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a b s t r a c t

Dispersal has important implications on an individual, population and metapopulation

level. Dispersal rates, however, are difficult to measure. In this paper we introduce a method

that uses census data, i.e. repeated counts of number of individuals per location and point in
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time, to estimate dispersal rates. The rationale underlying this method is that local stochas-

tic disturbances which dissipate in subdivided populations create a covariance structure, the

details of which depend on how strongly the local populations are coupled. This covariance

structure can be used to estimate dispersal rates. We describe this process using a stochas-

tic model for growth and dispersal which explicitly accounts for the geometry of the patchy

population. A regression of the covariance structure of this model is then used to infer the

growth rate near equilibrium and the dispersal rate. We study the distribution of the esti-

mated parameters and obtain confidence intervals using a bootstrap analysis and a Monte

Carlo technique. We study how the confidence intervals depend on the model’s parameters,

the robustness of the estimating scheme, and discuss the applicability of our method.

© 2006 Elsevier B.V. All rights reserved.

1. Introduction

Many natural populations are subdivided and occur in habitat
patches (Husband and Barrett, 1996; Hanski, 1999; Thrall et al.,
2000; Barton, 2001; Chesson, 2001). Ecologists and geneticists
have formulated models describing metapopulations, i.e. pop-
ulations consisting of “local populations", each of which have
a substantial probability of extinction, but which can persist
at a regional level (Wright, 1940; Levins, 1970; Hanski, 1999,
2001). Dispersal between these local populations is an essen-
tial feature of a spatially structured population.

The importance of dispersal has been recognised in em-
pirical and theoretical studies. However, quantification of dis-
persal is difficult as measuring dispersal rates in natural pop-
ulations is a time and labour consuming enterprise. (For re-

∗ Corresponding author. Tel.: +44 1784 443179; fax: +44 1784 470756.
E-mail address: vincent.jansen@rhul.ac.uk (V.A.A. Jansen).

cent reviews on this issue see Clobert et al., 2001; Nathan et
al., 2003; Cain et al., 2003 and other papers in same issue of
Ecology.) So far two different methodologies have been used to
measure dispersal: (1) one can observe marked individuals and
track movement and redistribution (Stensteth and Lidicker,
1992; Kaiser, 1995), (2) one can infer dispersal by the redistri-
bution of a population of markers (Slatkin, 1985; Barton, 2001).

Individual movement-redistribution methods use data on
observations of individuals. In most cases, animals will be cap-
tured, a mark applied, and the animal released. Subsequent
reobservation generates (a) recovery data, in which animals
are recovered dead, (b) recapture/resighting data, or (c) known-
status data, in which marked animals are re-observed alive
or dead at specified times. Evaluation of the data using an ap-
propriate model yields dispersal-related parameters (Bennets
et al., 2001). Direct tracking of individuals involves the use of
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radio tags, satellite tags or electronic data storage tags (see
references in Nathan (2001)). Although this approach poten-
tially gives good results, its main disadvantages are associated
technical difficulties, the labour-intensive way of collecting
the data, and above all the high costs of the tags. Moreover,
the data gathered using these direct methods might not
represent the full distribution of individual movements and
are temporarily and spatially restricted (Koenig et al., 1996).

In case of the redistribution of a population of markers, the
markers used are mostly genetic e.g. microsatellite loci, mito-
chondrial DNA, ribosomal DNA or allozymes. The distribution
of neutral genetic markers can be predicted from a model and
the observed distribution can be compared to the distribution
predicted by the model. The data necessary for these indirect
techniques are easy to gather: a single sampling event in time
generates a snapshot of the current state of genetic variation
which is used to calculate the number of migrants under a cer-
tain model. Coalescence methods and F-statistics are mostly
based on the island model (Wright, 1940) and are widely used
to measure gene flow within and among populations and in-
fer dispersal rates. This model is the most widely used, and is
based on a large number of assumptions, which are all too
often violated in real populations. This is the main reason
why studies using F-statistics to infer dispersal patterns have
been widely criticized (Whitlock and McCauley, 1999; Cain et
al., 2000; Barton, 2001; Rousset, 2001 and references therein).

