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Abstract

To date, the majority of theoretical models describing the dynamics of infectious diseases in vivo are based on the

assumption of well-mixed virus and cell populations. Because many infections take place in solid tissues, spatially structured

models represent an important step forward in understanding what happens when the assumption of well-mixed populations is

relaxed. Here, we explore models of virus and virus–immune dynamics where dispersal of virus and immune effector cells was

constrained to occur locally. The stability properties of our spatial virus–immune dynamics models remained robust under

almost all biologically plausible dispersal schemes, regardless of their complexity. The various spatial dynamics were

compared to the basic non-spatial dynamics and important differences were identified: When space was assumed to be

homogeneous, the dynamics generated by non-spatial and spatially structured models differed substantially at the peak of the

infection. Thus, non-spatial models may lead to systematic errors in the estimates of parameters underlying acute infection

dynamics. When space was assumed to be heterogeneous, spatial coupling not only changed the equilibrium properties of the

uncoupled populations but also equalized the dynamics and thereby reduced the likelihood of dynamic elimination of the

infection. In line with experimental and clinical observations, long-lasting oscillation periods were virtually absent. When

source–sink dynamics were considered, the long-term outcome of the infection depended critically on the degree of spatial coupling.

The infection collapsed when emigration from source sites became too large. Finally, we discuss the implications of spatially

structured models on medical treatment of infectious diseases, and note that a huge gap exists in data accurately describing infection

dynamics in solid tissues.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Mathematical models; Spatially structured models; Intra-host dynamics; Virus–immune dynamics; Dynamic elimination; Disease

persistence
1. Introduction

Until recently, it was widely believed that some
chronic infectious diseases such as those resulting from
hepatitis B virus (HBV), hepatitis C virus (HCV),
human immunodeficiency virus (HIV), human T-cell
leukemia virus (HTLV), and human cytomegalo virus
e front matter r 2004 Elsevier Ltd. All rights reserved.
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(CMV) are static infections (Pantaleo et al., 1993;
Hengel et al., 1998; Emery et al., 1999). However,
during the last decade this view has been superseded by
a picture of highly dynamic infections, where production
rates and clearance rates of viruses and of virus-infected
cells appear to be on a time-scale of hours to days (Ho
et al., 1995; Wei et al., 1995; Nowak et al., 1996; Nowak
and Bangham, 1996; Zeuzem et al., 1996; Lam et al.,
1997; Emery et al., 1999; Ramratnam et al., 1999).
Instrumental in that shift of perspective were population
dynamical models, which greatly improved our under-
standing of the replication dynamics of these viruses in
vivo (Ho et al., 1995; Wei et al., 1995; Nowak et al.,
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1996; Nowak and Bangham, 1996; Payne et al., 1996;
Phillips, 1996; Perelson et al., 1996, 1997; Zeuzem et al.,
1996; Bonhoeffer et al., 1997; Lam et al., 1997;
Neumann et al., 1998; Emery et al., 1999, 2002; Whalley
et al., 2001).

Most of the modeling efforts to date assume
panmictic (well-mixed) virus populations and describe
spatially averaged infection dynamics at the whole-body
level (reviewed in Nowak and May, 2000). However,
the interaction between pathogens and the immune
response tends to be local within the body of infected
hosts. For example, it was recently shown that the
assumption that HIV exists as a panmictic virus
population was inconsistent with the pattern of
genetic variation observed in solid tissues such as the
spleen (Frost et al., 2001). Rather, the observations
supported a picture of spatially structured populations
consisting of a set of loosely coupled virus populations,
also called ‘‘metapopulations’’ (Levins, 1969). There-
fore, there is a need for spatially structured models to
understand the consequences of spatial structure for
virus dynamics in vivo.

In this paper, we have used two different types of
spatially structured models to elucidate how local
dispersal of virus and virus-specific immune cells
influences infection dynamics and disease persistence
in vivo. Our first model is a spatially extended version
of the ‘‘basic’’ model of virus dynamics; the second,
a spatially structured model that considers a
localized virus-specific immune response. Both
models are closely related to previously described
models that do not consider spatial coupling
(Nowak and Bangham, 1996). Because spatial
heterogeneity is an important factor in population
dynamics (for references see Dias, 1996), we also
study the dynamics of each spatially structured model
for the two cases of an entirely homogeneous and a
heterogeneous environment. We discuss how the non-
spatial models can be derived from spatially structured
models, how predictions obtained from spatially struc-
tured models deviate from those obtained from non-
spatial models, and what the implications for medical
treatment are.
2. Models and results

In this paper we will discuss the following models: We
first discuss model I(a), the ‘‘basic’’ model of virus
dynamics. We next discuss model I(s), a spatially explicit
extension of model I(a) that incorporates spatial spread
of the virus. Model II(a) extends model I(a) by
considering an immune response against virus-infected
cells. Finally, model II(s) is a spatial extension of model
II(a) that explicitly incorporates dispersal of virus and
immune cells.
Model I(a): Basic model of virus dynamics

_T ¼ b � dT � eTV ;

_Y ¼ eTV � uY ;

_V ¼ pY � cV : ð1Þ

This model describes the interaction between a
replicating virus and host cells in the simplest possible
way and therefore does not consider any spatial
structure. Due to its simplicity, it is referred to as the
‘‘basic’’ model of virus dynamics (Nowak and Bangham,
1996; reviewed in Nowak and May, 2000). Here, the
variable T denotes the abundance of uninfected target
cells, Y stands for the abundance of virus-infected cells
that produce new virus particles, and V denotes the
abundance of virus particles. The dot above a variable
denotes the derivative of the respective variable with
respect to time. Uninfected cells are produced at a
constant rate b from a source (e.g. the thymus) and die
at rate dT. Hence, prior to infection, target cells are in a
dynamical equilibrium given by T̂0 ¼ b=d: Upon infec-
tion of uninfected cells with virus, infected cells are
produced at rate eTV and die at rate uY. Free virus is
produced from infected cells at rate pY and cleared from
the system at rate cV. In a newly infected host, a virus
particle infects on average eT̂0 target cells. These
infected cells will, on average, live 1/u time units and
will each produce p virus particles, which, on average,
live for 1/c time units. The basic reproductive ratio,
denoted by R0, is therefore given by bep/(duc). If R0o1;
the infection will only be transient and the system will
eventually converge to its uninfected equilibrium (E0)
with T̂0 ¼ b=d and Ŷ 0 ¼ V̂ 0 ¼ 0: If, on the other hand,
R041; then the system converges in damped oscillations
to its infected equilibrium (E1) with T̂1 ¼ uc=ðepÞ ¼

T̂0=R0; Ŷ 1 ¼ ðbep � ducÞ=ðeupÞ; and V̂ 1 ¼ ðbep � ducÞ=
ðeucÞ (Phillips, 1996; Nowak and Bangham, 1996). An
example of the dynamics generated by this model is
shown in Fig. 1 (solid line). A stability analysis for this
model is given in Appendix A.

