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Abstract

We formulate and analyse a model for infectious diseases transmitted by asymptomatic carriers finding, that if harmless and
pathogenic strains of the infected agent compete, frequent outbreaks of the pathogenic strains can occur. A counterintuitively high
number of clustered outbreaks at low pathogenicity in our model compares well with observations in diseases with severe and often
fatal results for the host, as for example in meningitis. These clustered outbreaks can be described by the typical scaling behaviour
around criticality.

The epidemic model is a susceptible-infected-recovered system (SIR) for the harmless infective agent, acting as a background to a
mutant strain Y which occasionally creates severely affected hosts X. The full system of SIRYX is described in the master equation
framework, confirming limiting assumptions about a reduced YX-system with the SIR-system in stationarity. In this limiting case
we can analytically show convergence to power law scaling typical for critical states, as well as the divergence of the variance of
outbreaks near criticality.

These large fluctuations of outbreaks of accidental pathogens as mutants of otherwise harmless commensal organisms is the

challenging new feature of our model for future epidemiology of diseases like meningococcal disease.

© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

A Dbacterial infection with Neisseria meningitidis,
named in 1879 after its discoverer Albert Neisser, can
cause meningitis and septicaemia. This happens when
the bacteria, which normally live in the host’s epithelium
without causing harm, cross the barrier into the blood
stream and replicate quickly with lethal or damaging
consequences for the host (Cartwright, 1995). Once the
protective barrier is crossed, meningococcal disease
develops within a few hours. This disease is an example
of the more general class of pathogens which replicate
and transmit in their host without usually causing
disease. Symptomatic disease develops only occasionally
and with disastrous effects for host and pathogen.
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Hence not the infection with such bacteria itself, often
called natural carriage, and in the case of Neisseria
meningitidis affecting up to 25% of the host population
at one given time, causes disease but a second transition
into a diseased state (Coen et al., 2000). Such pathogens
have been called accidental pathogens (Maiden, 2000).
We denote the hosts carrying the harmless strain as 7,
whereas we call the diseased cases X, those hosts
infected with the pathogenic bacteria having crossed
the epithelium—blood barrier. Pathogenicity, which is
propensity of the bacteria causing disease, differs in
different strains of the pathogen. Still, this transition
between normal carriage and disease can be highly
dependent on the type of mutant bacteria present in the
host. Although the genome sequence of Neisseria
bacteria is in principle known (Parkhill et al., 2000),
there is a huge variability in certain regions of the
genome, observed e.g. in recent carriage studies (M.
Maiden, private comm.).

Therefore, we investigate a model in standard SIR
formulation for the natural harmless infection process,
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and introduce as additional term a mutant type of
bacteria, sending the affected host into a Y class. Only
these Y hosts can give rise to a transition to the diseased
X class with a certain transition rate ¢, but otherwise
have the same characteristics as the original bacteria in
hosts of the harmless variant responsible for the I class.

The mechanism described here qualitatively, will be
specified in detail in our SIRYX model in Sections 2
and 3 using the stochastic master equation formalism in
order to capture the effects of population fluctuations. It
is found that these fluctuations play the key role in
understanding the epidemics for only rarely accidental
mutants, hence small pathogenicity ¢. For large ¢ the
mutants have such a high disadvantage against the
normal carriage strain, that they disappear quickly after
appearing as mutants, not being able to cause high
numbers of meningitis cases X. Therefore, a selection
process will drive the whole pool of bacterial strains to
small values of the pathogenicity e.

In the limit for pathogenicity ¢ going to zero we find
the typical behaviour of critical states known from
statistical physics of phase transitions (see for example
Cardy, 1996; Landau and Binder, 2000), namely that
near critical points, here at ¢=0, the fluctuations
diverge. In simulations we observe that although in
most runs the epidemic dies out quickly, a substantial
proportion of runs show huge numbers of disease cases
appearing over longer and longer durations of the
epidemics, the smaller the pathogenicity ¢ is.

The criticality of our model for ¢—>0 gives rise to
divergence of the variance of Y. In Section 4, we show
this analytically in a simplified model for the YX-system
under stationarity assumption of the basic SIR-sub-
system. The validity of this assumption is shown by
quantitative comparison with the full SIRY X-model.

Finally, in a further simplification of our model, a
drifting random walk, we can explicitly calculate the
total size of the epidemics, the number of cases X, in its
probabililty p.(X) depending on the pathogenicity
parameter ¢ (see Section 5). In the limit of ¢—0 and
large X we find that this probability obeys a power law,
typical for critical behaviour. X scales with power —3/2,
which is the mean field exponent for branching
processes. Hence, our model seems to fall into a
universality class of such processes (Harris, 1989). This
is shown in Section 6.

In the discussion we will mention the connection of
our model (in a forthcoming spatial version) with the
universality class of directed percolation, which was
introduced in simulations by Grassberger and de la
Torre (1979) and in a theoretical analysis by Janssen
(1981). Directed percolation is since a topic of major
interest, see recently e.g. Brunel et al. (2000) and Cardy
and Tauber (1998), which makes our basic SIRYX-
model a starting point for further studies in this
direction.