Etienne (2004), Hein et al. (2004), Hovestadt and Poethke (2006),
Matter (2001), Metzger (2005), Reed and Levine (2005), Pfenning
et al. (2004) and Singh et al. (2004).) Here, we describe a generic
model for dispersal in coupled populations using a model for
population growth and dispersal and from this description de-
rive a method to infer dispersal rates from census data. The
model describes an ecological system of coupled local popu-
lations which are reasonably close to their equilibrium. As the
equilibrium value, its stability properties and the topology of
the spatial system can be chosen freely, this approach pro-
vides a generic description of diffusive systems. The model
thus generalises the description of dispersal used previously
(see e.g. Hassell et al., 1991; Rohani et al., 1996; Czaran, 1998;
Bascompte and Sole, 1998). Our model extends earlier work in
that it explicitly accounts for a large class of topologies and
thus avoids simplifying assumptions on the geometry of the
habitat. We develop a statistical method to analyze these data
and estimate parameters from the covariance structure, this
provides a novel and generic way to estimate dispersal rates
and is an advance compared to other methods, in particular
those based on genetics, in that this provides an estimate at an
ecological relevant timescale. We study the distribution of the
estimator, and we obtain confidence intervals of the disper-
sal rate. Finally, we discuss the robustness of this estimation
scheme.
2. A generic model for dispersal

We will start this section with a brief explanation of the model
structure. For ease of explanation we will start with a strictly
deterministic model. We will next use this model as a basis for
a stochastic model. For clarity we have formulated the model
as a non-structured, single species model without density-
dependent dispersal. These model can be easily generalised,
in Appendix A we outline how this can be done.

2.1. The deterministic model

The model we will use is a simple linear model describing
the changes in population size. The model describes the pop-
ulation dynamics of a local population in the vicinity of its
equilibrium.

Let us assume that the population consists of n sub-
populations. In the absence of dispersal the linearised dynam-
ics take the form

xj,t+1 = axj,t, j = 1, . . . , n (1)

where xj,t is the deviation of the density of population j from
its equilibrium density at time t. Note that the first index refers
to location, and the second to time. The parameter a can be
interpreted as the per capita growth rate of the population near
equilibrium. This is a generic description that can cover a large
class of growth models. To see this, suppose that the local pop-
ulation grows according to some growth function F: so that
Nj,t+1 = F(Nj,t). Suppose there exists an equilibrium popula-
tion size N̄ defined as F(N̄) = N̄. The constant a is the deriva-
tive of F evaluated at the equilibrium point: a = (dF/dN)|N=N̄. If
xj,t = Nj,t − N̄ is the deviation from the equilibrium density N̄,
While a stepping stone model is often more realistic, and is
also used as a basis to calculate statistics of interest in the-
oretical papers (Slatkin and Barton, 1989; Rousset, 1996), it is
rarely applied to determine dispersal rates in studies of natu-
ral populations.

A more fundamental shortcoming of such methods is that
for population ecological purposes one usually needs esti-
mates of dispersal rates at the timescale of generations, such
as the “instantaneous” dispersal rates determined by direct
measurements. The rates obtained by genetic approaches re-
flect an average over a period of time whose length depends
on mutation rates and genetic drift. This means that these in-
direct (genetic) methods of estimating dispersal rates are of
limited use for population ecologists (Hanski, 2001).

Here, we will illustrate how spatial census data, i.e. re-
peated counts of number of individuals per location and point
in time, can be used to estimate dispersal rates. The rationale
underlying this method is that natural populations are sub-
ject to local stochastic disturbance due to, for instance, demo-
graphic stochasticity or the effect of local weather. The cre-
ation and dissipation of such perturbations will create a typ-
ical covariance structure. These perturbations will dissipate
quickly through the population if the population is highly con-
nected and there is much dispersal, if there is limited dispersal
the dissipation will be slow.

Various formalisms to describe dispersal have been used
in the formulation of ecological models (see Czaran, 1998 for
a comprehensive review). Among the different approaches
are models that describe a continuum of space in the form
of partial differential equations, individuals based models,
and multi-patch or metapopulation models. The last cate-
gory forms a convenient middle ground between realism and
tractability and this explains the popularity of this approach
(for recent examples in the ecological modelling literature see



436 e c o l o g i c a l m o d e l l i n g 196 (2006) 434–446

the deviation from equilibrium approximately changes over
time as described by Eq. (1) which describes the exponen-
tial decay of the deviation from the equilibrium. Small devi-
ations from the equilibrium die away if the absolute value of
a is smaller than 1, so in that case the equilibrium is stable.
If 0 < a < 1 the deviations converge monotonously to zero, if
−1 < a < 0 damped oscillations to the equilibrium are found.
The characteristic return time for the deviation is given by
−1/ln |a|. Note that we have assumed that all populations have
the same equilibrium density and the same stability proper-
ties, such an assumption is easily justified if the environmen-
tal conditions are equal in all patches. This does not imply
that all patches are of the same size; all we require is that the
equilibrium density is the same in all patches.

