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We study the evolution of the dispersal rate in a metapopulation model with extinction and colonization dynamics, akin to the

model as originally described by Levins. To do so we extend the metapopulation model with a description of the within patch

dynamics. By means of a separation of time scales we analytically derive a fitness expression from first principles for this model.

The fitness function can be written as an inclusive fitness equation (Hamilton’s rule). By recasting this equation in a form that

emphasizes the effects of competition we show the effect of the local competition and the local population size on the evolution

of dispersal. We find that the evolution of dispersal cannot be easily interpreted in terms of avoidance of kin competition, but

rather that increased dispersal reduces the competitive ability. Our model also yields a testable prediction in term of relatedness

and life-history parameters.
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virulence.

Natural populations are rarely well-defined entities that are ge-

netically and demographically isolated from other populations

with their own, independent dynamics. Rather, the local dynam-

ics of populations are linked to the global dynamics through the

movement of individuals among groups. Dispersal is therefore

central to our understanding of the ecological and evolutionary

processes that are at play in subdivided populations. A typical

example of a subdivided population is the metapopulation: a col-

lection of local populations that exist in patches of suitable habi-

tat that exhibit extinction–colonization dynamics (Levins 1969;

Hanski 1999).

Dispersal influences both the local, within-patch dynamics

and the global dynamics of a metapopulation: locally, dispersal

balances the efflux of emigrants and the influx of immigrants,

which affects local competition; globally, dispersal allows the col-

onization of empty patches. In return, both the local and global
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effects contribute to the selection process that shapes the evolu-

tion of dispersal. Because of these various effects, and the different

levels at which they operate, it is often difficult to disentangle the

selective forces that drive the evolution of dispersal. There is a

wealth of material on the evolution of dispersal, for a large part of

a theoretical nature (see Clobert et al. (2001), Bowler and Benton

(2005) for reviews).

The evolutionary causes of dispersal have been classified into

three broad categories (Ronce et al. 2001). If there is, first, spatial

heterogeneity in habitat quality, dispersal enables an individual

to leave a certain locality and to arrive at a locality in which the

conditions are supposedly better, a process referred to as “habitat

selection.” Yet, if there is spatial heterogeneity in habitat quality

and if habitat quality is constant over time dispersal is selected

against (Hastings 1983; Parvinen 1999), because it is never op-

timal to emit offspring to patches of potentially lower quality.

If, however, the habitat quality changes over time this holds no

longer true.
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A second category in the evolution of dispersal therefore in-

volves temporal heterogeneity in habitat quality. There can be a

selective advantage to dispersal if habitat quality fluctuates over

time. By dispersing, an individual can spread its offspring over

space and thus sample a large area. If the fluctuations are not

completely correlated over space this sampling will reduce the

experienced fluctuations. Such a strategy is often referred to as

bet-hedging (Kuno 1981; Venable and Brown 1988; Jansen and

Yoshimura 1998). In a metapopulation local catastrophes cause

heterogeneity in space and time. An increase in the extinction rate

therefore generally leads to selection for higher dispersal rates

(but see Ronce et al. 2000, Gyllenberg et al. 2002, Parvinen et al.

2003 and Parvinen, 2006).

The third category relates to local competition: by leaving its

native patch an individual can reduce the strength of competition

in the patch. Because dispersal often entails a reduction in the basic

fitness of an individual and an increase in the fitness of individuals

remaining in the patch, dispersal is often seen as an altruistic

trait. Dispersal therefore needs to be considered in the light of

the theory of kin selection. Central in this theory is Hamilton’s

rule (Hamilton 1964), which explains that an altruistic trait, that

is, a trait that incurs a fitness cost to the individual displaying it

(the actor) but provides a fitness gain to an individual benefiting

from it (the recipient), can evolve if the actor and the recipient

are likely to share identical copies of their genes. The probability

with which gene copies are shared among individuals is known as

relatedness.

Following the seminal work of Hamilton and May (1977),

the effect of local competition on the evolution of dispersal has

often been studied in systems of structured demes. Within a deme,

a finite number of individuals produce a large, possibly infinite,

number of offspring, a fraction of which disperses. All adults die,

and the access of offspring to breeding sites is granted through lo-

cal competition that is determined through a lottery played among

philopatric (produced within the deme) and dispersed offspring

(see e.g., Hamilton and May 1977; Gandon and Rousset 1999).

The results of Hamilton and May (1977) have been generalized

in various ways, most notably by Comins et al. (1980). The in-

terpretation of dispersal and the importance of relatedness was

highlighted in the work of Frank and Taylor (Frank 1986; Taylor

1988; Taylor and Frank 1996), and further refinements have been

added by various others (Gandon and Michalakis 1999; Rousset

and Billiard 2000; Rousset 2004).

Although the structured-deme model has arguably become

the standard setting to discuss the effects of local competition on

the evolution of dispersal, the leading formalism to describe the

population dynamics of the metapopulation is the Levins’ model

(Levins 1969; Hastings and Harrison 1994; Hanski 1999). The

Levins’ model assumes that patches are in one of two states: they

are either occupied or empty. Empty patches can get colonized,

occupied patches can fall empty through local catastrophes. The

model explicitly allows for the presence of empty patches, as this

is considered by many a crucial characteristic of metapopulations.