2. Epidemiological model

Normal harmless carriage of the infectious agent,
Neisseria meningitidis in case of meningococcal disease,
in a host population of susceptible, infected and
temporally resistant hosts can be modelled by a classical
SIR-model (Anderson and May, 1991). We consider our
model to describe the fast spread of the epidemics as
opposed to the slower variation of the host population
due to birth and natural death, and assume a constant
population of size N.

The basic SIR-model is constructed as follows: With a
rate o a resistant host becomes susceptible, or as a
reaction scheme R > S. Then, susceptible meet infected
with a transition rate § and proportional to the number
of infected (divided by N to make the model scale
invariant with population size, since we obtain a
quadratic term in the variables, as opposed to the linear
term in the previous transition). As a reaction scheme we
have S+ I - I+ I. Finally, infected hosts can recover
and become temporally resistant with rate 7y, hence
I5LR!

The corresponding deterministic ordinary differential
equation (ODE) system reads:

ds 1

T RBES

drl I

RS — ]

& ﬁNS V1,

dR

—:"]— R 1
g - (1)

and describes merely the dynamic of the mean values for
the total number of susceptibles, infected and recovered
under the assumptions of mean field behaviour and
homogeneous mixing, hence mean values of products
can be replaced by products of means in the nonlinear
contact term (f/N) IS.

For the diseases described by this model the infected
individuals are the hosts which do not suffer at all from
the infection, not even notice it. This is different from
ordinary models of infectious diseases. In order to
describe the invasion process of the infected with a
mutant strain, hence a class of hosts called Y, into the
population of S, I and R, we have to include
demographic stochasticity into the description of the
epidemic. As such, for the basic SIR-model we consider
the dynamics of the probability p(S, I, R, f) of the system
to have S susceptibles, / infecteds and R recovered at
time ¢, which is governed by a master equation
(Gardiner, 1985; van Kampen, 1992, and in a recent

'"We could call this basic SIR-model also SIRS-model, since
transitions from R to S are allowed, but stick to SIR, since later in
the full SIRYX-model parallel transitions prohibit a simple way of
labelling. Hence, here SIR just means that we have three classes of
hosts, S, I and R to deal with, as opposed to five classes in the full
model.
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application to a plant epidemic model Stollenwerk and
Briggs, 2000). For state vectors n, here for the SIR-

model # = (S, 1, R), the master equation reads:

d
121(;1 - D waa P = D wiy p(1) &

f#n #n

with transition probabilities corresponding to the ones
described above for the ODE-system. Here the rates wj,
are

W(S+1,I,LR—1)(S,[,R) = &R,
W(s— =pf=325,
(S—LI+LRS.LR) = P N
WS I-1LR+1)(S.1,R) = V] 3)
from which the rates w,; follow immediately as

W(S,LR(S—1LR+1) = &R+ 1),
I—-1
W(S,LR(S+1I-1,.R) = P T(S + 1),

WS LR)(SI+1,R—1) = Y + 1). 4)

To describe the behaviour of pathogenic strains we
include a new class Y of individuals infected with a
potentially pathogenic strain. We will assume that such
strains arise by e.g. point mutations or recombination
through a mutation process with a rate u in the scheme
S+I5Y+1. (For symmetry, we also allow the
mutants to backmutate with rate v, hence
S+Y5I+7Y)

The major point here in introducing the mutant is that
the mutant has the same basic epidemiological para-
meters «, § and y as the original strain and only differs in
its additional transition to pathogenicity with rate e.

These mutants cause disease with rate ¢, which will
turn out to be small later on, hence the reaction scheme
is S+ Y 5 X + Y. This sends susceptible hosts into an
X class, which contains all hosts that develop sympto-
matic disease. These are the cases which are detectable,
as opposed to hosts in classes Y and I who are
asymptomatic carriers, which cannot be detected easily.

The state vector in the extended model is now n =
(S,I,R,Y,X). The mutation transition S+ 75 Y +1
fixes the master equation transition  rate
WES—1LLR Y+1.X) (SR Y.x) = W(I/N)S. In order to denote
the total contact rate still with the parameter f3, we keep
the balancing relation

W(S—1,I+1,R,Y,X)(S.I,R,Y,X)
+ WS- LR Y+1,X),(S,,R,Y,X)

1
= py S 5)

and obtain for the ordinary infection of normal carriage
the transition rate W(S—1I+1,R,Y.X)(S,I,R,Y,X) = -
W /N)S. Continuing, to denote the total rate of
contacts a susceptible host can make with any infected,
either normal carriage / or mutant carriage Y, by f3, we

have the following balancing equation

I+Y
Z Ws—Lasm = B N S (6)

m#m

for m=(,R Y,X). With the above-mentioned
transitions this fixes the master equation rate
WE—LLRY+1LX)SLRY,X) = (B — v —&)( Y/N)S.