Next we include dispersal in our model. We will assume, as
is frequently done for this class of models (e.g. Hassell et al.,
1991), that during each time step reproduction and dispersal
occur sequentially. The reproduction process is as described
above: the population linearly approaches its equilibrium.
Next a fraction of the population disperses from a patch and
is distributed over the other patches in the system. Let m
be the fraction of the local population that disperses. Every
time step a fraction m of the local population is removed and
distributed over all patches. We assume that this distribution
is known and reflects the way the different locations are
connected. The strength of the connection between location
i and j is given by cij. Thus, with m being the total fraction

the vector x, using a similarity transform, such that the n cou-
pled processes described by Eq. (4) decouple (Jansen and Lloyd,
2000). Before we explain this in detail we will first describe the
stochastic extension of this generic model for dispersal.

2.2. The stochastic model

Consider ecological or epidemiological population census data
Nj,t with 1 ≤ j ≤ n and 0 ≤ t ≤ T of a single species, in n loca-
tions and regularly spaced in time. These data can be species
densities or number of individuals. Such data, recorded at dif-
ferent times, are an example of a time series. Here, we will
use techniques for time series analysis based on description
of the data by an autoregressive process. This is a stochastic
process in which the next value is generated by multiplying
the current value of the process with a constant and adding to
it a random number with zero mean (Box and Jenkins, 1970).

Because our model describes deviations from equilib-
rium, the first step in the analysis is centering the data
around zero by subtracting the mean value of the data (� =
(1/nT)

∑n

j=1

∑T

t=1 Nj,t), from all dataNj,t. If there is a clear tran-
sient in the data it is advisable to discard the data in the tran-
sient. In this way we get centered measurements xj,t = Nj,t − �.
We can now describe these centered measurements by a first-
order autoregressive model (AR1), i.e. We will follow the de-
terministic model in the previous section and assume that, in
the absence of dispersal, the density at location j at any point
of the population that disperses, cijm denotes the fraction
in location i that disperses to location j and 1 + ciim the
fraction in location i that stays at location i. Dispersers can
return to their patch of origin, so we do not require cii = −1.
Since dispersal will not increase the numbers in the patch of
origin, we require cii ≤ 0 for all i, and dispersers arriving at
other patches increase the number there, so count positively,
cij ≥ 0 for all i �= j. Because it is reasonable to assume that
the dispersal cannot redistribute more individuals than are
locally available we require 1 +mcii ≥ 0. For further details of
the connectivity matrix see below. The combined process of
reproduction and dispersal are described by

xj,t+1 = axj,t +m

n∑
i=1

cij axi,t (2)

To analyze this model it is convenient to express this model
in vector notation, following Jansen and Lloyd (2000). Let xt be
a row vector that has xj,t as elements, i.e., xt = (x1,t, . . . , xn,t).
Using this we can rewrite (1) as

xt+1 = axt. (3)

To express dispersal in terms of vectors we first gather the
cij in the n× n connectivity matrix C = {cij} (the first subscript
of cij refers to the rows of C, the second to the columns). The
dispersal term in (2) can now be written as amxtC. Note that
because we defined x as a row vector, dispersal is described by
a post-multiplication. The complete spatial model with dis-
persal (2) can be rewritten as

xt+1 = axt(I+mC) (4)

The advantage of this notation is that it allows us to bring to
bear tools of linear algebra. In what follows, we will transform
in time depends only on the value of the previous time point
(times a proportionality constant a) and an additive noise
term:

xj,t+1 = axj,t + �j,t j = 1, . . . , n (5)

The fluctuations �j,t are assumed to have time-independent
variance �2 and mean zero and to be uncorrelated over time,
although they may spatially be correlated. We assume that the
noise at time t, �j,t, is independent of the local population sizes
at the same time point, xj,t. This assumption is likely to be jus-
tified even if the noise depends on the population size, as is the
case for demographic stochasticity, as long as the dependence
is weak and the population remains close to its equilibrium
value. It is easy to show that for xj,t generated by this process
the mean is 0. The process has a stationary distribution if and
only if |a| < 1 (see e.g. Box and Jenkins, 1970; Karlin and Tay-
lor, 1975). The stochastic term � includes all non-deterministic
processes such as responses to changes in the environment.
As above we assume that the environment is homogeneous,
i.e., the growth rate near equilibrium, a, is the same at all lo-
cations. In our simulations we assumed that the noise is nor-
mally distributed, yet our general conclusions do not depend
on this assumption.