Various studies have addressed the evolution of dispersal in

Levins’ type metapopulation models (Heino and Hanski 2001). A

formalism to study the evolution of dispersal in metapopulations

has been developed (Gyllenberg and Metz 2001; Metz and Gyllen-

berg 2001; Parvinen 2006), and this formalism has been applied in

various forms (Gyllenberg et al. 2002; Cadet et al. 2003; Parvinen

et al. 2003). Because of the complexity of these models most of

the results come in the form of numerical results. Some analytical

results have been derived, yet only for cases in which the local

population size is infinite, and where the immigrations into local

patches are very frequent, and therefore the metapopulation has no

empty patches. Although these studies have added greatly to our

understanding of the evolution of dispersal, in specific scenarios

these results lack generality.

Although the study of the evolution of dispersal in structured-

deme and metapopulation models have provided considerable in-

sight into the factors that determine the evolution of dispersal,

there is a marked difference between these two approaches. The

work on structured-deme models is based on the assumption that

the local population size is fixed and does not depend on the dis-

persal rate (but see Rousset and Ronce 2004). In addition, studies

on such models tend to concentrate on the derivation of simple ex-

pressions for the marginal fitness, and the interpretation of these

expressions in terms of genetic measurable quantities, in partic-

ular relatedness. On the other hand, studies of the evolution of

dispersal in Levins’ type models often include a detailed descrip-

tion of the local dynamics, and normally describe the dependence

of local dynamics on dispersal. Unfortunately, this work has so far

not led to simple and general insights and mainly yielded numeri-

cal results or expressions for fitness that are difficult to interpret in

terms of the relatedness structure of a population. The gap between

these two approaches is further widened by the fact that population

dynamical models, such as the Levins’ model, are often formu-

lated in a way that predominantly describes local densities, thus

making it difficult to tease out the effects of interactions between

individuals. We think it is important to bridge this gap to formulate

a theory that is based on realistic and widely accepted ecology,

such as the Levins’ model, and that produces predictions in terms

of easily observable quantities, in particular relatedness.

The aim of this article is to relate the framework of Levins’

type metapopulations with structured-deme models. We formu-

late an analytical model that is a natural extension of the Levins’

model, to study the evolution of dispersal in metapopulations that

contain empty patches. By applying a separation of time scales

we describe local competition efficiently and make it analytically

tractable. This enables us to derive an expression for fitness that

allows interpretation and direct comparison to structured-deme
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models. Interestingly, we recover Hamilton’s rule in this model

but with a twist. We hope that our results contribute to bridging

the gap that currently exists between population dynamical and

genetical approaches in the study of the evolution of dispersal.

Model Formulation
We start by describing the Levins’ metapopulation model for one

species and then extend it so that it accounts for local dynamics.

We do this by assuming that local population growth is logistic

and that this growth is fast relatively to the lifetime of a patch so

that one can effectively assume that the equilibrium is reached in-

stantaneously (see also Gyllenberg and Hanski 1992). We further

extend the model to allow the coexistence of different strains in

a patch. If the competing strains only differ marginally in their

dispersal rate, then the local competition between the strains is

inherently a slow process (see Jansen and Mulder 1999). We then

describe the competition between the strains at the metapopulation

level by considering the invasion of empty patches and the reinva-

sion of occupied patches. In this way we can establish which of the

two competing strains wins the competition at the metapopulation

level and we can therefore establish the fitness of a strain with a

dispersal rate that is marginally different from the mean dispersal

rate in the population. Finally, we interpret the resulting fitness

function by studying how its components depend on the model pa-

rameters. By analyzing this fitness function, both the evolutionary

change in dispersal rate and the endpoint of this process can be

predicted.

THE METAPOPULATION MODEL FOR A SINGLE STRAIN

The Levins’ metapopulation model describes the dynamics of a

single species in a collection of patches that are either empty or

occupied: occupied patches become empty through catastrophes

that cause local extinction, whereas empty patches can be colo-

nized from occupied patches. The fraction of occupied patches is

denoted P. This changes over time as new colonizers (mP) reach

empty patches (1 − P) and as extinctions occur at rate e P. The

Levins’ metapopulation model therefore reads:

Ṗ = m P(1 − P) − eP, (1)

where the dot indicates the change of P over time.

The Levins’ model does not specify the dynamics within

a patch. We will extend the Levins’ model to account for local

population dynamics. Because local populations consist of indi-

viduals, population size is a discrete variable. In what follows we

will describe the size of the local population as a continuous de-

terministic variable. We can do this because although events that

change the size of the local population, such as births and deaths,

are inherently stochastic and discrete, we can consider the mean

population size of an ensemble of populations that all started of

from the same initial number. In this way we can describe the

local dynamics in terms of the ensemble mean of a stochastic pro-

cess, which is a continuous variable (see Online Supplementary

Appendix S1). To describe the change in the ensemble mean of

the local population size we will follow Gyllenberg et al. (2002)

and Parvinen et al. (2003) and assume that the ensemble mean of

the local population size within a patch, x, obeys logistic growth

with growth rate r and carrying capacity k. We also assume that

individuals leave the patch with a per capita rate of � . The local

population size thus changes over time according to

ẋ = r x
(

1 − x

k

)
− � x . (2)

The local population size goes to a positive, stable equilibrium

given by x̃ = k(1 − �
r ) if � < r.

If this equilibrium value is reached quickly compared to the

lifetime of a patch the local dynamics are fast compared to the

dynamics of the metapopulation (Goel and Richter-Dyn 1974;

Barbour and Pugliese 2004). Note that this assumption is implicit

to the Levins’ model: if this were not the case the sizes of the

subpopulations at any point in time would all be very different

and one could not reasonably assume that occupied patches are all

equal. In mathematical terms this assumption amounts to requiring

that r − � � e (the time to reach equilibrium is proportional to

1/(r − � ), and the average lifetime of a patch is 1/e) and ensures

that virtually all local populations are at equilibrium. For the model

in this article we will assume that r − � � e. If migrations into

occupied patches are rare we can ignore their effect on the local

dynamics (2). However, local immigrations do matter if they occur

in an empty patch.