Model I(s): Spatially explicit basic model of virus

dynamics

_Ti; j ¼ b � dTi; j � eTi; jV i; j ;

_Y i; j ¼ eTi; jV i; j � uY i; j ;

_V i; j ¼ pY i; j � cV i; j �
mV

8

Xiþ1

i0¼i�1

Xjþ1

j0¼j�1

½Vi; j � V i0; j0 �: ð2Þ

Model I(s) extends model I(a) by including spatial
structure. Compared to model I(a) the newly introduced
subscripts i and j refer to a site with grid coordinates i, j.
We assumed a completely homogeneous environment in
which all model parameters were the same at all sites.
The additional term in the virus equation determines
the spatial coupling. We assumed here that the local
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Fig. 1. Dynamics of target cells (left), infected cells (center), and virus (right). The solid line shows the solution of decoupled version of model I(s).

The long-dashed line depicts the solution of model I(s) at the site of viral inoculum (11,11); the short-dashed line depicts the dynamics at a site close

to the border (3,3). Viral export is set to 10%. Peak values of free virus are: 197 (solid line), 178 (long-dashed line), and 192 (short-dashed line). The

delay between the solid line and the long-dashed line is 	5 time units, that one between the long-dashed line and the short-dashed line 	25 time units.

The eigenvalue lmax of the Jacobian of system I(s) is equal to 29:77� 10�2 
 1:95� 10�1i: It is virtually the same as for the non-spatial system I(a)

(differences o10�5). The negative real part indicates a damped dynamics. From the imaginary part follows an oscillation period P of 	32 time units

ðP ¼ 2p=ImðlÞÞ: Parameters are as follows: b=1; d=0.1; e=0.001; u=0.5; p=1000; c=10. T0=10, R0=2, T̂1 ¼ 5; Ŷ 1 ¼ 1; and V̂1 ¼ 100:

G.A. Funk et al. / Journal of Theoretical Biology 233 (2005) 221–236 223
dynamics were coupled through the movement (diffu-
sion) of virus to the eight nearest neighboring sites that
surround the site where it emerged. Hence, mV denotes
the diffusion rate of free virus to adjacent sites. The
stability analysis of model I(s) is given in Appendix A.
Here, we emphasize that our qualitative results on the
stability of model I(s) hold for almost all biologically
plausible dispersal schemes, regardless of their complex-
ity. This result derived in Appendix A holds as long as
all eigenvalues of the matrix describing the geometrical
interactions between grid sites are non-positive (see
Appendix B). From Perron–Frobenius theory follows
that this is the case for a large class of matrices (Minc,
1988). We used nearest neighborhood dispersal only
for reasons of simplicity, as explained in the next
paragraph.

Infection dynamics were described on a two-dimen-
sional square grid with 21� 21 sites. We assumed that
the grid represents a small region of solid tissue, e.g. a
thin section through parts of the liver, the spleen, or a
lymph node. Target cells, such as liver hepatocytes or T
cells of the lymphatic paracortical area (T-cell zone),
were taken to be sessile. We further assumed that target
cells were in steady state prior to infection and that there
were no infected cells present. We started the infection in
the center of the grid with an inoculum of 10 viral units.
Since focal bursts of virions and foci of infected cells
have been demonstrated in vivo around infected cells
(Haase et al., 1996; Miller et al., 1997; Reinhart et al.,
1998; Lau et al., 1999) and local viral replication
followed by induction of local antiviral immunity occurs
in vivo (Kaul et al., 2000; Ambrose et al., 2001), in each
time unit a fixed percentage of virus (and in Appendix B
of immune effector cells) were allowed to disperse into
the eight nearest neighboring sites to that from which
they emerged (up, down, left, right, and the four
diagonals). In the literature, such a neighborhood is
called the ‘‘Moore neighborhood’’ (Gaylord and Nishi-
date, 1996). Adoption of this rule ensured that dispersal
of virus and immune effector cells was a local process.

Most of the simulations were done with periodic
boundary conditions. These boundary conditions im-
pose a toroidal topology on the grid, where opposite
edges are joined in both dimensions. Thus, the same
dispersal rules apply in the center and along the
boundaries. Our choice of the grid size was—at least
in part—motivated by the fact that besides the default
periodic boundary conditions we also considered
absorbing boundary conditions. Therefore, the grid
had to be large enough to ensure that the loss of
‘‘material’’ along the borders did not affect the long-
term outcome in the center of the grid. On the other
hand, computational tractability put some constraints
on the grid size as simulation time grew over propor-
tional with increased grid size.

Due to a lack of reliable estimates of parameters for
the within tissue dynamics, we selected the parameters
used in this article to ensure that in equilibrium
approximately one infected cell per site was present
(range 0–15 cells site�1). This is, for example, in line with
the observed number of productively infected
cellsmm�2 in lymphoid tissues during primary SIVagm
infection (Gueye et al., 2004). Nevertheless, numerical
simulations in this paper should be regarded to illustrate
qualitative spatial infection dynamics. To model infec-
tion dynamics in spatially heterogeneous tissues, para-
meters were allowed to vary uniformly within certain
ranges.

2.1. Infection dynamics in a homogeneous environment

Let us now examine the infection dynamics generated
by model I(s). First, we consider a completely homo-
geneous environment with identical parameter values
for each site. Thus, the long-term outcome should be the
same on each site. Initially, local populations of target
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Fig. 2. Non-spatial and spatially averaged virus dynamics on a linear

(left) and logarithmic (right) scale. The solid line shows the virus

dynamics according to model I(a). The dashed line indicates the virus

dynamics of model I(s) averaged out over the entire grid. Although

both models have identical initial up-slopes and converge to the same

steady-state virus load, the picture indicates a substantial deviation of

the dynamics created by the two models at peak of viremia. This can

lead to systematic errors in the estimates of parameters underlying

peak viral dynamics when fitted by a non-spatial model. The biphasic

up-slope of model I(s) indicating a subdued viral growth rate results

from a curtailed target cell availability in the center of the grid where

the infection equilibrates, while in the periphery it still continues to

reach previously uninfected sites. Viral inoculum of the non-spatial

model: 10/441 viral units. All other parameters as in Fig. 1.
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cells are assumed to be in steady state. We start the
infection in the center of the grid with an inoculum of 10
viral units. The parameters are selected so that R041
holds. We allow 10% viral export from any site into the
eight nearest neighboring sites. This allows the infection
to spread from the center over the whole grid. The long-
dashed line in Fig. 1 shows the infection dynamics at the
site of the viral inoculum, which has the grid coordinates
(11,11). The short-dashed line in Fig. 1 depicts the
dynamics on a site close to the border of the grid, which
has the coordinates (3, 3). Due to viral diffusion, the
peak of infection in the center (long-dashed line)
increases delayed in time compared to the peak of a
decoupled (mV=0) version of model I(s) (solid line) and
it is also slightly damped. The virus load peak of the
spatially structured model at the central site is 10%
lower than that of the decoupled model (178 versus 197
viral units); the difference at the peripheral site is 	2.5%
(192 versus 197 viral units). The higher peak virus load
at the periphery is due to the fact that a peripheral site
can have six adjacent sites at most, each with the same
virus concentration as it has itself. Hence there is no net
viral export to these sites. So, it may ‘loose’ only 2

8
� 1

10
¼

1
40
or 2.5% of its virus concentration. The delay between

the peak at the central site and the one on the border
indicates that the infection travels over the grid with a
speed of 	0.3 grid sites per unit of time. Taken together,
one can see that the system converges on each site in
damped oscillations toward the equilibrium (E1). At
equilibrium, dispersal from and to local sites is in
balance and does not alter the equilibrium properties of
the local populations. Because (E1) represents the local
as well as the spatially averaged infected equilibrium, the
‘basic model of virus dynamics’ serves as a good
approximation for the spatial infection dynamics close
at equilibrium. But are the two models also equivalent at
the beginning of an infection, i.e. during the acute
phase?