Next we include dispersal in this process in a similar way
as in the previous section: we assume that a fraction m is re-
moved from a location and redistributed over all patches ac-
cording to the parameters in the connectivity matrix. By com-
bining the autoregressive process with dispersal we obtain the
following equation:

xj,t+1 = axj,t + �j,t +m

n∑
i=1

cij (axi,t + �i,t) (6)
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Using vector notation we can rewrite (6) as

xt+1 = (axt + �t)(I+mC) (7)

where �t is a row vector that has �j,t as elements, i.e., �t =
(�1,t, . . . , �n,t). This notation is an economic way to describe all
n autoregressive processes at once.

In our model dispersal is realised in a deterministic fashion,
i.e. of the fraction m of the population that disperses, mcij mi-
grate to any adjacent patch. Particularly if the number of indi-
viduals in a patch is low, there could be considerable stochas-
ticity associated with the dispersal process. Simulations stud-
ies (not shown here) illustrated that even for relatively small
number of individuals (5–10), the process as described pro-
vides an adequate description of this additional stochastic-
ity and the method described here to estimate dispersal rates
gives good results even for small number of individuals.

2.3. The connectivity matrix

The connectivity matrix holds the information on the geom-
etry of the habitat patches. Because the geometry is a central
feature of spatial systems we will discuss possible forms of
the connectivity matrix in some detail (see Fig. 1). In the anal-
ysis presented in this paper we assume that this matrix is
known. This requires that one needs to have knowledge about
the relative amount of dispersal taking place between local
p
l
i
u

that the total fraction of the population involved in dispersal
is known. This is exactly the parameter we try to infer.

The method presented here works for a very large class of
geometries. However, there are some cases in which it does
not work and we need one mild additional assumption on the
form of the matrix C. For the method presented here to work
we require that the connections between the patches to be
such that, if the densities or numbers in all patches are equal,
redistribution through dispersal will not change this. In many
cases this will follow naturally from the geometry of the spa-
tial systems. Below we will present a simple condition on the
matrix C by which this can be tested.

A row of C defines where the dispersers from a particular
location end up. Similarly, from the entries in the columns one
can determine from what location a particular patch receives
dispersers. If all densities or numbers are equal, and dispersal
does not change the sum of dispersers received per patch, the
columns of C should sum up to zero (independent of patch
size). In mathematical terms this means that (1, . . . ,1) is a left
eigenvector of C. If we also require that dispersal conserves
numbers the eigenvalue associated with this eigenvector is 0.
Thus the rows of C sum up to 0, i.e.

∑
j
cij = 0 if the patches

are all of the same size. When locations are not of the same
size the rows of C need not sum up to zero and instead we re-
quire that

∑n

j=1 w1jcij = 0, or that w1 = (w11, . . . ,w1n)T is a right
eigenvector w1 of C with eigenvalue 0. The analysis of systems
with different location sizes is otherwise completely analo-
opulations. This could be inferred from the distance between
ocal populations or other information about the topology, or
t could be known through marking and recapturing individ-
als (for instance, through ringing birds). We do not assume
Fig. 1 – Different geometric organizations of metapopu
gous to the case in which locations are of equal size (Jansen
and Lloyd, 2000). Using the additional properties of C men-
tioned above, it follows (see, for instance, Marcus and Minc,
1964; Jansen and Lloyd, 2000; Lloyd and Jansen, 2004) that all
lations and their respective connectivity matrices.
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non-zero eigenvalues of C have negative real part. For a de-
tailed description of the eigenvalues of the connectivity ma-
trix see Lloyd et al. (2006).