Individuals that leave their patch become dispersers (D). The

total number of new dispersers per unit of time is D(P) = � x̃ P .

We assume that a disperser successfully finds a patch with

probability � (hence, the “cost of dispersal” is 1 − �), and

that the patch is colonized with probability u(� ). The proba-

bility of colonization of an empty patch depends on the dis-

persal rate: for instance, if the birth and death rates are given

by, respectively, rx and rx2/k, then the probability of coloniza-

tion is approximately u(� ) = 1 − �/r (see Online Supple-

mentary Appendix S1). The colonization rate of empty patches

is �u(� )D(P) (1 − P). If we define m(� ) = ��u(� )k(1 − �
r )

the colonization rate of empty patches can be written as m(� )

P(1 − P) and in doing so we have extended the Levins’ metapop-

ulation model (1) with a consistent description of the local dynam-

ics, and have made the patch colonization rate m(� ) a function of

the dispersal rate.

In the Levins’ model only immigrations into empty patches

are accounted for: in the limit considered here, r − � � e, the

local dynamics equilibrate instantaneously, hence the acquisition

of an extra individual does not affect the local population size
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Figure 1. The effect of the dispersal rate, � on (A) the local equilibrium population size x̃, (B) the colonization rate, m(�), (C) the equilibrium

level of occupation in the metapopulation P̃ , and the fraction of patches that received two colonizers, P̃2, and (D) the total number of

individuals in the metapopulation x̃P̃ . The horizontal line in B represents the extinction rate, and the metapopulation is viable if the

colonization rate exceeds the extinction rate. It can be seen that for very high or very low dispersal rates the metapopulation is not

viable. Parameters: � = 0.001, r = 25, e = 0.1 and k = 100.

in an occupied patch. However, if we wish to retain information

about the number of distinct strains that a patch has received we

can denote the fraction of patches that have received i immigrants

by P i . The total fraction of occupied patches is given by P =∑n
i=1 Pi . If we restrict the number of invasions to n = 2, (Van

Baalen and Sabelis (1995a) use a similar assumption in the context

of the evolution of virulence) the dynamics of the P i s are given

by

Ṗ1 = m(� )P(1 − P) − eP1 − m(� )/u(� )P P1

Ṗ2 = m(� )/u(� )P P1 − eP2. (3)

Note that because the birth and death rates will differ from the

birth and death rates in empty patches, the probability of col-

onization of already occupied patches is different from empty

patches. In the formalism used here we assume that the loss of

individuals through local extinctions in patches that are reinvaded

is incorporated in the local dynamics (see Online Supplementary

Appendix S1) and therefore we need to compensate the reinva-

sion rate to take this into account. The reinvasion rate, for this

reason is divided by the term u(� ) used in the colonization of

empty patches and the rate of reinvasion is m(� )/u(� )PP1. Sys-

tem (3) has as equilibrium P̃ = 1 − e/m(� ), which is identical

to the equilibrium of the Levins’ model (1), and the equilibrium

values of P1 and P2 are given by P̃1 = m(� )u(� )
m(� )−e(1−u(� )) P̃(1 − P̃)

and P̃2 = m(� )
m(� )−e(1−u(� )) P̃2. The restriction to two invasions per

patch can be justified by realizing that empty patches are a char-

acteristic of a metapopulation. This implies that the colonization

rates are low, and that multiple recurrent invasions in a patch are

relatively rare over the lifetime of a patch. In what follows we

will outline results for more than two invasions, and show that

this assumption does not qualitatively affect our results. Because

our model assumes that colonization rates are low, we will assume

throughout this article that the parameter � is sufficiently small

for this to be the case. How small exactly depends on the other

parameters.

Dispersal affects the metapopulation in various ways: it de-

creases the local population size x̃ (Fig. 1A), but, obviously, it also

increases the number of individuals leaving a patch and decreases

the probability of colonization. As a result, the colonization rate

m(� ) varies nonmonotonically with the dispersal rate (Fig. 1B).

For � = r/3, these effects compensate one another, and the lo-

cal population sizes yield the maximum number of dispersers.

The occupation of the metapopulation also reaches a maximum at

� = r/3 (Fig. 1C) but because the local equilibrium size decreases

with � , the total number of individuals in the metapopulation P̃ x̃

peaks for a lower value of � (Fig. 1D).

LOCAL DYNAMICS FOR TWO COMPETING STRAINS

Next, we extend the model to describe two strains coexisting in

the metapopulation. The strains differ marginally in their dispersal

rates and they compete locally for resources. The local population
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Figure 2. The local dynamics and the approximation of the local dynamics made by the Levin’s model. (A) The local dynamics after

colonization of a patch. If the local population growth is logistic (dashed line, given by eqn (2)), the assumption of the Levins’ model that

the local population size is constant (drawn line) is justified if the growth rate is fast compared to the the lifetime of a patch. (B) The local

dynamics after reinvasion of an individual. Here, we consider that at time 0, a single individual invades an occupied patch (vertical arrow).