Fig. 2 indicates that model I(a), the basic model of
virus dynamics, may not always serve as a good
approximation for infection dynamics. Although it gives
almost identical results as model I(s) at the very
beginning of an infection, i.e. identical initial up-slopes,
it may not be appropriate for obtaining parameter
estimates at around the peak of the infection. Here it is
worth noting that, in line with experimental results
(Nowak et al., 1997; Little et al., 1999), the spatial model
indicates a biphasic up-slope of the virus load curve
(dashed line) while the non-spatial model lacks to
reproduce this (solid line). The subdued viral growth
rate is due to the fact that the infection settles to its
equilibrium earlier at those sites where it started than in
the periphery. Averaging out over all sights eventually
results in a biphasic up-slope. Hence, it is worth noting
that parameter estimates derived by fitting model I(a) to
virus load data obtained from blood samples of patients,
which reflect a spatially averaged situation at the
whole-body level, may underestimate the true—read
local—infection dynamics in vivo.

2.2. Infection dynamics in a heterogeneous environment

We now relax the assumption of a homogeneous
environment and simulate infection dynamics on a
heterogeneous grid. That means that each parameter is
allowed to vary randomly from site to site within a
certain range from a uniform distribution. In particular,
we allow that R0 is below unity at some randomly
distributed sites. Due to spatial coupling, there is a
constant net flow of viruses from sites with an R041;
sources, to sites with an R0o1; sinks. Source sites allow
for viral amplification and dissemination while sink sites
do not permit viral amplification. Thus sources can
maintain the infection, while sinks cannot maintain the
infection in isolation. Fig. 3 serves as an example
showing the infected equilibria of a decoupled (mV=0)
version of model I(s) on a grid where 60% of the sites
have an R041: Here, R0 ranges from 0.09 to 29 (median
1.14); it is 1.2 on the site where the infection starts. We
will refer to that example in the following paragraphs
when examining what happens if local diffusion of virus
is ‘‘turned on’’. Intuitively, we expect that spatial
coupling will have a smoothing effect. Variation in the
source to sink ratio will be considered further below.

Let us now examine the effect of weak spatial
coupling on infection dynamics and disease persistence
(as measured by equilibrium densities of infected cells
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Fig. 3. Densities of target cells (left), infected cells (center), and virus (right) at equilibrium in a decoupled version of model I(s) on a heterogeneous

21� 21 grid. R0 ranges from 0.09 to 29 (median 1.14) and is 41 on 57% of the sites. Parameters are as follows (ranges): b=0.5–1.5; d=0.05–0.15;

e=0.0005–0.0015; u=0.1–0.9; p=500–1500; and c=10–30 (uniform distributions).
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and free virus) in vivo. To that end, we use the same
initial grid configuration as in the previous paragraph,
but now allow 1% of the virus to diffuse into the eight
nearest neighboring sites. The results are summarized in
Fig. 4. The top part of Fig. 4 shows that the virus (right)
can achieve higher local densities than theoretically
predicted by the non-spatial model while target cells
(left) are below their predicted equilibrium value. The
steady-state density of target cells at the site of infection
is 13.75; R0 at this site is 1.2. Thus, without spatial
coupling, target cells would reach an equilibrium density
of T̂0

�
R0 � 11:4 units (Fig. 4, left, solid line). However,

with 1% virus diffusion, the equilibrium density drops
to 	9 units (long-dashed line). This indicates that, on a
heterogeneous grid, spatial coupling and thereby intro-
duced source–sink dynamics can change the equilibrium
properties substantially. The short-dashed line in Fig. 4
depicts the dynamics on site (3, 3), which has a high R0.
Sites like this may export virus to nearby sites with lower
equilibrium densities. The bottom of Fig. 4 shows how
each site profits or loses from spatial coupling. To that
end, we have calculated the local gains or losses by
subtracting the equilibrium densities of the decoupled
model (as shown in Fig. 3) from the equilibrium
densities with 1% virus diffusion (not shown here).

Fig. 5 summarizes the effect of increasing spatial
coupling on virus dynamics and the equilibrium density
of free virus. The left side depicts how the dynamics of
distant sites equalize with increasing spatial coupling
(1%, 50%, 90% viral export) and that the initially
differing abundances of virus tend toward an average
(mean field) value. This is easy to understand if the virus
load equation of (5) is re-written as follows:

0 ¼ _V i;j ¼ pY i;j � ðc þ mV ÞVi;j þ mV V̄ ; (3)

with V̄ referring to the average neighborhood virus
load. Hence,

V i;j ¼ ðpY i;j þ mV V̄ Þ=ðc þ mV Þ: (4)

The second term in the numerator, mV V̄ ; indicates that,
with increasing spatial coupling, the average virus load
of neighboring sites contributes more and more to the
equilibrium virus load of site i, j. The center of Fig. 5
depicts the equilibrium densities of virus on the grid.
Increased spatial coupling leads to a pronounced
smoothing effect. The right side shows the local gains
and losses of virus due to various degrees of spatial
coupling (influx from sites with a higher equilibrium
density or efflux to sites with a lower equilibrium
density). Local gains and losses are not symmetrical for
intermediate to high degrees of spatial coupling. Rather,
the losses of some sites appear to be substantial, while
the gains of other sites are relatively small. An
explanation for this phenomenon is given in the next
section.

2.3. Variation in the source–sink ratio

In this paragraph, we consider how variation in the
fraction of sources to sinks, or in the quality of local
sites, changes the long-term outcome of model I(s).
Because virus load is the most important clinically
monitored quantity of infected individuals, we focus
here on its equilibrium density as an indicator of disease
persistence. Fig. 6 depicts the relation between various
degrees of virus diffusion and the cumulative equili-
brium virus load over the whole grid for differing
source–sink ratios. Spatial coupling does not signifi-
cantly alter the equilibrium state as long as the fraction
of sites that can maintain the infection is 430%. Below
30%, however, long-term maintenance of the infection
depends critically on the virus diffusion rate. Only for
weak spatial coupling, which reduces the influence that
nearby sink sites have on a source site, can the infection
be maintained. For intermediate or strong spatial
coupling, the sinks absorb the output of the sources
more and more till they are finally annihilated. If, for
example, R041 holds on 10% of the grid and more than
50% of the virus from a source site is allowed to diffuse
out, then the equilibrium property breaks down (for
55% viral export, less than one virus particle remains on
the grid).
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Fig. 4. Infection dynamics and relative gains or losses of target cells (left), infected cells (center), and virus (right) on a heterogeneous 21� 21 grid.