For completeness, we denoted by the recovery rate
from severe meningitis and septicaemia, i.e. X %S, In
the case of meningitis and septicaemia in many cases the
disease is lethal, hence ¢ = 0. With medication the
sufferers often survive, but are hospitalized for a long
time and then suffer from resulting impairments. So, for
the theoretical analysis we will still keep ¢ = 0, which
might be changed when analysing more realistic situa-
tions or recent data.

For the SIRYX-system the transition probabilities
ws, are then given (omitting unchanged indices in A,
with respect to n) by

WR-1,5+1)(RS) = &R , R 5 s,
I B—nu
Ws-Li+s.n = (B — M)NS ., S+I — I+,
I
WS-LY+D(SY) = K op S , s Y +1,
WI—1,R+1),(,R) = V1 , 1 5 R,

Y p—v—e¢
W(Sfl,YJrl)s(S,Y):(ﬂ_V_S)NS, S+Y —-Y+ 7Y,
WE—LI+1)S) = V=S , L I+,

N
W(S—1LX+1),(5.X) = SNS , 5 X+,
y
WY —1LR+)(Y,R= VY , Y 5 R,
®
WX -1,5+1),X,5) = X , X -, S
(7

along with the respective reaction schemes. Again from
wi, the rates w,; follow immediately. This defines the
master equation for the full SIRYX-system.

3. The invasion dynamics of mutant strains

Before we proceed with further theoretical analysis
of the model we now demonstrate basic properties
of our SIRYX-model in simulation of the master
equation, using the Gillespie algorithm, also known as
minimal process algorithm (Gillespie, 1976). This is the
Monte Carlo method, in which after an event, i.e. a
transition from state n to another state 6, the

exponential waiting time is calculated as a random
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variable from the sum of all transition rates, after which
the next transition is chosen randomly from all now
possible transitions, according to their relative transition
rates.

To investigate the dynamics of the infection with
mutants, class Y, in relation to the normal carriage /
with harmless strains, we first fix the basic SIR-
subsystem’s parameters to the values o = 0.1, f:=0.2
and y = 0.1.

The endemic equilibrium of the SIR-system is given
by

s =NL ¢ :NE<BV>, Rf =N —S*—I* (8)
B AN

as can be seen from Egs. (1) setting the left-hand side of
each subequation to zero. As for the parameters used,
we find in equilibrium a normal level of carriage of
harmless infection of about 25% in our total population
of size N. This is in agreement with reported levels of
carriage for Neisseria meningitidis. Average duration of
carriage is in the order of 10 months, hence we choose
y = 0.1. We assume the duration of immunity to be the
same as the duration of carriage. In equilibrium this
results in the ratio of S*: I*: R*=2:1:1. However,
the qualitative results are not affected by these first
guesses of parameter values, but rather by the order of
magnitude.

In Fig. 1(a) we show 10 simulated runs of the
epidemic for a total population of N = 1000, with
initially Iy = 100 infected, no mutants, and Sy = N — [,
and Ry = 0 individuals. The upper 10 trajectories show
the normal carriage of infected individuals I developing
in time from the initial 100 to about 250 individuals plus
some variations due to the population noise from the
stochastic master equation simulation. This demon-
strates the rapid dynamics to the SIR-equilibrium value
of 25% mnormal carriage. In the same way, the
equilibrium values for S and R are reached as quickly.
The time window 1000 (of arbitrary scale, or if we accept

1000 L L L L

800 A L

(2]
(=]
o
1
T
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400 - L

200
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10 months as recovery and resistance periods, time
would be given in months) is chosen here to show the
transient to equilibrium as well as the fluctuations in
equilibrium.

Fig. 1(b) shows the course of time of the mutants
appearing due to the mutation with rate p := 0.0001 and
normal course of infection with «, f and y as given
above. The backmutation rate v is set to equal the
mutation rate u. The axis of ordinate in Fig. 1(b) is given
in larger scale than in Fig. 1(a) to show clearly the
appearance and disappearance of the mutants’ carriage
due to the disadvantage of transitions into the X class
with rate ¢ := 0.005. The mutants relative to the normal
level of carriage is shown in Fig. 1(a) with the 10
trajectories near the bottom.

Next we show a simulation with ¢ =0, see Fig. 2.
Now the mutants can replace the normal strain, since it
has no disadvantage due to extra transitions into the X
class. This happened in two out of 10 runs in the time
window observed. In Fig. 2(b) the two runs, in which
they are taking over, the mutants settle at the
equilibrium value of 25% carriage (with additional
variations due to population noise). This replacement
mechanism describes a kind of genetic drift in the
bacteria population.

Hence, for vanishing or small ¢, that means in the
same order of magnitude as the mutation rate or
smaller, mutants can substitute the dominant harmless
strain. On the other hand, for large ¢ the mutants will
always have a severe disadvantage because of additional
transitions into the X class of diseased cases, which are
lost entirely from the epidemic cycle. Such strains with
large pathogenicity ¢ will play no role in the pool of
strains in the system, as they will be selected against
quickly.