The local population dynamics of the full, nonapproximated model (4) are represented by the dashed line. Apart from the initial spike

that immediately follows reinvasion (vertical arrow), the dynamics are well approximated by the description of the extended Levins’

model (drawn line given by (7) and (8)) which was derived using a separation of time-scale argument. The sharp fall back after the initial

spike is caused by the fact that the local population size falls back very quickly to its quasi-equilibrium following invasion. Parameters as

in Fig. 1, �◦ = r/4, � ∗ = �◦ − 0.25 and x(0) = 1 in A and x(0) = 75 in B.

size of the first strain, which has a dispersal rate � ◦, is given by

x◦. In what follows we will refer to this widespread strain as the

resident strain in the metapopulation. The local population size

of the second strain, which has dispersal rate �∗, is given by x∗.

This strain will further be referred to as the mutant strain. If the

two strains locally coexist, we assume the local dynamics within

a patch are given by (see Online Supplementary Appendix S1):

ẋ◦ = r x◦
(

1 − x◦ + x∗

k

)
− � ◦x◦

ẋ∗ = r x∗
(

1 − x◦ + x∗

k

)
− �∗x∗. (4)

By introducing new variables for the total density (s = x◦ + x∗)

and the fraction of the mutant strain ( f = x∗/s), the local dynamics

(4) can be rewritten as

ṡ = s

(
r

(
1 − s

k

)
− � ◦(1 − f ) − �∗ f

)
(5)

ḟ = (� ◦ − �∗) f (1 − f ). (6)

As for the single strain dynamics we will assume that the dynamics

of the local population size ṡ are fast compared to the metapop-

ulation dynamics and therefore require r − � ◦ � e + � D and

r − � ∗� e + � D. Under these assumptions s quickly reaches a

quasi-steady state, denoted s̃, which can be found by putting the

left-hand side (lhs) of equation (5) to zero:

s̃(t) = k

(
1 − � ◦(1 − f (t))

r
− �∗ f (t)

r

)
= x̃◦ + f (t)(x̃∗ − x̃◦)

(7)

where x̃◦ (respectively x̃∗) gives the equilibrium population of

the resident (resp. mutant) strain when it occupies a patch on

its own: x̃◦ = k(1 − �◦
r ) [respectively x̃∗ = k(1 − �∗

r )]. Note that

s̃(t) changes over time only through f (t).

Equation (6) describes the replacement of one strain by the

other through competition. Although both strains share the same

carrying capacity, and thus compete with each other for resources,

this competition does not lead to replacement. It is the difference

in the strains’ dispersal rates, which manifests itself through a dif-

ference in competitive ability, which causes the replacement of the

more dispersing strain by the more philopatric one. If this differ-

ence (� ◦ − �∗) is small, then this process is slow—a fact that can

be exploited to approximate the local dynamics accurately (Jansen

and Mulder 1999). The dynamics of the fraction f is equivalent to

that for logistic growth and can be solved in a closed form

f �(t) = �

� + (1 − �) exp [(�∗ − � ◦)t] ,
(8)

where the superscript refers to the initial condition (i.e., the frac-

tion of the mutant strain at the time of invasion): � = f � (0). If

the meaning is unambiguous we will suppress the superscripts.

Similarly, s̃�(t) = x̃◦ + f �(t)(x̃∗ − x̃◦). If r − � � e the approx-

imation of x∗ by f s̃ and x◦ by (1 − f )s̃ provides an excellent

approximation to the local dynamics, which we will henceforth

use to describe the local dynamics (Fig. 2).

The initial conditions relevant for the local dynamics depend

on the order in which individuals from different strains arrive

in a patch. For example, consider an individual with a dispersal

rate � ◦ that invades a patch previously founded by an individual

with dispersal rate �∗. According to our model this patch will

contain on average x̃∗ individuals before invasion and therefore

an average of x̃∗ + 1 individuals immediately after the second
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invasion. The fraction of mutant individuals at the time of inva-

sion will therefore be given by �∗ = f �∗
(0) = x̃∗

x̃∗+1 . Similarly,

a patch founded by an individual with dispersal rate � ◦ that is

reinvaded by an individual with a dispersal rate �∗ will contain a

fraction �◦ = f �◦
(0) = 1

x̃◦+1 of mutant individuals immediately

after reinvasion. The approximation of the local dynamics (5) and

(6), together with the relevant initial conditions given above, al-

lows us to calculate the fitness of the mutant strain in the meta-

population.

THE FITNESS OF A FOCAL INDIVIDUAL

Studying the evolutionary dynamics of dispersal in the metapop-

ulation, amounts to characterizing the fitness of an individual that

adopts a marginally deviant strategy for dispersal. We will there-

fore calculate the expected number of dispersed offspring that a

rare mutant that disperses at rate �∗ will give rise to in a popula-

tion dominated by a resident strain that disperses at rate � ◦. This

is related to the computation of the invasion rate as a measure for

fitness (Metz et al. 1992) as extended to metapopulations (Gyl-

lenberg and Metz 2001; Metz and Gyllenberg 2001) and largely

equivalent to the focal individual fitness approach pioneered by

Taylor and Frank (1996) (see also Ajar 2003).

We will assume that the density for the resident population

at large is given by the equilibrium of the Levins’ model (3).