Top: Local dynamics of target cells, infected cells, and virus; bottom: local gains and losses for 1% viral export to the nearest neighboring sites

according to model I(s). Parameters as in Fig. 3.
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An intuition for the proposed collapse of the infection
can be obtained from the following simplified model
that considers only two qualitatively distinct types of
patches. Here, the subscripts 1 and 2 refer to source and
sink sites, respectively. They are linked throughout a
pool of dispersers, i.e. V̄ ¼ fV1 þ ð1� f ÞV2; where V̄

denotes the average virus load and f denotes the fraction
of sources in the system

_T1 ¼ b1 � d1T1 � e1T1V 1;

_Y 1 ¼ e1T1V 1 � u1Y 1;

_V1 ¼ p1Y 1 � c1V 1 � mV V1 þ mV V̄ ;

_T2 ¼ b2 � d2T2 � e2T2V2;

_Y 2 ¼ e2T2V 2 � u2Y 2;

_V2 ¼ p2Y 2 � c2V 2 � mV V2 þ mV V̄ : ð5Þ

The equation describing virus dynamics at source sites
reads as follows: virus is produced from infected cells at
rate p1Y1, cleared at rate c1V1, emigrates at rate mVV1,
and immigrates at rate mV V̄ from the pool of dispersers.
The equation for the virus dynamics at sink sites reads
similar. Using an invasion analysis, it can be shown that
virus can increase when rare only if the uninfected side
equilibrium is unstable, that is if

d1d2u1u2½�c1c2ðR
1
0 � 1Þð1� R2

0Þ � c1ðR
1
0 � 1ÞfmV

� c2ð1� R2
0ÞmV ð f � 1Þ�o0: ð6Þ

By using the above-introduced notation for sources and
sinks, R1

041 and R2
0o1 holds, and condition (6) can be

re-written as

1

mV

c1c2ðR
1
0 � 1Þð1� R2

0Þ

�c1f ðR
1
0 � 1Þ þ c2ð1� f Þð1� R2

0Þ
41: (7)
Hence, if the diffusion rate mV is too large the virus
concentration cannot increase from small numbers. The
reason for this is that at high diffusion rates of virus too
much virus leaves source sites, in which it can increase,
for sink sites where the numbers decrease.

In the remainder of the paper, we extend the basic
model of virus dynamics by considering a specific
immune response directed against virus-infected cells.

Model II(a): Virus–immune dynamics model

_T ¼ b � dT � eTV ;

_Y ¼ eTV � uY � kXY ;

_V ¼ pY � cV ;

_X ¼ aXY � qX : ð8Þ

This model considers a specific immune response
directed against virus-infected cells. It is an extension
of model I(a). In addition to the three variables that
were introduced there, the new variable X denotes the
abundance of immune effector cells, e.g. virus-specific
cytotoxic T-lymphocytes. Immune effector cells prolif-
erate in response to an antigenic stimulus at rate aXY.
They die at rate qX and kill infected cells at rate kXY

(Nowak and Bangham, 1996; Callaway and Perelson,
2002). This system allows for three equilibria at most.
First, the ‘‘naı̈ve’’ or uninfected equilibrium (E0).
Second, an infected equilibrium in the absence of an
immune response, which is identical to (E1). Provided
that the precursor frequency of immune cells is not zero
and a minimum number of infected cells are around so
that the growth condition for immune cells aŶ 14q is
fulfilled, an additional equilibrium (E2) exists where the
pathogen can persist but is checked by a persisting
immune response (Nowak and Bangham, 1996). The
equilibrium (E2) is given by the following expressions:
T̂2 ¼ bac=ðepq þ cadÞ; Ŷ 2 ¼ q=a; V̂2 ¼ pq=ðcaÞ; and
X̂ 2 ¼ ðabep � acdu � epquÞ=ðacdk þ epqkÞ (Nowak et
al., 1995; Nowak and Bangham, 1996). This equilibrium
differs from (E1) in the following way: while the target
cells go to a higher equilibrium value, the number of
infected cells and of free virus is lower (Nowak and
Bangham, 1996). The equivalent of a reproductive ratio
in presence of an immune response, denoted by RIR

0 ; can
be defined. It is given by bep=ðcdðu þ kX̂ 2ÞÞ ¼

1þ epq=ðcadÞ (Nowak and May, 2000, p. 59). Because
this value is always larger than unity, elimination of the
virus is not possible.

The stability analysis of model II(a) is given in
Appendix A, but local stability can also be evaluated via
the eigenvalues of the Jacobian matrix. Here, for
example, the maximum eigenvalue is negative, thus
implying local stability. Compared to the maximum
eigenvalue of model I(a), the real part of the maximum
eigenvalue of model II(a) is an order of magnitude
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Fig. 7. Dynamics and convergence behavior of target cells, infected

cells, free virus, and virus-specific immune cells for the first 250 time

units on a log scale. The solid line depicts the dynamics of model II(a)

that is without spatial coupling. The long-dashed line depicts the

dynamics of model II(s) at the site of viral inoculum (11,11); the short-

dashed line depicts the dynamics at site (3,3), which is close to the

border of the grid. One can see that the presence of a spatial structure

enhances population stability. The theoretically predicted equilibrium

densities of target cells, infected cells, free virus, and immune cells are

essentially reached after only one initial oscillation in the spatially

structured model, while it takes several oscillations (420) in the non-

spatial model until the equilibrium is approached. The oscillation

period is 	22 time units. Parameters are as follows: b=1; d=0.1;

e=0.001; u=0.5; p=1000; c=10; a=2; q=0.2; and k=0.3. Nearest

neighboring dispersal of both viruses and immune cells is 10%.
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by local dispersal of virus and immune effector cells reduces the

likelihood that the pathogen will go extinct as a result of stochastic

fluctuations with low magnitudes (dynamic elimination) at the

beginning of the infection. This in turn enhances population stability

and hence disease persistence in vivo. Parameters as in Fig. 7.
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smaller, which explains why convergence toward the
equilibrium (E2) occurs slower than in model I(a). The
solid lines in Fig. 7 show the infection dynamics and the
convergence behavior of target cells, infected cells, free
virus, and immune cells for the first 250 time units.

Model II(s): Spatially explicit virus–immune dynamics

model

_Ti;j ¼ b � dTi;j � eTi;jV i;j ;

_Y i;j ¼ eTi;jV i;j � uY i;j � kX i;jY i;j ;

_Vi;j ¼ pY i;j � cV i;j �
mV

8

Xiþ1

i0¼i�1

Xjþ1

j0¼j�1

½V i;j � V i0;j0 �;

_X i;j ¼ aX i;jY i;j � qX i;j �
mX

8

Xiþ1

i0¼i�1

Xjþ1

j0¼j�1

½X i;j � X i0;j0 �:

ð9Þ

Model II(s) is a spatial extension of model II(a). The
interpretation of the notion of model II(s)—here given
with fixed parameters—is the same as in model I(s). In
simulations that considered a heterogeneous environment,
the parameters were allowed to change from site to site.
Again, we assumed that target cells and infected cells were
sessile. The additional terms in the virus and the immune
cell equation determine the spatial coupling. Here, local
dynamics were coupled through movement (diffusion) of
virus and immune effector cells to the nearest neighboring
sites from which they emerged. The stability analysis of
this model is presented in Appendix A. As we have
already shown for model I(s), the stability properties of
model II(s) hold as long as all eigenvalues of the
connectivity matrix C are non-positive, which is the case
for virtually all biologically plausible dispersal schemes.

