðj�ð0; n̄ÞÞV ð15Þ

¼
1

2

f �
max

f max

F ðj�ð0; n̄ÞÞW ðj�ð0; n̄ÞÞV ð16Þ

and the marginal fitness, i.e the change in fitness due to a
small change in r�; can be expressed as

qZðr�; rÞ

qr�

����
r¼r�

¼
1

f max

qf �
max

qr�
þ
1

2

qF

qj�
W ðj�ð0; n̄ÞÞ

�

þF ðj�ð0; n̄ÞÞ
qW

qj�

�
V
qj�

qr�

����
r¼r�
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Fig. 6. The influence of r on the population dynamics. This bifurcation

diagram shows the influences that competitive ability has on the

dynamics through its trade off with f max: Increasing r leads away from

extinction, chaos and cycles to stable dynamics and, eventually, an

exponential decrease in the equilibrium population level. Q ¼ 2:45;
m ¼ 0:350; b ¼ 0:8 and V ¼ 0:2; W max ¼ 1; g ¼ 1; a ¼ 1; c ¼ 0:4:
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The first term describes the effect of a change in f max

through the trade-off. The second term describes the
direct effect on the fitness due to a change in the growth
rate. This expression can be simplified by realising that

qj�

qr�

����
r¼r�

¼ �n̄
qj
qn

����
n¼n̄

(18)

and hence the second term can be rewritten using the
resilience, S, which we have calculated to establish the
stability of the equilibrium. Combining Eqs. (8) and (17)
gives

qZðr�; rÞ

qr�

����
r¼r�

¼
1� S � a

r
. (19)

This shows how the marginal fitness is linked to the
stability of the equilibrium through selection at the level
of the individual. Through this relationship it can be
seen that, not only does the stability measure evolve but,
the strength of selection itself actually depends directly
upon the stability of the equilibrium. The stability of the
equilibrium at the ESS is given by

S ¼ 1� a. (20)

If the trade-off is weak evolution will favour stability. In
the case of the trade-off being a dominant factor
instability will evolve. In Fig. 7 we confirm this
numerically: we found that the marginal fitness as
calculated exactly matches the theoretically predicted
values if the equilibrium is stable. For periodic solutions
our results hold approximately true but the result for
marginal fitness deviates the further from the stability
boundary it is measured. Our theoretical results in all
cases predict correctly whether or not stability will
evolve, but only if evolution leads to stability can we
correctly predict the value of the ESS. Furthermore, the
presence of resilience as part of an individual’s marginal
fitness is not particular to this model. In Appendix B we
generalize this finding to a large class of competitive
scenarios.
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6. Discussion

The replacement of an original population through
the selection of traits will change the dynamic char-
acteristics of a population. Stability is a characteristic
of a population while evolution is driven by selec-
tion of individuals. It is, therefore, not a priori obvious
that evolution can favour a population charac-
teristic. Our model describes density-dependent selec-
tion on the traits of competitive ability and female
fecundity, and the subsequent population dynamics.
In isolation these traits would continue to evolve to
ever increasing values. Our model assumes a trade-off
between fecundity and competitive ability. The resulting
dynamics make evident that a population can, but
need not, evolve towards stability: the deciding factor
being the trade-off between competitiveness and fecund-
ity. In the absence of such a trade-off evolution will
drive the dynamics towards the stable regime. In fact,
without a trade-off, the population will evolve towards
the shortest feeding time possible; this is an example
of the pessimization principle (Mylius and Diekmann,
1995).
Our findings highlight a clear connection between

traits under the influence of selection and the stability of
a population. In addition, we show that the stability
measure of a population is an element of the individual
fitness function. We arrived at this conclusion by
considering individual selection only and without
invoking group or kin selection arguments. The reason
for this connection is that both stability and selection
coefficients are governed by competition. This observa-
tion explains why certain populations evolve towards
stability.
A similar line of reasoning, in which population

characteristics have been explained as resulting from
individual selection, has been applied to the evolution of
chaos, evolution towards the edge of chaos and
evolution towards criticality (Bak and Sneppen, 1993;
Kaufman et al., 1998; Rai and Schaffer, 2001). All these
characteristics are properties of the population. As with
the evolution of stability there is no a priori reason why
they should result from selection on the individual.
However, within the model presented here, special
choices of the trade-off function can lead to evolution
towards the edge of chaos. But our results suggest that
such behaviour, in general, will not be robust. For a
robust example of evolution towards criticality in a
biologically plausible scenario see (Stollenwerk and
Jansen, 2003). We have shown that stability can, but
need not, evolve in a large class of scenarios. In all these
cases the evolution of such population characteristics is
a direct consequence of the details of the density-
dependent selection, in particular the strength of
frequency-dependent selection in relation to the strength
of frequency-independent selection and, ultimately, of
the particulars of the interactions rather than represent-
ing a law or governing principle.
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Appendix A

From the equilibrium density this gives

n̄

B
¼

�ðc � m þ Q þ
f maxmU

2
Þ þ R

2ðc � mÞQ
.

The parameters B, U and R are defined as

B ¼
b

V
,

U ¼ VW max,

R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ðcQ � mQÞ �

1

2
f maxU

� �
þ c � m þ Q þ

f maxmU

2

� �2
s

.