To illustrate the construction of the connectivity matrix
C, Fig. 1 gives several possible geometric organizations and
the respective connectivity matrices, under the assumption
that patches are equally spaced and of identical size, that
dispersers move only to neighbouring patches, and that they
distribute equally and without any preferences between all
the adjacent patches. This means in case A of a chain of
patches, that from e.g. patch three on average 50% (c34 = 1/2)
of the dispersers move to patch four and 50% (c32 = 1/2) to
patch two and so forth. Since all the dispersers are lost to
their patch, c33 = −1. Patches one and eight at the edges
lose only 50% of their original dispersers (c11 = c88 = −1/2),
since the remaining 50% are reflected on the boundaries. A
more complicated case is depicted in C, where the inner four
patches two, four, six and eight have connections to two other
patches, so lose 2/4 of their dispersers. The outer patches one,
three, five and seven lost 1/4 of their dispersers in either of the
four directions, while the 25% which tried to migrate into the
fourth direction are reflected back into their original patch. We
assume that no losses are incurred during dispersal, as all dis-
persers lost for one patch reappear in other patches, thus the
rows of C sum up to zero (for identical patch size). The simpler
cases A and B can be interpreted as patches on a shoreline or
edge of a forest, cases C and D as more complicated spatially

(Jansen and Lloyd, 2000). This transformation decouples the n-
dimensional coupled autoregressive processes into a system
of n decoupled autoregressive processes. For this transforma-
tion to be applied we require C to have n linearly independent
eigenvectors. For most spatial systems this will be the case,
and this condition is mostly unrestrictive. If this condition is
fulfilled, C can be diagonalised by a similarity transform, i.e.,
there exists an invertible matrix B such that B−1 CB = �, where
� is a diagonal matrix. This is a standard technique from lin-
ear algebra (see, for example, Hirsch and Smale, 1974). The
diagonal elements, �i of the matrix � are the eigenvalues of
C, and the matrix B can be constructed using the eigenvectors
of C. In particular, we set B = (w1, . . . ,wn), where wi is a right
eigenvector of C, i.e. Cwi = �iwi, and B−1 = (v1, . . .vn)T, where
vi is a left eigenvector of C, i.e., viC = �ivi. We shall choose
v1 = (1, . . . ,1) as the left eigenvector associated with �1 = 0.

In a Fourier transform the spatial system is described as a
summation of sines and cosines which describes modes which
are conserved under diffusion. Similarly, the eigenvectors of
C describe modes which are conserved under dispersal. We
will use the matrix B to transform the vector xt into the vec-
tor  t = xtB. The back transform is given by xt =  tB−1. The
transformed vector at the next time point is given by

 t+1 = xt+1B = (axt + �t)(I+mC)B = a t +ma tB
−1CB

+ �t(I+mC)B = a t(I+m�) + ωt
structured environments. All these cases correspond to very
simple dispersal kernels with a single dispersal distance. If it
is possible for dispersers to reach further than the neighbour-
ing patch within one time step, then the connectivity matrix C
will contain more non-zero elements and the corresponding
dispersal kernel will look accordingly. Note that the diagonal
entries heights are equal to 1 +mcii and the matrix has
non-zero entries mcij for j = i± 1, i± 2. In the following we
assume that the connectivity matrix can be inferred directly
from the geometrical organization and that dispersal occurs
only to the neighbouring patches. If that is not the case, it is
possible to estimate the connectivity matrix by constructing
various matrices C and assess through maximum-likelihood
techniques which matrix, respectively, is most suitable to
describe the data. This, however, is beyond the scope of the
current paper. We chose the circle as an example of low to
intermediate complexity for further study, so if not stated
otherwise, all following results were obtained using the
circle.

3. Analysis

Although the model with dispersal (7) looks deceptively sim-
ple, it is still of considerable complexity as it describes n dif-
ferent variables and the model, as it stands, is difficult to use
for statistical analysis. In this section we will show how to cal-
culate statistics of interest from this model which are easier
to deal with.

To reduce the complexity of the spatial data we will trans-
form the spatial system, in a way that is analogous to the
Fourier transformation used for the analysis of diffusive pro-
cesses. We do this by applying a similarity transformation
where ωt = �t(I+mC)B. Note that the elements of ωt, given
by ωi,t, have zero mean. Because the matrix � is diagonal,
this transformation decouples the coupled autoregressive pro-
cesses into n decoupled AR1’s. The individual autoregressive
processes are given by

 j,t+1 = lj j,t + ωj,t

where lj = a(1 +m�j) and �j is the jth diagonal element of �.
We can now bring to bear the tools for the analysis of

autoregressive processes. To estimate the parameters lj from
the temporal covariance we use the Yule–Walker formalism
(Karlin and Taylor, 1975; Box and Jenkins, 1970). Multiplication
with  j, summing up and division by T yields