An interesting behaviour is observed when the
pathogenicity ¢ is too large for the hyperinvasive strain
to take over but small enough to create large outbreaks
of mutant infecteds Y before becoming extinct again. In

100 1 1 I 1

Y@

(b) t

Fig. 1. (a) Infected I from an SIR-model in stationarity and a low level of mutants Y, (b) the mutant strain Y temporarily coexists but cannot replace
the normal strain. An ensemble of 10 epidemics is shown in its time evolution. Basic parameters are given in the text, and ¢ = 0.005, ¢ = 0.0001.
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Fig. 2. (a) Infecteds I decrease in two out of 10 runs to very low levels or extinction, when ¢ = 0. (b) The mutant strain Y replaces the strain carried
by I hosts in two of these runs going to the equilibrium value of carriage of 25%.
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Fig. 3. (a) Time series of 10 runs showing the mutant carriage Y for pathogenicity ¢ = 0.05. (b) Number of seriously diseased cases X for
pathogenicity ¢ = 0.05. (c) and (d) as (a) and (b) with pathogenicity 10 times smaller, hence ¢ = 0.005. Although the pathogenicity ¢ is of the factor 10
smaller, the damage in the number of seriously diseased cases X remains high and even varies more than for larger .

Fig. 3 we show two simulations in this e-region, first
e = 0.05, Fig. 3(a) and (b), then a 10 times smaller &,
Fig. 3(c) and (d). For high pathogenicity ¢ we find
relatively low levels of mutants Y, in Fig. 3(a) less than
20 cases, and at the end of the simulation between
roughly 15 and 80 hospital cases X, Fig. 3(b).
For smaller pathogenicity &, Fig. 3(c), we find much
larger fluctuations in the number of mutants Y
with peaks of more than 80 mutant infected hosts.
Though the probability rate to cause disease ¢ is 10

times smaller than in the previous simulation we find
at the end of this simulation similar numbers of
disease cases X, Fig. 3(d). We observed larger fluctua-
tions and sometimes much more outbreaks of diseased
cases though the probability to create disease is
smaller.

This counterintuitive result can be understood by
considering the dynamics of the hyperinvasive lineage in
detail. We will do so by analysing a simplified version of
our SIRYX-model analytically.
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4. Divergent fluctuations for vanishing pathogenicity

For pathogenicity ¢ larger than the mutation rate u
the hyperinvasive lineage normally does not attain very
high densities compared to the total population size.
Therefore, we can consider the full system as being
composed of a dominating SIR-system which is not
really affected by the rare Y and X cases, calling it the
SIR-heat bath, and our system of interest, namely the Y
cases and their resulting pathogenic cases X, considered
to live in the SIR-heat bath.

Taking Eqs. (8) for the stationary values of the SIR-
system into account we obtain for the transition rates
(compare Egs. (7)) of the remaining YX-system

sk
W(SH Y +1),(5%,Y) = Mﬁl* =i
S*
Wi y+)sty) = —v — S)N Y =07,
sk
WS X+sY) = Er Y =197,

Wy—1,R)(Y.R9) = VY = a¥,
Wx—1,5%,x,5%) = @X. )

All terms not involving Y or X vanish from the master
equation, since the gain and loss terms cancel out for
such transitions. If we neglect the recovery of the disease
cases to susceptibility, as reasonable for meningitis,
hence ¢ =0, we are only left with Y-dependent
transition rates. Hence for the YX-system we obtain
the master equation

%p(Y,X,t) =Y -D+op(Y -1,X,1)

+aY+1)p(Y+1,X,0)
— (bY +aY +gY +o¢) p(Y,X,1). (10)

This gives for the marginal distribution p(Y,?) =
Sv_o P(Y,X,7) the master equation for a simple
birth—death process with birth rate b=(f—v—
&)S*/N, death rate a:=7y and a migration rate
¢ = u(S*/N)I*. In the definition of the marginal
distribution we take the upper limit of the summation
to infinity, since we assume numbers of X and Y cases to
be well below the stationary values of the SIR-system,
i.e. they will not be affected by any finite upper
boundary. The validity of this assumption we will check
later with simulations of the full SIRYX-system.
Hence we have

%p(Y,t) =MbY - 1) +op(Y — 1,1

+ a(Y + Dp(Y + 1,1)
— (bY +aY + o)p(Y,1) (11)

for YeN and as boundary equation, i.e. for ¥ =0

%p(Y =0,)=ap(Y =1,t) — cp(Y = 0,1). (12)

For the ensemble mean (Y ) :=> 7 , Yp(Y,1) we
obtain, using the above master equation,

%(Y}z(b—a)<Y>+c. (13)

And for the variance, being defined as Var(?) =
(Y2Y — (Y2, we obtain

d 2 2
T (YY) =<Y)9)
=:Var(t)
=2b—a)({Y*> =YD+ (b+a)l¥D>+c (14)

We can simplify further by neglecting the mutation
and backmutation terms, hence ¢ = 0, and v = 0 in the
definition for b, and solve the two ODEs for mean Y(7) :
= (Y ) and variance Var(t), noticing that

S*

NG
b-—a=B-e5—v=—ey (15)

is proportional to &. We set g = SSW*. The ODEs then
read

Y() = —gY (1),

Var(t)y = —2g Var(t) + 2y — 9) Y () (16)
under suitable initial conditions Y(t =0) =1, Var(t =
0)=0.