To calculate the fitness, we follow the different fates that a focal

individual may meet:

(i) The focal individual lands and successfully colonizes

an empty patch. This happens with probability �u(�∗)(1 −
P̃). Following invasion, this patch either is hit by a catas-

trophe or is reinvaded. The average time elapsed before one

of these events occurs is 1/(e + �D̃), during which time

�∗ x̃∗�u(�∗) 1−P̃
e+�D̃

= �∗ x̃∗ u(�∗)P̃1

u(�◦)D̃
mutants leave this patch. If

the patch goes extinct nothing else will happen. However,

if the patch is reinvaded, which happens with probabil-

ity �D̃/(e + �D̃) = m(�◦)
m(�◦)−e(1−u(�◦)) P̃ , more mutants will still

be dispersed. The total number of mutants dispersed from

such a patch is �∗�u(�∗) �D̃(1−P̃)
e+�D̃

∫ ∞
0 f �∗

(t)s̃�∗
(t) exp(−et)dt =

�∗� u(�∗)P̃1

u(�◦)

∫ ∞
0 f �∗

(t)s̃�∗
(t) exp(−et) dt , where exp (−et) is the

probability that a patch has not gone extinct t time units after rein-

vasion. Because the density of the mutant strain is very small in

the metapopulation, we need not consider the successive invasion

of two mutant individuals in the same patch.

(ii) The focal individual lands and reinvades a patch al-

ready occupied. This happens with probability �P̃1. In that case,

�∗�P̃1
∫ ∞

0 f �◦
(t)s̃�◦

(t) exp(−et) dt mutant dispersers are sent

out.

Putting all this together yields the fitness of a rare mutant

strain with dispersal rate �∗ in a metapopulation at equilibrium in

which the dispersal rate is � ◦

W (�∗, � ◦) = �∗�P̃1

[
x̃∗u(�∗)

�u(� ◦)D̃
+

∫ ∞

0

[
f �◦

(t)s̃�◦
(t) + u(�∗)

u(� ◦)
f �∗

(t)s̃�∗
(t)

]
exp(−et)dt

]

It is straightforward to check that W (� ◦, � ◦) = 1, that is that

the fitness of a focal mutant that disperses at the same rate as

the rest of the population is unity. The fitness expression can

be rewritten using special functions, but this does not lead to

transparent results.

MARGINAL FITNESS

To identify the possible endpoints of the evolutionary process,

we calculate the marginal fitness, or fitness gradient (a change in

fitness due to a marginal change in dispersal rate) as

∂W (�∗, � ◦)

∂�∗

∣∣∣∣
�∗=�◦=�

= 1

�
+ dx̃

x̃d�

P̃1 + P̃2
(
�◦2 + �∗2)
P̃

− 1

e

2�◦�∗ P̃2

P̃

+ du

ud�

(
P̃1

P̃
+ P̃2

P̃
�∗

)
+ P̃2

P̃

d�∗

d�∗

∣∣∣∣
�∗=�

(9)

(see Online Supplementary Appendix S2 for derivation.) It is

straightforward to numerically calculate the values of � for which

the marginal fitness is zero, and thus establish the Evolutionarily

Singular (ES) dispersal rates. (We have avoided the word stability

here because the analysis does not provide information about the

evolutionary stability of the ES values. However, in all cases in

which we verified the stability the ES values were evolutionary

and convergence stable.) Such an analysis shows:

• The ES dispersal rate increases with the local growth rate r

(Fig. 3A). This is so mainly because strains that have a higher

growth rate can afford to emit more dispersers, and in agree-

ment with the results in Parvinen (2006).
• The ES dispersal rate decreases with the probability of find-

ing a patch � (Fig. 3B). This is so because our approximation

is valid mainly if the probability of finding a patch is low,

and this will be a main determinant of the occupancy of the

metapopulation. An increase in colonization will decrease re-

latedness (Gandon and Michalakis 1999; Kisdi 2004) and put

a premium on competition, leading to reduced dispersal. This

contradicts Gyllenberg et al. (2002), Parvinen et al. (2003),

and Parvinen (2006) but in these studies the cost of dispersal

was always fairly low and not in a regime that compares to our

model. Comins et al. (1980) and Gandon and Michalakis (1999)

find that the ES dispersal probability generally decreases with

the cost of dispersal 1− �, but, as in our model, they find
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Figure 3. The ES dispersal rate as a function of (A) the local growth rate r, (B) the probability of finding a patch � , (C) the extinction rate

e, and (D) the carrying capacity k. The long dashed line gives the boundary of the metapopulation viability area. This is the viability limit,

because � = r/3 implies R = 1, which in turn implies P̃2 = P̃ 2 = 0. Results are derived by setting the lhs of (9) to zero and numerically

solving for �. For the drawn curves r − � > 10(e+ � D) whereas for the dashed curves this was not the case. Unless otherwise indicated

parameters as in Fig. 1.

an increase in the ES dispersal rate for high costs and for

small populations.
• The ES dispersal rate predominantly decreases with the local

carrying capacity (Fig. 3C). For low carrying capacities the

ES dispersal rate decreases as the carrying capacity increases,

mainly because larger patches lead to an increase in the total

number of dispersers, which leads to a reduced dispersal rate.

For large carrying capacities the ES dispersal rate increases

with the carrying capacity. This increase is in marked differ-

ence with structured-deme models in which the dispersal rate

generally decreases with the local population size (Comins et al.

1980, Gandon and Michalakis 1999). However, for the region

in which the increase takes place the rate of invasion in a patch

is relatively large compared to the local population growth,

so that the time scale separation we applied is at the limit of

its validity.
• The ES dispersal rate increases with the extinction rate e (Fig.

3D). The rationale is that extinctions increase the fraction of

empty patches, hence the opportunity for successful coloniza-

tions. This result is in contrast with the findings of Ronce et al.

(2000), Gyllenberg et al. (2006), Parvinen et al. (2003) and

Parvinen (2006) who found a nonmonotonic relationship. This

discrepancy is most likely to be caused by the fact that at very

high extinction rates the average lifetime of a patch becomes

short, and the separation of time scales we have applied is not

valid. At high extinction rates the local population dynamics

spend a relatively long time in a phase of exponential growth,

and a r-selection scenario ensues. A reduced dispersal rate

boosts local growth and thus explains the evolution of smaller

dispersal rates.