1
T

T−1∑
1

 j,t+1 j,t = lj

T

T−1∑
1

 j,t j,t + 1
T

T−1∑
1

ωj,t j,t

Since the noise is uncorrelated with x, it follows that also  i,t
and ωi,t are uncorrelated (Karlin and Taylor, 1975), thus, the
last term in the equation above vanishes for T → ∞. In the
limit of T → ∞ we find

E( j,t+1 j,t) = ljE( 2
j,t)

This allows us to estimate the parameter lj = â(1 + m̂�j)

l̂j = E( j,t+1 j,t)

E( 2
j,t

)
(8)

The expression above can be interpreted as covar( j,t+1 j,t)/
var( ), i.e. the temporal correlation coefficient.
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Note that the residual noise is given by

ω̂j,t =  j,t+1 − l̂j j,t

The variance of the residual noise is minimised by this esti-
mate of the multiplication factor l̂j

Estimates for the parameters m̂ and â can be found by a
linear regression of l̂j on �j. The parameter â is the intercept of
the regression line, while âm̂ corresponds to the slope. Thus m̂
is not determined separately but through division of the slope
by â. This means that the inaccuracy in the determination of
â is transferred to m̂. This is especially important if â is small.

For a useful estimate we need an indication of the quality of
the estimate. This can be done by assigning confidence inter-
vals to the estimate or significance levels. For instance, in order
to establish that space plays an important role in a system, one
needs to show that m̂ differs significantly from 0. Because our
estimation technique is non-linear we were not able to derive
analytical results and therefore constructed confidence inter-
vals by numerical means. We did this in two different ways:
firstly, by designing a bootstrap method and, secondly, by re-
constructing the distribution of the estimated dispersal rates
according to the autoregressive model (7) using a Monte Carlo
method.

3.1. Bootstrap method

C
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Fig. 2 – The width of the 90, 95 and 99% confidence interval
decreases with increasing number of points in time using a
bootstrap analysis for a circle of eight patches, m = 0.1,
a = 0.5.

fidence interval is equal to 200 at around 300 time points. Since
we calculated the confidence interval in percent of the true m,
a deviation of 100% means that dispersal is not significantly
different from zero.

3.2. Monte Carlo method

To assign confidence intervals and to establish whether the
estimation method described in the previous section is bi-
ased it is useful to know the distribution of the estimator.
We did not obtain analytical results on this distribution and
therefore generated the distribution by numerical means. Al-
though computationally intensive, the rationale behind this
is straightforward. Since the vector autoregressive model (7)
includes the stochastic element � (the noise), the time series
generated by the autoregressive model will generally differ. As
a result, the corresponding estimates â and m̂ will differ be-
tween realised time series even if the underlying parameters,
and therefore the true values of the estimated parameters, are
the same. One can use this to generate distributions of â and
m̂. These distributions can be used to construct confidence
intervals and assign significance levels. This method differs
from the bootstrap method in that the bootstrap method re-
samples the residuals to generate noise, whereas the Monte
Carlo method requires an a priori assumption about the form
of the noise.
onfidence intervals and significance levels can be calculated
rom sample data using a computational method known as the
ootstrap (Efron and Tibshirani, 1993). The main idea behind
he bootstrap is that without any further information on the
istribution of the noiseωt, we will take the residual noise ω̂t as
sample of the true noise. We can reconstruct a large number
f replicate time series,  ∗

t = ( ∗
1,t, . . . ,  

∗
n,t), called bootstrap

ime series, according to the scheme:

∗
t+1 = L̂ ∗

t + ω∗
t

here L̂ is a diagonal matrix with l̂i as elements. The bootstrap
oise ω∗

t is at each time drawn as a random sample from the
et ˆ̋ = {ω̂2, . . . , ω̂T} and  ∗

1 =  1. It is important to realise that
e draw the vector ω∗

t rather than its elements ω∗
i,t

from the
stimated distribution in order to preserve the spatial correla-
ion of the noise. From the bootstrap time series we can now
stimate the n parameters l̂∗

i
. From these estimates we can

nd m̂∗ and â∗ through regression of l̂∗
i

on �i. By running the
ootstrap process a large number of times we can generate a
opulation of m̂∗ and â∗. The bootstrapped estimates can be
sed to find the bootstrap variation of m̂ given by E((m̂∗ − m̂)2)
nd to find a confidence interval. The boundaries of a single
ided g% upper (lower) confidence intervals is the value for
hich only g% of the realised m̂∗ is larger (smaller).