The solutions are
Y(1) = e,g(,,,o),

2y —
Var(t) = Zr—9) e )] — g9l 1)), (17)
)

The solution for Var(t) is essentially a single humped
curve going towards zero for large times . However, for
decreasing ¢ the hump becomes not only larger, but it
takes longer and longer to reach the decreasing end of
the curve. A formal analysis (using I’'Hopital’s rule)
shows for the limit ¢ —» oo that Var(t) ~ t, hence diverging
linear in time ¢ for all fixed times z.

In Fig. 4 the curve Var(r) is shown for three values of
e. The smallest value for ¢ gives the highest curve for
Var(t), which already nearly appears as a straight line
for the times shown. The divergence of the variance is
the signature of behaviour near a critical point. The
critical point in this case is found for ¢ = 0.

These results were based on the analysis of a
simplified stochastic system in which the dynamics of
the YX-subsystem was studied in an otherwise un-
affected SIR-system. We finally test the quality of our
assumptions by running the full SIRYX-system starting
with one mutant Y and no mutation. In Fig. 5 we show
the results of a simulation of 10000 runs for ¢ = 0.01 of
the full SIRYX-system. We start with exactly one



N. Stollenwerk, V.A.A. Jansen | Journal of Theoretical Biology 222 (2003) 347-359 353

mutant infected Y at each run. This is at the lower
boundary for ¢ since the heat-bath assumption is about
to be violated, as Fig. 5(a) shows. Some trajectories for
the infected go well below the stationary mean of 250

0.8 ' L

06 4 -

Var(t)

044 /.7 -

02 4/ =

Fig. 4. The time course of the variance Var(¢) of the fluctuations in the
number of mutants Y, as calculated in Eq. (17), is for decreasing &-
values increasing towards a straight line.
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cases plus population noise. Fig. 5(b) shows the result
for the mutant infected Y. In most cases the epidemic
dies out quickly, only few survive for more than 1000
time steps. In Fig. 5(c), we compare the mean of
realizations Y(7) := Y., Y;(¢) of the n = 10 000 realiza-
tions of the full SIRYX-system (with values Y;(¢) each)
and its standard deviation (drawn fluctuating lines) with
theoretical ensemble mean { Y ) and standard deviation
of the birth—death process (dotted lines) of Eq. (11). The
theoretical standard deviation is simply the root of
Var(t) in Eq. (17). They are in good agreement with each
other except for the large fluctuations in the tails caused
by relatively few simulations that reached that far in
time. Fig. 5(d) shows the scaling of the epidemics of
disease cases X in a log-log plot. This figure suggests
that the frequency distribution is described by a power
law. Such scaling will be investigated analytically for the
simplified birth—death process in more detail in the
following sections.

5. Distribution of total number of cases

To find the probability distribution of the number of
cases following the introduction of a single Y mutant

0 200 400 600 800 1000 1200 1400

() \
10 e
9 L
8 L
7 4 L
= 61 r
g - -
£, I
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Fig. 5. The single epidemics statistics for ¢ = 0.01, including the log-log plot of the final distribution of the size of the epidemics, i.e. the number of X
The negative slope is about 2.33, hence still far away from the analytically obtained value for ¢ going to zero. A total of 10000 realizations of the

epidemics have been used.
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carrying host, we consider the master equation for the
variables Y and X, still assuming stationarity of the
underlying SIR-system, i.e. the distribution p(Y, X, 1)
for Y =0, starting with one mutant Y. p(Y =0, X, 1)
gives the distribution of meningitis cases X when the
epidemic has died out, meaning ¥ = 0.

To obtain p(Y = 0, X, ) we do not necessarily have to
consider the exponential waiting times between events,
but only the number of events until the mutants vanish.
Hence we consider the following time evolution
equation (time discrete Markov process) for events like
creation of new mutants from already existing, recovery
from mutants and creation of actual meningitis cases
from mutant infected:

(Y, X, 14+ 1)
=bp(Y — 1,X, )+ ap(Y + 1,X,7)

for discrete times steps t at which events happen and the
parameters

glfol 57L717~

S a+b+g 2 a+b+g 2 9

~ g €

= = —, 19
g at+b+g 28 (19)

The final values, e.g. & = 1/2, are obtained by using g =
a — b from its definition, see Eq. (15), and with § being
small and proportional to & and b only slightly smaller
than a.

With boundary equation for the absorbing state
Y=0:

p(Y=0,X,7+1)
=ap(Y+1=1,X,7)+p(Y =0,X,7), (20)
and for Y = 1:

pY=LX,t+)=ap(Y+1=2,X,1)
+ gp(YZI,X—l,T), (21)

and the initial condition

p(Y,X,t=0)=0y,19x,0 (22)

the dynamic is completely defined. Here we used
the Kronecker §, meaning 6,,, =1 for m=mn, else
Zero.