Although expression (9) is useful in obtaining numerical re-

sults, it is of limited assistance in understanding the biological

processes that drive the evolution of dispersal in a metapopula-

tion, which is the main motivation of this work. However, this

equation can be interpreted further, by noticing that some terms

are functions of the relatedness among mutant individuals, which

measures the probability of finding two identical genes in two

individuals from the same patch, relative to the probability of

finding two identical genes in two individuals from the same

metapopulation (Pamilo 1984; Queller and Goodnight 1989). In

Online Supplementary Appendix S3 we show that relatedness in

the metapopulation is given by

R = P̃1 + P̃2
(
�◦2 + �∗2)
P̃

.

We also show that this is identical to the chance that a rare

mutant encounters another mutant in its patch, which has also

been proposed as a relatedness measure (Day and Taylor 1998;

Van Baalen and Rand 1998; Ferriere and Le Galliard 2000). In a

similar fashion we can define the probability that a rare mutant en-

counters a resident individual. This probability, which one could

call unrelatedness, is simply 1 − R; we will denote it as R̄ and it is

given by

R̄ = 2�◦�∗ P̃2

P̃
.
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Using this we can rewrite the marginal change in fitness (9) in a

much clearer form as

∂W (�∗, � )

∂�∗

∣∣∣∣
�∗=�◦=�

= 1

�
+ dx̃

x̃d�
R − 1

e
R̄ + du

ud�

P̃1 + �∗ P̃2

P̃

+ P̃2

P̃(1 + x̃)2

dx̃

d�

= 1

�
− 1

r − �
R − 1

e
R̄ − 1

r − �

P̃1 + �∗ P̃2

P̃

− P̃2

r − �

x̃

P̃(1 + x̃)2
. (10)

The first term of the above equation represents the fitness change

due to a change in the emission of dispersers. This is a direct effect,

which relates to the increased fitness of a strain sending out more

dispersers. This effect is stronger for low dispersal rates, because

as dispersal increases the fraction of empty patches decreases.

The second term represents the effect of a change in the dis-

persal rate on the local equilibrium population: an increase in the

dispersal rate of the focal mutant decreases the local population

size, which diminishes the potential for other mutants in the patch

to send out dispersers. This is an indirect effect, because it only

affects the focal mutant through an effect on related individuals in

the patch. It is therefore multiplied with the factor R, which mea-

sures the fraction of mutants in a patch conditional to the focal

individual being a mutant.

The third term gives the fitness reduction due to a decreased

competitive ability within a patch: a strain that emits more dis-

persers will slowly lose a jointly occupied patch as described by

(6). This means that as the focal mutant strain sends out more dis-

persers, the other strain that competes in the patch benefits from

a competitive advantage. Hence, this term is multiplied by the

probability of encountering an unrelated individual, R̄ = 1 − R.

This effect is proportional to the lifetime of the patch, which is on

average 1/e.

The fourth term describes the effect of demographic stochas-

ticity. In our model we have incorporated this through the prob-

ability u(� ) to lose a patch through demographic extinction of a

newly colonized patch. Because this probability is only applicable

to patches that are colonized from an empty state, this only applies

to patches in which the mutant is the first invader. Note that if the

local population sizes are moderately large, and hence �∗ is close

to 1, this term will take the approximate value of −1/(r − � ). In

what follows, and for reasons of convenience and clarity we will

therefore use this approximate value.

The fifth term is somewhat unexpected: it represents the de-

crease in the fraction of mutants in the patch after a resident in-

dividual invades, d�∗/d�∗. Because a decrease in the dispersal

rate boosts the local population size, patches of individuals with

a low dispersal rate are less affected by the invasion of a different

type. This control is asymmetrical: by decreasing its dispersal rate

the mutant can effectively reduce the initial fraction of reinvading

residents in patches founded by mutants; but if the mutant rein-

vades a resident patch, a change in mutant dispersal rate will not

affect the mutant fraction. If the local populations are small this

effect might be sizable, but for larger population sizes the effect

diminishes (see also Online Supplementary Appendix S4). More-

over, if the local population dynamics are fast, which implies r

− � � e that the contribution of this term becomes negligible.

For clarity, because its presence does not influence our results

qualitatively, and because for most realistic metapopulations we

expect the magnitude of this finite size effect to be small, we will

not take it into account any further.

The outcome of the selection process involving direct fitness

effects (i.e., that result from personal reproduction) and indirect

fitness effects (i.e., that result from the reproduction of relatives)

may be best understood in light of Hamilton’s rule (Hamilton

1964) which predicts that the altruistic behavior of an actor to a

recipient individual will be favored if b R > c, where b is the benefit

received by the recipient, c is the cost incurred to the actor, and R

is a measure of the relatedness between the two. After rewriting

(10) without the fifth term in the form of an inclusive fitness

equation gives

∂W (�∗, � ◦)

∂�∗

∣∣∣∣
�∗=�◦=�

≈ 1

�
− 1

r − �
− 1

e
+

(
1

e
− 1

(r − � )

)
R.

(11)

Note that this fitness function is not constructed in analogy with

Hamilton’s rule, but is derived from first principles. From this

recast equation (which we also derived for unlimited numbers of

invaders per patch, see Online Supplementary Appendix S4) we

can see that the direct fitness effect of a change in the dispersal

rate can now be interpreted as the combination of the direct benefit

resulting from an increased emission of dispersers (term 1) and

the effect of demographic stochasticity (term 2), together with the

cost of competition (the third term in (10)) which is levied over all

individuals (term 3). However, because competition only affects

the fitness if it operates between unrelated individuals, we need to

compensate for the competition between related individuals that

we now have invoked. In (11) this is accounted for by adding an

indirect benefit through the interactions with related individuals.