2.4. Virus–immune dynamics in a homogeneous

environment

We now compare the dynamics generated by model
II(s) with those generated by model II(a). As in the
previous section, we first consider a homogeneous
environment. Initially, target cells are assumed to be in
steady state. The initial densities of immune cells are
given by random numbers ranging from 0 to 0.1, which
reflects the variable frequency of precursor immune cells
on each site. Thus, although the environment is
homogeneous, the initial densities of precursor immune
cells differ from site to site. Again, we start the infection
with an inoculum of 10 viral units placed in the center of
the grid. From there, it spreads over the whole grid
(because RIR

0 is always 41) with a speed of 	0.2 grid
sites per unit of time. The maximal eigenvalue of the
Jacobian of model II(s) is again complex ðl ¼ �5:1�
10�3 
 2:9� 10�1iÞ: Its negative real part indicates an
attenuating wave, while its imaginary part indicates
oscillations with a period of 2p=Im lð Þ � 22 time units.
Fig. 7 suggests that spatial coupling by local dispersal of
virus and immune cells can enhance population stability
by spatial averaging. Populations in the spatially
structured environment equilibrate much faster (	10
times) than ‘‘isolated’’ populations. This is an interesting
result, which deserves further investigation.

2.5. Dynamic elimination of a pathogen reconsidered

Focusing on the initial phase of the infection, Fig. 8
shows that infected cells and free virus fluctuate several
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times down to low population densities (solid lines).
Frequent oscillations with low magnitudes during
the establishment of an infection carry the risk that
the pathogen will go extinct as a result of stochastic
fluctuations (i.e. dynamic elimination; Nowak and
May, 2000, p. 63). The dotted lines in Fig. 8 show
spatially averaged virus load and immune cell
densities, respectively. Spatial coupling not only
reduces the number of fluctuations but also their
magnitudes. This increases the chance that the infection
will persist in vivo. Efficient damping occurs because
neighboring sites oscillate out of phase (here by a
quarter of a period). In addition, virus diffusion to
neighboring sites may bring the initial conditions closer
to the equilibrium state.
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Fig. 10. Equilibrium densities of free virus (left) and immune effector

cells (right) for increasing local dispersal. The smoothing effect of

spatial coupling is more pronounced for the immune effector cells than

for the virus. Nearest neighborhood coupling also seems to partially

conserve spatial discontinuities of viral and host (tissue) factors.

Parameters as in Fig. 9.
2.6. Virus–immune dynamics in a heterogeneous

environment

We now relax the assumption of a homogeneous
environment and simulate the infection dynamics on a
heterogeneous grid. As before, the parameters and
therefore the R0’s are randomly chosen from site to
site. However, because RIR

0 is always41, the problem of
source–sink dynamics does not exist here any more.
Fig. 9 shows the long-term outcome of a decoupled

version of model II(s). At the site where the infection
starts, R0 is 1.03. The figure shows that infected
cells and virus exist on the whole grid. Immune cells,
however, can co-exist only on those sites where
infected cells are above a threshold density of 0.1 cells
per site. This immune activation threshold is given by
the term (q/a). The pattern of sites where the immune
response persists versus other sites without immune cells
is similar to the previously described source–sink
pattern. Therefore, we examine in the next paragraph
what happens if dispersal of both free virus and immune
cells is ‘‘turned on’’.

Fig. 10 summarizes the effect of increasing spatial
coupling of virus and immune cells on the long-term
outcome of the infection. The left column shows the
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threshold density. For the example shown here, a minimal density of 0.1 infected cells (q/a) is required to stimulate a local immune response.

Parameters are as follows (ranges): b=0.5–1.5; d=0.05–0.15; e=0.0005–0.0015; u=0.1–0.9; p=500–1500; c=10–30; a=0.5–2.5; q=0.1–0.5; and

k=0.1–10.6.
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equilibrium density of virus, while the right column
shows the equilibrium density of virus-specific
immune cells. Dispersal of both virus and immune cells
increases from 1% via 10% and 50% to 99%,
respectively. As can be seen here, the smoothing
(averaging) effect is stronger for the immune cells than
for the virus. The local gains and losses are roughly
symmetrical for target cells, infected cells, and viruses,
while they are asymmetrical (with larger losses than
gains) for the immune cells (data not shown here). This
asymmetrical distribution of local gains and losses could
partially be due to the fact that a certain threshold
density of infected cells is required to stimulate a local
immune response. Therefore, and in contrast to infected
cells and virus, immune cells will be distributed with
increasing dispersal over a larger fraction of sites where
they did not exist before.
3. Summary and discussion

Compartmental analysis in biology and medicine has
a long tradition (Anderson, 1983; Jacquez, 1985;
Anderson and May, 1991). The majority of theoretical
models in infection dynamics to date are based on the
assumption of panmictic (well-mixed) virus and cell
populations (Ho et al., 1995; Wei et al., 1995; Nowak
and Bangham, 1996; Phillips, 1996; Perelson et al., 1996,
1997; Bonhoeffer et al., 1997; Nowak and May, 2000;
Funk et al., 2001; Nowak et al., 1996; Whalley et al.,
2001; Zeuzem et al., 1996; Lam et al., 1997; Neumann et
al., 1998; Emery et al., 1999, 2002). Since most infections
take place in solid tissues (Sprent and Tough, 1994;
Haase et al., 1996; Chun et al., 1997; Miller et al., 1997;
Grossman et al., 1998; Reinhart et al., 1998; Lau et al.,
1999; Kaul et al., 2000; Ambrose et al., 2001; Frost et
al., 2001), spatially structured models are an important
step forward towards understanding what happens
when the assumption of panmictic populations is
abandoned. Here, we explored the consequences of
incorporating spatial structure into models of virus and
virus–immune dynamics. Our aim was to compare
results obtained from models where dispersal of virus
and immune effector cells was constrained to occur
locally with results obtained from non-spatial models as
described and studied in Nowak and Bangham (1996).
In particular, we were interested in the question of
whether the dynamics and stability properties of the
non-spatial models were altered if spatial coupling was
considered. It turned out that the two different types of
models produced comparable results in some ways, but
not in others. Because spatial heterogeneity is known to
be an important factor in population dynamics (Dias,
1996), we also explicitly incorporated spatial disconti-
nuities of viral and host factors in some of the
simulations. The main features to note about the results
are as follows (discussed thereafter):
(1)
 The stability properties of our spatial models hold
for almost all biologically plausible dispersal
schemes. It is sufficient that the all eigenvalues of
the connectivity matrix are non-positive (Appendices
A and B).
(2)
 In a homogeneous environment, the dynamics of the
non-spatial model of virus dynamics deviate sub-
stantially from those of the spatially structured
model at the peak of the infection. This deviation
bears the risk of systematic errors in the estimates of
parameters describing the early infection (Fig. 2).
(3)
 In a heterogeneous environment, weak spatial
coupling by virus diffusion mainly changed the
equilibrium properties of target cells (Fig. 4C).
Increased spatial coupling was accompanied by a
stronger equalization of the infection dynamics and
a trend toward spatially averaged population den-
sities (Fig. 5)
(4)
 Below a certain source to sink ratio, the long-term
outcome of the infection turned out to depend
critically on the degree of spatial coupling. The
infection could not be maintained if the source sites
were loosing too much virus by local diffusion
(Fig. 6).
(5)
 The most noticeable property of the spatially
extended virus–immune dynamics model was that
long-lasting oscillations were virtually absent
(Fig. 7). It equilibrated much faster than the non-
spatial model and the risk of dynamic elimination of
the pathogen (and the immune cells) during the
invasion phase was markedly reduced.
Firstly, in Appendix A we show that the stability
properties of our spatial models I(s) and II(s) are robust,
as long as all eigenvalues of the connectivity matrix C