The solution (see Appendix A) of the distribution of
the size of the epidemic, after the last host Y carrying
the mutant strain has vanished, is given by
p(Y =0.X.1)=5"a)  wy,(ab)’ (23)

w=0
which is essentially a polynomial in the transition
probabilities @b, reflecting the random walk in the
birth—death process for creating Y cases, and X times

the transition § creating disease cases X and one

additional transition & to the absorbing state Y = 0.
The coefficients x;,, are calculated in Appendix A as

2u+X
o @
X
: N

with the Catalan numbers C, = 5 o and ®pax
given by

! (X+1) :
Dmax b T 0

1
=: b(r — (X + 1))J, (25)

where Wy = Wpax(t, X) 1s a function of time 7 and size
of the epidemics X. The expression {;} means, that
either 0 or 1 has to be chosen to obtain integer w, giving
the same result as the floor symbol in the rightmost
expression. From Appendix A also the more general
solution for p(Y, X, ) for any Y can be derived.

6. Scaling

To obtain the size of the epidemic in the limit of time t
going to infinity and large sizes of the epidemic we
analyze further the size distribution
pX) = lim p(Y =0,X,1)

T— 0

Dpax(T)

= lim §*a Kx.0(ab)” (26)
e =0

with ., also state X dependent.
For time going to infinity, when the epidemic has
almost surely died out, we obtain

lim  @pax(7) = 00. (27)

Hence we have

P =35 S wy @by (28)

w=0
It can be shown (see Appendix B) that this is equal to

X+1X+2

p0) = (Y5 aab ), (9)

where the hypergeometric function is given by
2Fi(u, 03w X)
O Tw) & Fu+vI+vx"
I (v) = I'(w+v) vl

Using the definitions for , 5 and § we obtain for the
argument of the hypergeometric function
4&5:1-2;}:1—%:1—" 31)

(30)
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and define # := ¢/f being small when ¢ is small. Using
known properties of the hypergeometric functions we
finally obtain the solution (see Appendix B)

pr](X) = \/ﬁzi(XJrl)

3-X2-X
Xzﬂ( 3 rj?ﬂll—n>. (32)

as a function of the parameter # which is proportional
to & hence becomes small for small pathogenicity
rates.

For 5 to zero, p,(X) vanishes for X>1 whereas
py(X =0) goes to 1, hence taking all probability. To
better understand the limiting behaviour we now
consider another quantity, the conditional probability
py(X|X>1) given that there is at least one disease
case X.

It turns out (see Appendix B) that

1

PX = 0) =

(33)

=

Hence for X >1
Py(X)
XX =21) = —————
1 1 —py(X =0)

= (14 /20,

3-X2-X
Xth<zz,2;2;1n>. (34)

In the limit # to zero we find

rx -4

e W (5

(35)

(see Eq.(B.20) in Appendix B and for large X sece
Eq. (B.21) in Appendix B),

1 —3/2
p(X|X=1)~—= X732, (36)
2\/7

In the same way we find

1
)~ 1/2y-3/2. 37

for time 7— oo, parameter 7 —0 and large number of
disease cases X.

Hence in total we find the following scaling laws for
the distribution of the epidemics:

py(X)~n'"2. (38)
and
(X))~ X732, (39)

with critical exponents (of mean field type) % and —% near
the critical value ¢ = 0, or equivalently n = 0. And for
the conditional probability p,(X|X >1) we simply get

p(X|X=1)~ X732 (40)

independent of any parameter dependence for #. The
exponent —% is exactly the one for critical branching
processes (Harris, 1989; De Los Rios, 2001), for which it
is proven by asymptotics of characteristic functions. In
total we have obtained power law behaviour for the
total size distribution for our simplified YX-model in the
limit of vanishing or small pathogenicity.

7. Discussion

Criticality is established in our SIRYX-model in
simulations as well as in analytical calculations of a
simplified birth—death process obtaining critical expo-
nents. As a result we found large outbreaks of disecase
cases due to huge variance in hosts carrying a mutant
strain prone to accidental pathogenicity. With this
scenario observations of clustered epidemics in menin-
gitis and septicaemia can be analysed in a completely
new way, stimulating future research on actual outbreak
data. In such data analysis parameter estimation is
possible from master equation simulations analogous to
the ones shown here along the lines of earlier work
(Stollenwerk and Briggs, 2000).

Also, the mechanisms we describe in the present
article can be used to analyse a wider class of mainly
commensal organisms which only accidentally become
pathogens to their own disadvantage. Then it is to be
expected that the criticality we observe in our model will
play a crucial role in understanding such epidemics.