Although this leads to a representation that is compatible with

the commonly held view that the avoidance of kin competition

is a main selective force in the evolution of dispersal, this also

suggests that this interpretation does not follow naturally from the

competitive process.

The indirect fitness component (the term multiplied with R

in (11)) is always positive because the Levins’ model requires

r − � � e. The direct fitness component can be positive if many

patches are unoccupied. A small increase in the dispersal rate
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can therefore give an enormous advantage that outweighs the

cost of local competition. In that situation dispersal would not

constitute an act of altruism, as this requires that the direct effect

is a cost (i.e., is negative), whereas the indirect effect, which here

only involves the interactions with similar individuals, is positive.

At and close to the ES dispersal rate the marginal gain in fitness

is zero or small. Because the indirect effect in (11) is positive the

direct effect has to be negative. Dispersal in a metapopulation in

such cases can indeed be seen as an altruistic behavior.

Because competitive replacement is only brought about by

individuals with a dispersal rate that differs from that of the focal

individual, replacement competition only occurs among unrelated

individuals. To reveal this effect of competition we recast (10)

without the fifth term in a form in which the effects with unrelated

individuals are exposed

∂W (�∗, � ◦)

∂�∗

∣∣∣∣
�∗=�◦=�

≈ 1

�
− 2

r − �
−

(
1

e
− 1

r − �

)
R̄.

(12)

The first and second terms, that do not have the factor R̄, repre-

sent the marginal fitness of a mutant that would result if different

strains cannot jointly occupy a patch. Such a situation obtains

if we would consider single colonizations only, in which case

the fitness is given by m(�∗)
m(� ) . The marginal gain in fitness reads

1
m(� )

dm(�∗)
d�∗ = 1

�
+ dx̃

x̃d�
+ du

ud�
and these terms therefore represent

the increase in fitness due to the change in the colonization rate

if local interactions occur exclusively among related individuals.

One could thus interpret the fitness components given by the first

and second terms as representing the importance of the common

good (Van Baalen and Jansen 2001).

In the extreme situation when the common good is the only

driving force (i.e., if R = 1), the evolutionary singular dispersal

rate would be � = r/3. The effect of dispersal on the local pop-

ulation size (−(r − � )−1) is always negative: increased dispersal

does not benefit related individuals that remain in the patch (see

Discussion). Interestingly, the term − dx̃
x̃d�

can be shown to be pro-

portional to the characteristic return time of the local equilibrium

(independently of the actual growth rate function that is used): the

fitness depends on the stability of the local population equilibrium

(Zeineddine and Jansen 2005).

The third term, multiplied with the “unrelatedness” R̄, com-

prises the effects of competition with unrelated individuals. Be-

cause R̄ is a probability it is always positive. Furthermore, as we

required for a Levins’ type metapopulation that r − � � e, the

combined effect of competition is always negative. It follows that

at an ES dispersal rate the term 1
�

− 2
r−�

must be positive and

thus that the evolutionary singular dispersal rate cannot exceed

r/3. The local population size x̃ and the global population size

x̃ P̃ tend to be larger than in a metapopulation in which the joint

occupancy of patches is not possible (see Figs. 1A and 1D).

Putting the right-hand side of equation (12) to zero, we find

that the at candidate evolutionary endpoints the unrelatedness ap-

proximately obeys the equation

R̄ ≈ �−1 − 2(r − � )−1

e−1

(this only holds approximately because we have used r − � � e to

simplify the denominator and ignored the fifth term in (10).) This

observation leads to a testable prediction. In a metapopulation in

which the dispersal rate is at its evolutionary endpoint the unrelat-

edness approximately equals the reciprocal of the dispersal rate

minus twice the characteristic return time of the local population

divided by the average lifetime of a patch. All these factors are, in

principle, measurable. The dispersal rate can be inferred from the

probability that an individual disperses, the characteristic return

time can be inferred from the dynamics of newly colonized patches

or through experimental manipulation by removing individuals.

The unrelatedness, R̄, is one minus the relatedness, which can be

estimated using standard methods (Queller and Goodnight 1989).

Note that this relation predicts that the unrelatedness decreases,

and hence the relatedness increases, with the ES dispersal rate (cf.

Gandon and Michalakis 1999).

Discussion
We have analyzed the evolution of dispersal in a Levins’ metapop-

ulation model, which was extended to account for local population

dynamics. We derived a fitness equation from this model and inter-

preted this expression in various ways. We found that the evolution

of dispersal follows Hamilton’s rule, that is, there is a direct effect

of a change in the dispersal rate, and an indirect effect that results

from the interactions with related individuals. This shows that dis-

persal indeed can be seen as an altruistic trait (see Ronce et al.

2001; Rousset 2004). We also showed that increasing dispersal

is beneficial because it augments the chance to colonize empty

patches. Yet, it also reduces the competitive ability within a patch

as well as the local population size.