The bootstrap method can also be used to assign signifi-
ance levels. For instance, if one would like to know whether
r not the dispersal rate differs significantly from 0 one only
eeds to establish the proportion of m̂∗ that is negative. To il-

ustrate this, Fig. 2 shows how the 90, 95 and 99% confidence
ntervals decrease with increasing number of points in time.
or an intermediate dispersal rate of 10% the width of the con-
4. Results

Dispersal can create a pattern in the population that is not
obvious to the casual observer but that can be revealed using
the method presented in this paper. Fig. 3a shows a time series
generated using Eq. (7) and a connectivity matrix correspond-
ing to eight patches connected in circular fashion (see Fig. 1b).
The time series does not show an obvious pattern and gives
no hint of the process of redistribution that is hidden within
it. Fig. 3b shows the regression of l̂j on �j according to Eq. (8).
Whereas the time series does not reveal the presence of dis-
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Fig. 3 – (a) A time series generated according to Eq. (7) for a
circle of eight patches with local dispersal, m = 0.1, a = 0.5,
x0,i = −10, T = 300. (b) Analysis of the same data after
transformation as explained in the text. The figure shows
the regression of l̂ on � according to Eq. (8). In the time
series data (a) the effect of dispersal is near impossible to
see, whereas the effect is obvious in the regression (b).

persal, the regression clearly shows that dispersal has left its
mark on the population dynamics. Although the plot of l̂j ver-
sus �j shows considerable scatter, the linear component gives
a good estimate of the dispersal rate. This illustrates how to
infer the dispersal rates from correlation of noise in census
data.

In order to get an impression of the quality of this estima-
tion procedure we generated realisations of the autoregressive
process (6) and analyzed how well the parameters a and m
can be recovered with our estimation technique. We used the
Monte Carlo method, in which we repeated this many times
for the same parameters, to reconstruct the distribution of the
estimators. In Fig. 4a the distribution for m̂ and â are shown.
Note that the maximum coincides well with the true value,
but that in the case of very short time series the distributions
are slightly skewed to the left. We calculated confidence inter-
vals as the intervals which contain g% of the probability mass.

Next we will investigate how these intervals depend on the
system’s parameters.

Fig. 4b shows how the confidence intervals of the estimated
dispersal rate m̂ depends on the true value of m. The width of
the confidence intervals remains roughly constant and is inde-
pendent of the amount of dispersal. This means that dispersal
rates can be estimated with approximately equal precision-
independent of the amount of dispersal, thus small values of
the dispersal rate can be estimated with the same absolute
precision as large dispersal rates. However, for small values of
m it is not easy to establish that dispersal rates differ signif-
icantly from zero as the relative accuracy is larger for small
values of m. For a = 0.5 and 1000 points in time, the signifi-
cance level of m lies in the order of 5% (95% confidence inter-
val); with a per capita growth rate of a = 0.9 dispersal rates
as low as 1.8% (95% confidence interval) can be significantly
distinguished from 0.

The parameter a has also a considerable impact on the ac-
curacy of both its own estimation and especially on the es-
timation of m. Especially if a is close to zero the confidence
intervals have considerable width. The reason for this is that
m is calculated from the slope of the regression line, which
is am, divided by a. Small values of a present a problem as
they will make the accurate determination of m difficult. If a
is small this will lead to considerable error. The closer the ab-
solute of a is to one, the smaller the part of the deterministic
decay |axt − xt+1| as compared to the stochastic part �t and the

better the quality of the estimate. A strong stochastic compo-
nent is advantageous to the accuracy of the determination of
both a and m since the method makes use of the propagation
of noise between patches and depends on how quickly the lo-
cal relaxes back to equilibrium. The sign of a appears to have
little influence, only its absolute value is important.

Fig. 5a shows the dependence on the number of time points
of the parameter estimation. Shown is the width of the confi-
dence intervals of m against the reciprocal of the square root
of the number of time points (1/

√
T). It can be seen that this

yields an approximately linear relation. A four-fold increase
in the number of observations will therefore lead to a halving
of the confidence intervals.

The accuracy of the parameter estimation also depends on
the number of patches involved. The higher the number of
patches, the smaller the confidence intervals, as seen in Fig.
5b. The confidence intervals appear to depend on the number
of patches through a power law with exponent −0.4. However,
this is much less clear than in the case of the number of time
points. In this example, a doubling of sampling effort would
result in a greater effect if sampling is carried out for twice the
number of points in time than if twice the number of patches
are included. The difference, however, is marginal and we ex-
pect this to depend on the details of the study.