On the technical side, since we have one absorbing
state, the hypothesis made in non-equilibrium thermo-
dynamics that such models belong to the universality
class of directed percolation applies here (Janssen,
private comm.). A future spatial version of our model
should therefore behave like one in directed percolation,
especially the critical exponents should be the same as
for other more basic models in this universality class
(which includes a basic SIS-model). However, our model
is believed to have a large crossover from dynamic
percolation (of SIR-type) due to our additional terms
and complications. To show this explicitly is left for
future work on spatial versions of our model.
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Appendix A. Solution of size distribution of the epidemic

In this appendix we analyse the stochastic dynamic
system given by Egs. (18)—(22) in the main text. Since
the number of X can only increase, we can easily solve
the dynamic for the marginal distribution

pY, D)= p(Y,X,7) (A.1)
X=0

and still extract the number of cases X after the
epidemic has finished.
Hence the dynamic is

p(Y,t+1)
=bp(Y — 1,0) +ap(Y + 1,7)+ gp(Y, 1) (A.2)

with boundary

pYy=0,7+1)

=ap(Y+1=17)+p(Y =0,7) (A.3)
and
pYy=11+1)

=ap(Y+1=2,7)+gp(Y = 1,7) (A4)

and initial distribution
p(Y,t=0)=0y,. (A.5)

With the initial condition vector (p(Y = 0,7 =0),
p(Y=1,1=0), p(Y=2,1=0), p(Y=3,1=0),...)" =
(0,1,0,0, ...)" this is for time step T a (t + 1)-dimen-
sional matrix system of equations

p(Y=0,7+1)
pY=11+1)
p(Y=2,1+1)
pY=14+1,714+1)

1 a 0 0 0

Il

o O

S
T ™

x O

o O

sy .

00 0 b
p(Y =0,1)

p(Y =11
X p(Y =27 (A.6)

p(Y =14+1,7)

with tridiagonal structure.

The solution of the matrix system is for times t =
1,2, ... and for states Y =1, ...,7+ 1 given by

YD) = koysd By (A7)
a=0

with

f=Y—-1+4, (A.8)

F=1—(Y—1)-24 (A.9)

since it has to be &+ f+7 =1 the number of total
transitions. Furthermore,

S = |35 = (7 = 1) (A10)

with 0 or 1 to give an integer d,,,,,. The coefficients k. y 5
fulfil the recursion

kivivg =key—1a+keva +keyira (A.11)

for initially ko0 = 1 and the other coefficients zero.
The solution of this recursion is given by
Y(z!)
(Y +d)lal(z — (Y —1)—23)!

as can be seen by insertion. In terms of &, § and 7 it is

kr,Y,a? = (A12)

(A.13)

The general solution p(Y, X) can now be read from
the above by reordering the summations such that we
sum up the powers of §, hence summing over 7. We will
show this now just for the absorbing state ¥ = 0.

The distribution of the absorbing state ¥ = 0 is given
from its definition

7—1

pY=0,0:=> ap(Y+1=1,v) (A.14)
y=0

as
7—1 iuw\'

pPY=01=> ay kb5 (A.15)
v=0 a=0

or labelling the sum in the number of transitions
creating X, i.e. in powers of §:

-1 Hinax

pY=00)=>"gaYy rylaby (A.16)
= #=0
with
1 1
Hmax = &(T_(Hl)_{o})J (A.17)
and
Kiu = Ko p- (A.18)
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Note that here ¢ and v are summation indices and not to
be confused with the mutation rates mentioned in the
main text. The coefficients «;, can be expressed in terms
of the Catalan numbers C, := [1/(u + 1)] (2;‘) as

2pu+7
;c;,,,t:C,,< 'u~ />.
b

This completes the calculation of the distribution of the
size of the epidemics as

(A.19)

lu/”(l.\'
pY =0,X,0) = §%ay xy, (@b
u=0

(A.20)

Appendix B. Size distribution of the epidemic for ¢ zero

For p(Y =0, X, 7) from Appendix A we consider now
the limiting behaviour for time t going to infinity and
then large X. As described in the main text we set y,,,,,
to infinity for 7 going to infinity. (In the main text we use
Wpmax to avoid confusion with other notations.)

Using the gamma function to express the factorials,
I'(x + 1) = x!, the coefficients k are given by

2u+79
K?‘,ﬂ:Cu< 7 )

I TG+1+2p1

= —. B.1

rG+1) TI'(u+2) u (B.1)

Hence the size distribution of the epidemics is given by
g¥a I(X + 1+ 2p) (ab)*

X)= : B.2

pX) = F(X+ 1)Z T T (B.2)

Using the duplication formula I'(2x) = 1/4/2m2%%"1/2
I'(x)I'(x+ %) for the I'-function we can write

1
gXEl 2X+2

r(X+1),/2x

~ TCF + I E2 + ) (4ab)y
2 Tt !

p(X) =

(B.3)
u=0

in the form of a Gauss hypergeometric function , F; which
is defined as

2 (u,v;w; x) = Z @), (), ' (B.4)

(w), i

(Abramowitz and Stegun, 1972) and with Pochhammer’s

symbol (), =T'(u+v)/T'(u) and (u), =1
resulting in
2Fi(u, v3w; X)

_ TI(w) I'u+v)I'(v+v)x’

N Tl (v) = Z (B.5)

Tw+v) W

The hypergeometric function ,F;(u, v; w; x) is the solution
of the hypergeometric differential equation

o

dx?