describing viral dispersal or cell movements in vivo are
non-positive. This covers virtually all biologically
plausible dispersal schemes, regardless of their complex-
ity. For reasons of simplicity and plausibility we used in
our paper nearest neighborhood dispersal (discussed
further below). But other dispersal schemes like
dispersal via junctions to more distant sites may be
considered as well if biologically justified.

Secondly, provided that the environment was entirely
uniform, local diffusion of virus did change the local
infection dynamics but not its long-term outcome when
compared to the non-spatial model. The deviations
observed at the beginning of the infection and around
peak concentration of virus may lead to biased estimates
of parameters underlying virus dynamics such as
subdued viral growth rates. To avoid such systematic
errors in parameter estimates, we suggest that spatially
structured models (e.g. Zorzenon dos Santos and
Coutinho, 2001 or Strain et al., 2002) should be used
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when exploring the infection dynamics in solid tissues.
Nevertheless, the basic model of virus dynamics may
serve as a good approximation for the infection
dynamics in solid tissues once a quasi-steady-state virus
load has been approached.

Thirdly, if we relaxed the assumption of a homo-
geneous environment, then a small amount of spatial
coupling did not alter the equilibrium properties much.
This result follows rigorously from a general perturba-
tion theorem given in Levin (1974), which can be used to
derive the long-term outcome of model I(s) from model
I(a). So, when mirroring the highly organized micro-
structure of some tissues (Cheynier et al., 1994; Gratton
et al., 2000; Ambrose et al., 2001), then the main
influence of weak spatial coupling was on the target cell
population. Although the target cells were generally
reduced, abundances of infected cells and free virus were
not much increased. A possible explanation for the
marked reduction of target cells on some sites could be
source–sink dynamics that might have pushed local
populations of target cells out of their respective
uninfected equilibrium. With increased spatial coupling
the dynamics of local sites started to equalize and the
long-term outcome tended toward spatially averaged
population densities. However, spatially averaged po-
pulation densities within a tissue may still differ from the
(panmictic) situation in the blood, which, for example,
interconnects the whole system of lymphoid tissues
and therefore may reflect averages on a macroscopic
size scale.

Fourthly, if the source sites were clearly outnumbered
by sink sites, then stability critically depended on the
degree of spatial coupling. The system broke down if
more than 50% of the virus that emerged from a site
diffused away. The abrupt (nonlinear) decline
in the virus load over a narrow range of diffusion could
be due to the fact that the frequent sinks ‘‘sucked off’’
too much virus from the rare randomly distributed (and
therefore largely isolated) sources. In addition, it is
worth noting that the mean R0 averaged across the grid
was 41, while the R0 calculated from averaged
parameter values was o1. Therefore, it is possible that
with increased spatial coupling the system was shifted
toward a state that was characterized by the ‘‘averaged
parameter dynamics’’. However, as soon as R0o1 was
achieved (corresponding to a kind of phase transition),
the nonlinear response of the system to spatial coupling
caused it to collapse. The observation that disease
persistence depended critically on virus diffusion once a
low source to sink ratio (virus load) was achieved may
inspire novel strategies to eradicate some chronic
infections such as HBV or HIV.

Clearly, the grid design of our spatial models serves as
a simplified starting point and does by no means
rule out more complex patterns of spatial interactions.
Here, we briefly discuss in as how far our assumption is
justified that viruses and cells disperse locally. Some
early HIV studies contain spectacular electron micro-
graphs showing directed shedding of HIV virions
(Bourinbaiar and Phillips, 1991; Tan et al., 1993), while
a recent review by Johnson and Huber (2002) states that
a number of animal viruses, including HIV, have
become adept to move from an infected cell to an
adjoining uninfected cell, e.g. by cell junctions. In
tissues, diffusion of virions via the interstitium away
from a source of infection is primarily a local process,
while paracrine secretion of cytokines from an infected
cell may activate nearby cells thus rendering them
susceptible for de novo infection. Although less is
known about immune cell trafficking in vivo, recent
studies using advanced imaging techniques seem to back
our local motion approach (Mandl et al., 2002; Tibaldi
et al., 2002; Huang et al., 2004).

To date, estimates of efficacies of antiviral drugs in
vivo are based on basic reproductive ratios that were
obtained from non-spatial (panmictic) models (Perelson
et al., 1996, 1997; Bonhoeffer et al., 1997; Neumann
et al., 1998; Emery et al., 1999; Little et al., 1999;
Whalley et al., 2001; Callaway and Perelson, 2002;
Funk, 2003). However, as we showed here, although
non-spatial models predict extinction of the infection,
spatially structured models instead predict persistence of
the infection for intermediate dispersal rates. Since
accurate estimations of basic reproductive ratios are of
considerable importance in clinical evaluations of drug
efficacies, it seems likely that more refined estimates of
basic reproductive ratios in the future will depend
significantly on results obtained from spatially struc-
tured models. Therefore, current predictions based on
non-spatial models regarding the eradication of viral
infections such as HIV, HBV, HCV, or CMV in vivo
should not be taken to be definitive.

Fifthly, it was interesting to see that the same
dynamics that occasionally brought pathogen popula-
tions to dynamic elimination in some non-spatial
virus–immune dynamics models was able to enhance
population stability and hence disease persistence when
spatial coupling was considered in those models. This
was mainly due to the fact that neighboring sites
oscillated with an appropriate phase shift (here with a
quarter of an oscillation period), which efficiently
damped the magnitude of the oscillations. We could
also show that the spatially structured model equili-
brated much faster (	10 times) than its non-spatial
analogue. In addition to the phase shift, quick virus
diffusion after ‘‘inoculation’’ could have changed the
initial conditions by pushing the whole system closer to
its equilibrium. We also conducted simulations with
artificial local extinction thresholds to test whether this
would alter the long-term outcome of the infection.
However, it turned out that spatial coupling damped the
system so efficient that local extinction could only be
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achieved for relatively high quasi-extinction thresholds
(X5% of the equilibrium value), which appear not to be
realistic. Noteworthy, increased overall population
persistence has also been found in host–parasitoid
models with restricted local dispersal of parasites and
hosts (Hassell et al., 1991).