The evolution of dispersal has been studied in considerable

detail (e.g., Frank 1986; Taylor 1988; Taylor and Frank 1996;

Gandon and Michalakis 1999; Rousset and Billiard 2000, Rousset

2004). The predominant theoretical approach, a structured-deme

model (Hamilton and May 1977; Comins et al. 1980) assumes

that within a deme the local population reaches a constant equi-

librium size each generation. This assumption is mainly moti-

vated by analytical tractability (Comins et al. 1980). Instead, to

reproduce the ecological settings of a metapopulation, we based

our model on the Levins’ metapopulation (Levins 1969, Hanski

1999) to describe the extinction–colonization dynamics, and we

used a logistic growth function for the local dynamics. Our model

relates to various other studies of the evolution of dispersal in

metapopulations (Ronce et al. 2000; Gyllenberg and Metz 2001;
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Heino and Hanski 2001; Metz and Gyllenberg 2001; Gyllenberg

et al. 2002; Cadet et al. 2003; Parvinen et al. 2003; Parvinen 2006).

Our work differs from many previous studies in that we require

the colonization rates to be small, so that at all times the metapop-

ulations contains a relatively large proportion of empty patches,

which can remain empty for relatively large periods of time.

Our work extends findings on the evolution of dispersal in

metapopulations by deriving analytical expressions, and an inter-

pretation in terms of inclusive fitness. We have achieved this by

using a separation of time scales argument, which makes the fit-

ness expressions tractable. This technique is generally applicable

to the study of evolution in subdivided populations (Jansen and

Mulder 1999), and offers the potential to answer hitherto unan-

swered questions about patch or host exploitation strategy (e.g.,

Van Baalen and Sabelis 1995b). We have derived our results by

limiting the number of invasions per patch to two, but demonstrate

that this has no major impact on our findings. We have made two

major assumptions: that the metapopulation has empty patches

and that the local dynamics are fast and at quasi-steady state.

The numerical results we have obtained are broadly in agreement

with previous theoretical work on models based on structured-

demes and metapopulation models, albeit that we did found some

departures from previous results if our assumptions became vi-

olated. Our technique is also applicable to the study of the evo-

lution of virulence in the face of multiple recurrent infections.

To deal with such cases most models make the assumption that

a second invader in a patch takes over immediately, or not at all.

Although this is mathematically convenient, it leaves the aspect of

competition between strains and the effect of relatedness unstud-

ied. The approach used here would apply to study this in much

more detail.

We formulated a simple but realistic ecological model, and

calculated the selective forces working on the evolution of dis-

persal. By casting the fitness equation in a form that emphasizes

the competition with unrelated individuals, we reached a testable

prediction: in a metapopulation in which the dispersal rate is at

an evolutionary endpoint the unrelatedness (i.e., one minus the

coefficient of relatedness sensu Pamilo (1984) and Queller and

Goodnight (1989)) approximately equals the reciprocal of the dis-

persal rate minus twice the characteristic return time of the local

population, divided by the average lifetime of a patch. This predic-

tion can assist in determining whether real populations are closer

to the metapopulation model given here, or the structured-deme

model, for which the relatedness is also predicted (Frank 1986;

Gandon and Michalakis 1999; Gandon and Rousset 1999). The

crucial characteristic of the metapopulations in our model is that

local populations are founded by a single foundress, that colonizes

the patch and fills it with her offspring. Although such a patch can

later be reinvaded, the larger the local population size, the less

impact reinvasions have and hence the relatedness increases with

carrying capacity. Similarly, an increase in the cost of dispersal

will make reinvasion less likely, and this leads to the evolution of

higher dispersal rates. The assumption of a single foundress and

high relatedness is supported by data that show that relatedness

in metapopulations is often high (Ingvarsson 1998; Gerlach and

Hoeck 2001; Stow et al. 2001; Verdade et al. 2002)

The main result we have obtained is that evolution of dispersal

in a Levin’s metapopulation can be shown analytically to follow

an inclusive fitness equation. The interpretation of this equation

allowed us to identify four selective forces that regulate the evo-

lution of dispersal. Increased dispersal leads to (1) an increased

ability to colonize new habitats, (2) a decreased competitive abil-

ity, (3) a reduction in the local population size, and (4) increased

demographic stochasticity. As long as the average lifetime of a

patch is large compared to the local population dynamics, these

conclusions are likely to be robust. Note that the size of the local

population is an important factor for the evolution of dispersal.

Restrictive assumptions on the local growth rates, like assuming a

fixed number of individuals per patch, leave out a host of factors

in the evolution of dispersal that are likely to be of importance in

natural situations (West et al. 2002).

The avoidance of kin competition (i.e., local competition with

related individuals) (Hamilton and May 1977; Frank 1986; Gan-

don and Michalakis 1999; Gandon 1999; Perrin and Mazalov

2000) is often invoked as an important factor that should select for

dispersal. Our analysis suggests that this interpretation is some-

what contrived. Local competition for resources, in our model

as in a structured-deme model, is assumed to be fair and hence

all individuals have the same chance to succeed, irrespective of

their dispersal rates. The empty place that the disperser leaves be-

hind will soon by filled by a new individual, which competes in the

same fashion. It is hard then to imagine how arranging competition

with unrelated genotypes (as it is suggested by the avoidance-of-

kin-competition argument) leads to a selective advantage, except

maybe if deleterious effects of inbreeding are taken into account

(which is neither the case here, nor in most deme-structured mod-

els (but see Morgan 2002; Roze and Rousset 2005)). This is further

supported by the observation that a change in the carrying capac-

ity, which will also change the strength of local competition for

resources, has no direct impact on the fitness components, apart

from a change in the relatedness of the population. However, in-

creased dispersal is detrimental to competitive ability because less

offspring are retained in the patch, giving a less dispersing type a

competitive advantage. We argue that the competition with unre-

lated individuals provides a conceptually simpler explanation for

the evolution of dispersal.
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