Note that parameter B serves only as a scaling factor.
The equilibrium density depends on all other parameters
in a nonlinear way.
Appendix B

To demonstrate that the appearance of the resilience
of a population in an individual’s marginal fitness is a
general feature, and not restricted to the particular
model in this paper, we will here generalize this finding.
To do so, consider the general growth model

ntþ1 ¼ ntf ðr;fðr;EÞÞ, (B.1)

where nt is the population density at time t, r is a trait
that we will allow to change under evolution. The per

capita growth rate f depends directly on the trait, and
through a feedback on the environment, which is
represented by fðr;EÞ: Here E represents the state of
the environment, which we will assume depends both on
the trait and on the population density, and can be
represented by a scalar, hence Eðr; ntÞ: The environment
is not affected by the trait if there are no individuals
present: qEðr; nÞ=qrjn¼0 ¼ 0: In what follows we will also
assume that the environment depends on individuals
that differ in their value for r, however if such
individuals are absent they will not influence the state
of the environment. Note that the environment is the
same for all individuals, irrespective of the trait value
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they possess, but that the way an individual feels’ this
environment is mediated by the trait value through
fðr;EÞ:
The equilibrium value, n̄ is defined by

f ðr;fðr; ĒÞÞ ¼ 1,

where Ē ¼ Eðr; n̄Þ: The stability of this equilibrium is
determined by the linearized growth rate in the
neighbourhood of this equilibrium:

ðntþ1 � n̄Þ � ðnt � n̄ÞS,

where the resilience, S, is given by

S ¼
qf

qf
df
dn

����
n¼n̄

þ 1.

Next, we will study how a mutant with a different trait
value, r�; will fare in this environment. The change in the
population size of this mutant at time t, n�

t ; is given by

n�
tþ1 ¼ n�

t f ðr�;fðr�;EÞÞ.

The environment now depends on the population sizes
of the mutant and the resident and their respective traits:
Eðr; r�; n; n�Þ; and, as before, we will assume that if a
population is absent, it leaves no mark on the
environment

qEðr; r�; n; n�Þ

qr�

����
n�¼0

¼ 0

and Eðr; r�; n; 0Þ ¼ Eðr; nÞ: The fitness of this mutant, if it
is rare, in a population dominated by the resident at
equilibrium is given by W r�;r ¼ f ðr�;fðr�;Eðr; n̄ÞÞÞ: The
marginal fitness is

qW r�;r

qr�

����
r�¼r

¼
qf

qr�

����
n�¼0;r�¼r;n¼n̄

þ
qf

qf
qf
qr�

����
n�¼0;r�¼r;n¼n̄

.

Note that because we assumed that the environment is
not affected by the mutant population if it is absent,
there is no need to include the effect of a change in the
mutant’s trait on the environment. By substituting S we
can rewrite this as

qW r�;r

qr�

����
r�¼r

¼
qf ðr;fðr; ĒÞÞ

qr
þ ðS � 1Þ

qf=qr

df=dn

����
n�¼0;r�¼r;n¼n̄

.

which demonstrates the generality of our finding. The
interpretation of this result is that a trait can affect the
fitness in a frequency-independent way, given by the first
term, and indirectly in a frequency-dependent way,
through a one-dimensional feedback environment,
represented by the second term. The relative importance
of these two factors is gaged by the resilience.
For this result to hold the density dependence needs

to work through a single dimensional feedback environ-
ment. Using the same line of reasoning it is straightfor-
ward to explore evolution in a k-dimensional feedback
environment. Let the population dynamics be given by

ntþ1 ¼ ntf ðr;f1ðr;E1Þ; . . . ;fkðr;EkÞÞ, (B.2)

where Ei ¼ Eiðr; ntÞ represents the state of the ith
feedback variable, which depends both on the trait
and on the population density. As before we assume that
the variable is independent of the trait if there are no
individuals present. At equilibrium we have
f ðr;f1ðr; Ē1Þ; . . . ;fkðr; ĒkÞÞ ¼ 1 where the Ēi ¼ Eiðr; n̄Þ:
The resilience is given by

S ¼
Xk

i¼1

qf

qfi

dfi

dn

�����
n¼n̄

þ 1.

The marginal fitness of a rare mutant with trait value r�

is given by

qW r� ;r

qr�

����
r¼r�

¼
qf

qr�

����
n�¼0;r�¼r;n¼n̄

þ
Xk

i¼1

qf

qfi

qfi

qr�

�����
n�¼0;r�¼r;n¼n̄

which can be rewritten as

qW r� ;r

qr�

����
r¼r�

¼
qf ðr;f1; . . . ;fkÞ

qr

þ
Xk

i¼1

mi
qf

qfi

dfi

dn

�����
n¼n̄

where the multipliers mi are defined as: mi ¼
qfi

qr�
= dfi

dn
jn�¼0;r�¼r;n¼n̄: Only if all mi are equal will the

resilience explicitly form part of the expression for
marginal fitness. This will not generally be the case if
k41:
This result relates to evolution in populations which

exhibit limit cycles or chaotic dynamics. Let the densities
over a limit cycle be given by the sequence nt; where the
nt satisfy recursion (B.1). Because the densities in such
cases change from time step to step, the value of the
environment will potentially also take different values.
Let Et denote the value of the environment at time t, i.e.
Et ¼ Eðr; ntÞ: Because the value of nt is a function of n0
through (B.1), the value of the environment at time t is a
function of the density at time 0: Et ¼ kðr; n0Þ: The
dynamics from time point 0 to T are given by

nT ¼ n0Pt¼T
t¼0 f ðr;fðr; kðr; n0ÞÞÞ.

This recursion is a special case of (B.2), hence we can
conclude that over a limit cycle or chaotic orbit it is, in
general, not possible to describe the marginal fitness in
terms of the resilience.
In sum, we have found that the resilience will

generally appear in the marginal fitness equation if the
density dependence works through a single dimensional
feedback environment, which can be represented by a
scalar. Although this does make clear that in a large
class of models stability will evolve through individual
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selection and that this evolution will seek a balance
between frequency-dependent and frequency-indepen-
dent selective processes, it is not possible to draw general
conclusions on whether or not stability will evolve.
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