Although there may be other (non-spatial) models
that may be less oscillatory, our findings are novel and
in contrast to the previously postulated ‘‘dynamic
elimination’’ hypothesis. It is worth noting that the
theoretically predicted phenomenon of dynamic elim-
ination of a pathogen has been viewed as controversial
by physicians. The observations obtained from our
spatially structured model, however, allow us to re-
interpret dynamic elimination as being essentially an
artifact of non-spatial modeling (Wodarz et al., 2000;
Nowak and May, 2000). When considering spatial
structure in the numerical simulations, we observe a
substantial reduction in the risk of dynamic elimination
of a pathogen, and the model is also much less
oscillatory. This is, for example, in line with data
obtained from acute SIV- and HIV-infected individuals,
where the virus load approaches the viral set point
without extensive oscillations (Nowak et al., 1997; Little
et al., 1999; Lindback et al., 2000). Thus, spatially
structured models have the potential to reconcile
theoretically obtained predictions based on non-spatial
models with experimental/clinical observations. A nice
example where dynamic elimination seems to fit the
biology is given in Payne et al. (1996).

Finally, it is worth noting that the specific type of
spatial coupling by nearest neighborhood dispersal,
which efficiently attenuated the influence of nearby sites
with distance, partially conserved spatial discontinuities
of viral- and host-mediated factors. To ensure that our
results were not confounded by the choice of periodic
boundary conditions, we repeated with both spatial
models a number of simulations using absorbing
boundary conditions. We surrounded the 21� 21 grid
with a belt of ‘‘black-hole’’ sinks (sites that can only
absorb) and observed what happened in the center of the
grid and at the periphery. It turned out that absorbing
boundary conditions sucked off ‘‘material’’ (cells and
viruses) from about three rows/columns and thereby
changed the dynamics and equilibria of these sites along
the border. However, the majority of the sites within the
grid were not affected by absorbing boundary condi-
tions and in general the results were very similar to the
simulations with periodic boundary conditions.

We conclude this article by emphasizing that spatially
structured models are essential in improving our under-
standing of the dynamics of viral infections in vivo and
in accurately predicting the drug efficacies required to
eradicate them. We note that there currently exists a
huge gap in data satisfactorily describing infection
dynamics in solid tissues.
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Appendix A. Stability analysis of spatial and non-spatial

models

A.1. Local stability of model I(a)

The local stability of a model such as model I(a) may
be determined from the Jacobian matrix. The Jacobian
of model I(a) evaluated at the infected equilibrium (E1)
is given by the matrix

J ¼

�d � eV̂ 1 0 �eT̂1

eV̂ 1 �u eT̂1

0 p �c

0
BB@

1
CCA

¼

�d � ðR0 � 1Þ=ðucÞ 0 �be=ðdR0Þ

ðR0 � 1Þ=ðucÞ �u be=ðdR0Þ

0 p �c

0
BB@

1
CCA: ðA:1Þ

The characteristic equation of the Jacobian (2) follows
from Det½J � lI � ¼ 0; where I is the identity matrix. It
can be brought to the normal form l3 � a1l

2
� a2l�

a3 ¼ 0: Necessary and sufficient conditions for local
stability of an equilibrium are provided by the Routh–-
Hurwitz criteria. These stability criteria put constraints
on the coefficients a1, a2, and a3, i.e. a140, a340, and
a1a24a3 (e.g. May, 1974, p. 196). Here, a1 ¼ c þ u þ

dR0; a2 ¼ ðc þ uÞdR0; and a3=c du. Since all parameters
of our model are positive real numbers, a140 and a340
are always fulfilled. Substituting a1, a2, and a3 by the
right-hand side expressions of the above identities leads
to

c2 dR0 þ cd2R2
0 þ u2 dR0 þ u d2R2

0 þ 2R0cdu4cdu

(A.2)

for the third Routh–Hurwitz condition. This can be re-
written as

c2 dR0 þ cd2R2
0 þ u2 dR0 þ u d2R2

0 þ cduð2R0 � 1Þ40:

(A.3)

The left-hand side remains positive for any R0X
1
2
:

So, with positive real-valued parameters and R0X1
(for R0o1Ŷ 1 and V̂ 1 were negative) the Routh–Hurwitz
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criteria are always fulfilled, hence the infected
equilibrium (E1) is always locally stable if it is
positive.

A.2. Local stability of model I(s)

Following a method for linearized neighborhood
stability analysis of metapopulation models (Jansen
and Lloyd, 2000; Lloyd and Jansen, 2004), our n� n

system I(s) can be decomposed into n2 decoupled three-
dimensional subsystems. After a similarity transforma-
tion outlined in Jansen and Lloyd (2000), the Jacobian
of model I(s), which contains now the decoupled
linearized equations describing the dynamics of a small
perturbation around the infected equilibrium, is ob-
tained by adding mVms to element 3,3 of the Jacobian of
model I(a) (see above). Hence the Jacobian of model I(s)
takes the form

J þ

0 0 0

0 0 0

0 0 mV

0
B@

1
CAms: (A.4)

Here, ms denotes the submaximal eigenvalue of the
matrix C describing the connectivity of the grid. The
eigenvalues of the connectivity matrix C (see Appendix
B) are

mkl ¼ 2ð2 cosð2pk=nÞ þ cosð4pl=nÞ � 3Þ; (A.5)

with both k; l ¼ 0; 1; . . . ; n � 1: A general discussion of
how to get the eigenvalues of the connectivity matrices
for various neighborhood geometries can be found in
Othmer and Scriven (1971). The eigenvalues of the
Jacobian of model I(s) follow from the equation

Det J þ

0 0 0

0 0 0

0 0 mV

0
B@

1
CAms � lI

2
64

3
75 ¼ 0: (A.6)

The coefficients of the characteristic equation have the
same form as for the non-spatial model, i.e. a1 ¼

~c þ u þ dR0; a2 ¼ ~c þ uð ÞdR0; and a3 ¼ du~c; with ~c ¼

c � mVms: Using the same arguments as before (i.e.
positive real-valued parameters, constraints on a1, a2,
and a3, and R0X1), it is easy to show that the
Routh–Hurwitz criteria are always fulfilled if ~c40:
Since mVX0 and mso0; ~c40 always holds. Therefore,
symmetry breaking, i.e. instability due to spatial
interactions, cannot occur. Note that all elements of
matrix C are non-negative if a suitable number is added
to all diagonal elements. If the resulting matrix is
irreducible it follows from Perron–Frobenius theory
that there is at most one positive eigenvalue (Minc,
1988). As a corollary it follows that all eigenvalues of C

are non-positive if C is irreducible (Lloyd and Jansen,
2004). As a consequence, all eigenvalues of C are non-
positive (see Appendix B).
A.3. Local stability of model II(a)

The characteristic equation of model II(a) takes the
form l4 � a1l

3
� a2l

2
� la3 � a4 ¼ 0: The Routh–Hur-

witz criteria again provide necessary and sufficient
conditions for an equilibrium to be locally stable. The
following constraints on the coefficients a1, a2, a3, and a4
have to be fulfilled: a140, a340, a440 and
a1a2a34a2