=uwF —(w—(Wu+v+1)x) (ji—F (B.6)
X

x(1 — x)

Hence with u == (X + 1)/2, v:=(X +2)/2 and w =2
we finally get an expression for the distribution of the total
size of the epidemics in terms of a hypergeometric function:
X+1X+2 )

p(X) = G ik (— b

> (B.7)

again using the duplication formula for the I'-function.
Using the definitions for @, b and § we obtain for the
argument of the hypergeometric function

4&5:1-2@:1—%:1—;7 (B.8)

and define 5 := ¢/f being small when ¢ is small. For the
prefactor in front of the hypergeometric function we
then obtain

§¥a=n¥2 D, (B.9)
Hence
pn(X) _ ’,IXzf(XJrl)

X+1X+2
XZFI( 3 ,2;2;1—11),

(B.10)

which can be simplified further using the formula for the
hypergeometric function

2Fi(u, v; w; X)

= =x)""" 2Fi(w—u,w—v;w;x). (B.11)
This results in
Pul(X) = \/ﬁzf(XJrl)
XzF1(3_2X,2_TX;2;1—n). (B.12)

Now we consider the conditional probability given at
least one disease case X, i.e. p,(X|X>=1). It is given
by Bayes’ rule p(X,X=1)=pX|X=1)p(X>=1) and
pX=1)=1—-p(X =0). For all X>1 we can use
p(X,X>=1)=p(X) with p(X) from Eq.(32). In total
we obtain
py(X1X=1)

_ Py(X)
1 —p,(X =0)
\/>2 (X+1)F (3 X 2-X X .2 1_’1)
1 —py(X = 0)

It is p,(X =0)= \/ﬁ22‘1F1(3/2, 1;2;1 —n). Using the
integral representation of the hypergeometric function

(B.13)
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(Abramowitz and Stegun, 1972, p. 558, Eq. 15.3.1)

o r'(w) !
) S G T y

x (1 —zx) "dz.

LU 1 (1 o Z)wfvfl

(B.14)

with u=3/2, v=1, w=2 and x = 1 — 5 the integral
can be solved analytically with elementary algebra
obtaining

2F1(3/2,1;2;1 — ) = /01(1 (=) M dz

zé%_l).

So for p,(X = 0) we obtain a very simple expression

py(X =0) =

L+ ./
Inserting this result into Eq. (B.13) gives
PXIX = 1) = (1 + /2 ¥

3-X2-X
X2 Fy (T,T;2;l—n>. (B.17)

(B.15)

(B.16)

As opposed to p,(X) from Eq. (32), this expression for
py(X1X>=1), Eq.(B.17) gives non-vanishing results in
the limit #—0. Namely, for # = 0 the hypergeometric
function can be given explicitly by

Irw)[(w—u—v)

2R (u,vw; 1) = Tov — v — )’ (B.18)
Hence
XX 1) =1+ /m2 D
3-X2-X
Fi|———2;1—
X2 1( 3 Ty 0o '1>
3—-X2-X
F —2;1
_)2 1( 2 B 2 E 9>
oy I~y (B.19)

FESTE

for n—»0. I'2)=1.

Using the duplication formula for I'-functions again
and Stirling’s formula for large X-values in the
arguments of the remaining I'-functions we obtain

(XX =1)
rx -1
r(1 + X)\/2m2-(x+01/2

(XD

for -0
I
2y/al(1 + X)

2 (X — HX-1
To/m (x + pE

for X - o0

(B.20)

Finally, we obtain for the X-dependent part in the limit
X - o

(X — %)(X*I/D
(X + &

as can be seen by

3273/ (B.21)

(X - H*2
(X + HFHD

1 1
— (X—§>ln(X—§> (X4 DIn(X + 1)
1 1
= (13 m(x(1-35))
—(X+1)1n<x<1+§)>

~(X—%) ln(X)—%—((X+l)ln(X)+1)

3 3
= 2ln(X) > (B.22)
We use the Taylor expansion of In(1 + y) around y =0
for y=(1/x) in (x+aln(x+a)=x+a)(lnx+
In(1 + (a/x))) which gives (x +a)lnx + a+ a*/x plus
higher order terms.
In mathematical terms we find in summary

X
lim lim lim Pul ’Tg = const. =

X>w n->0 1> \/EX_E 2\/E’

(B.23)

respectively, for the conditional probability p, (XX > 1):

>
lim lim lim (”7”0{ X /1)>

X>w n->0 1>

X2

= const. = (B.24)

1
2\/7
where the sequence of the limits taken is of importance.
First we let time t go to infinity, only leaving
considerations for relatively small values of infected X,
then look close to the critical value n>0, taking the
divergence of ,/n into account. We finally find scaling
with a power law for X only for large values of X, but
always much smaller than time 7. The actual value of the
constant 1/ Zﬁ is of no further importance, apart from
numerical checks.
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