3 þ a2
1a4 (May, 1974, p. 196). Here,

a1 ¼ c þ u þ dRIR
0 þ uðR0 � RIR

0 Þ=RIR
0 ;

a2 ¼ duR0 þ cðu þ dRIR
0 Þ

þ ½uðR0 � RIR
0 Þðc þ qÞ=RIR

0 ;

a3 ¼ duðcR0 þ qðR0 � RIR
0 ÞÞ

þ ½uðR0 � RIR
0 ÞðcqÞ�=RIR

0 ;

and

a4 ¼ cdquðR0 � RIR
0 Þ:

Since RIR
0 is always 41 and all parameters of our model

are positive real numbers, a140, a240, a340, and
a440 are fulfilled if R04RIR

0 : The fourth Routh–
Hurwitz criterion comes down to: ððRIR

0 Þ
3=ðuR0ÞÞðc þ

dRIR
0 Þðc2RIR

0 þ quðR0 � RIR
0 Þ þ cuR0ÞðdðR

IR
0 Þ

3
þ quðR0 �

RIR
0 Þ þ duR0R

IR
0 Þ40: It is always fulfilled as long as

R04RIR
0 holds, hence the infected equilibrium (E2) is

always locally stable if it exists and if it is positive.

A.4. Local stability of model II(s)

Following the same procedure for linearized
neighborhood stability analysis as for model I(s),
the determinantal equation that leads to the eigenvalues
of the Jacobian of model II(s) is given by the expression

Det

�l� d � eV̂2 0 �eT̂2 0

eV̂2 �l� u � kX̂ 2 eT̂2 �kŶ 2

0 p �l� c þ mVms 0

0 aX̂ 2 0 �lþ mXms

2
666664

3
777775

¼ 0: ðA:7Þ

The coefficients of the characteristic equation have the
same structure as for the non-spatial model, i.e.

a1 ¼ ~c þ ~q þ u þ dRIR
0 þ uðR0 � RIR

0 Þ=RIR
0 ;

a2 ¼ ~c ~q þ duR0 þ ð~c þ ~qÞðu þ dRIR
0 Þ

þ ½uðR0 � RIR
0 Þð~c þ ~q þ qÞ�=RIR

0 ;

a3 ¼ ~c ~qðu þ dRIR
0 Þ þ duðR0ð~c þ ~qÞ þ qðR0 � RIR

0 ÞÞ

þ ½uðR0 � RIR
0 Þð~c ~q þ ~cqÞ�=RIR

0 ;
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and

a4 ¼ duð~c ~qR0 þ ~cqðR0 � RIR
0 ÞÞ;

with ~c ¼ c � mVms and ~q ¼ �mXms: It is worth noting
that the (negative) eigenvalue ms of the connectivity
matrix C, which appears in both dispersal terms, is the
same as for model I(s) because the geometry of the
neighborhood remains the same. We have further set
mV ¼ mX :Thus, one can follow the procedure outlined
for model II(a) to evaluate local stability of model II(s).
The fourth Routh–Hurwitz criterion can be re-written as
a1a2a3 � a2

3 � a2
1a440: Substituting in the respective

expressions from above for a1, a2, a3, and a4, and
neglecting the common positive factors, ðRIR

0 Þ
3=

ðuR0ðuR0 þ ~qRIR
0 ÞÞ; the following expression can be

obtained after some algebraic transformations (here
done with a program for formula manipulation):

½dðRIR
0 Þ

2
ð ~q þ dRIR

0 Þ þ uððR0 � RIR
0 Þðq þ ~qÞ

þ RIR
0 ð ~q þ dR0ÞÞ�½~c

2RIR
0 ð~c þ ~q þ dRIR

0 Þ

þ uð~c2R0 þ dRIR
0 ðqðR0 � RIR

0 Þ þ ~qR0ÞÞ�

þ ~cfd2 ~qðRIR
0 Þ

4
ð ~q þ dRIR

0 Þ þ duðRIR
0 Þ

2

� ½2 ~qðq þ ~qÞðR0 � RIR
0 Þ þ dqRIR

0 ðR0 � RIR
0 Þ

þ RIR
0 ð2 ~q2 þ 3d ~qR0 þ d2R0R

IR
0 Þ�

þ u2½ðq þ ~qÞðR0 � RIR
0 Þ þ RIR

0 ð ~q þ dRIR
0 Þ�2g40: ðA:8Þ

One can see from this formula that it always takes
positive values provided that R04RIR

0 holds.
So, together with the other three necessary conditions,
this form of the fourth Routh–Hurwitz criterion
for model II(s) is necessary and sufficient to guarantee
that the infected equilibrium of model II(s) is locally
stable.
Appendix B. Eigenvalues of the connectivity matrix for a

Moore neighborhood

The geometry of the dispersal neighborhood in
spatially structured models can be encoded in a
connectivity matrix C. If we assume that connectedness
of a site with another one is a symmetric relation, then C

is real and symmetrical. It is built from n� n subma-
trices A, B, and 0, which in the case of periodic
boundary conditions have a circulant structure

C ¼

A B 0 � � � 0 B

B A B . .
. ..

.
0

0 B A . .
.

0 ..
.

..

. . .
. . .

. . .
.

B 0

0 � � � 0 B A B

B 0 � � � 0 B A

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: (B.1)
For example, the n� n matrix A that forms the entries in
the diagonal of C has the following structure:

A ¼

�8 1 0 � � � 0 1

1 �8 1 . .
. ..

.
0

0 1 �8 . .
.

0 ..
.

..

. . .
. . .

. . .
.

1 0

0 � � � 0 1 �8 1

1 0 � � � 0 1 �8

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: (B.2)

The n� n matrix B, which appears in the super- and
subdiagonal of C as well as in the upper right-hand
corner and the lower left-hand corner, has the following
structure:

B ¼

1 1 0 � � � 0 1

1 1 1 . .
. ..

.
0

0 1 1 . .
.

0 ..
.

..

. . .
. . .

. . .
.

1 0

0 � � � 0 1 1 1

1 0 � � � 0 1 1

0
BBBBBBBBBB@

1
CCCCCCCCCCA

: (B.3)

Finally, a n� n nullmatrix 0 is also required to built up
the n2� n2 connectivity matrix C.

The eigenvalues of a circulant matrix are well known
and can be found, e.g. in Othmer and Scriven (1971, p.
517f). The formula for the eigenvalues mkl of the
connectivity matrix C describing connectedness of a site
with its eight adjacent sites (Moore neighborhood) on a
regular two-dimensional grid follows from the following
statement:

mkl ¼ ½1þ 2 cosð2pk=nÞ�½1þ 2 cosð2pl=nÞ� � 9; (B.4)

which, after some trigonometric transformations, leads
to the following expression:

mkl ¼ 2ð2 cosð2pk=nÞ þ cosð4pl=nÞ � 3Þ; (B.5)

with k ¼ 0; 1; . . . ; n � 1 and l ¼ 0; 1; . . . ; n � 1: Because
C is a real, symmetrical matrix, all of its eigenvalues
must be real numbers as well. As one can see from
formula (B.5), the dominant eigenvalue of C is zero
while its smallest eigenvalue is achieved when both
cosine terms take the value –1, leading to mkl ¼ �12:
Hence mkl 2 ½�12; 0�:
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