Different geometrical organizations lead to different matri-
ces C and their corresponding eigenvalues which then directly
influence the regression of the variances and covariances of
the transformed densities of the time series against the eigen-
values (see Eq. (8)). Table 1 shows how the variances s of the
distributions of the estimates of a and m increase with de-
creasing variance of the eigenvalues themselves. So the con-
fidence intervals of dispersal rates in a metapopulation, i.e.
a geometry in which all patches are connected to all other
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Fig. 4 – The distributions of (a) the estimated dispersal rates, m̂, and (b) the estimated growth rates, â, for a circle of eight
patches, t = 60, a = 0.5, m = 0.1. (c) The width of the estimated confidence intervals against the real value of m for a = 0.5.
Dashed lines: 90% confidence intervals, solid lines: 95% confidence intervals, T = 1000. (c) as (d) with a = 0.9.

patches with equal strength (var(�j) = 7/64) are roughly twice
as wide as of the circle (var(�j) = 32/64). This suggests that the
smaller the variance in the eigenvalues of C, the larger the
confidence intervals will be, presumably the effect is through
the statistics of the linear regression used. We chose the circle
as an example of low to intermediate complexity for further
study, so unless stated otherwise, all following results were
obtained using the circle.

The method applied in this paper is based on the system
having reached a stationary state (to be precise, for the distri-
bution of the local densities to have converged to a stationary
distribution). We assessed how transients interfere with the
parameter estimation and found that a pronounced transient
in time will lead to an overestimation of both m and a, the
level of overestimation increases with the proportion of the
transient, relative to the total number of time points. Note
that because the underlying model is linear, we did not study
in detail the effect of long transients, or transient chaos.

4.1. Robustness

Next we will demonstrate how this estimation method per-
forms if the model assumptions are not justified. Our model (6)
has a linear population growth rate, a. This does not imply that
the method works only in that special case. To demonstrate
that also non-linear models can easily be analyzed using the
method described above, we chose the familiar logistic equa-
tion F(Nt) = rNt(1 −Nt/K). The results, i.e. the estimated pa-
rameters, are virtually identical with those of the linear model
in the case of the carrying capacity K being large as compared
to the noise. Even if the variation in the noise is in the or-
der of the carrying capacity, whilst preventing the densities
to become negative, this led only to a slight overestimation of
the parameters. The main reason underlying this robustness
is that the densities are most of the time in the vicinity of
the equilibrium, so that the linearisation provides a good ap-
proximation. Even though large excursions occur from time to

Table 1 – Dependence of the variance of the distribution of m̂ on the variance of the eigenvalues of C for systems of eight
patches

©

�2(�) 32/64 32/64 13.75/64 12/64 12/64 11/64 7/64
4
var(m) × 10 7.2 8.5 14.65
 20.8 23.2 27.9 40.1
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Fig. 5 – (a) The width of the confidence interval against the
reciprocal of the square root of the number of time points
(1/

√
T). Shown are the 90% (dotted lines), 95% (dashed lines)

and 99% (solid lines) confidence intervals. Results for a
circle of eight patches, m = 0.1 (b) The dependence of the
width of the confidence intervals on the number of patches,
a = 0.9, T = 100.

time, these will have a relatively short duration and tend not
to distort the analysis too much. This shows that this method
is robust against a change in the population growth model.

In natural populations, growth and dispersal rates might
not be constant but vary over time. Thus we investigated
whether such variations would influence the estimation pro-
cedure. As a simple example we chose a linear increase in the
value of m or a. An increase (50–150%) of the respective value
in a led only to a negligible overestimation of both (averaged)
â and m̂ values, an increase of m left the parameter estimation
virtually unaffected.

As described above, we assumed that the connectivity be-
tween patches and thus the matrix C is known. In reality, one
might overlook existent connections or assume dispersal be-
tween patches where for some reasons it cannot occur. Thus
we explored how analyzing simulated data with a wrong ma-
trix C will influence the outcome of the parameter estimation.
As an example we used a circular geometry to generate data
and then analyzed them using the matrix of a circle where in
addition patch 1 is connected with patch 5 and patch 3 with
patch 7. This led to an overestimation of m by 50–65% (a = 0.5;
m = 0.1; t = 100, 300, 1000) and an overestimation of the width
of the confidence interval of m by more than 50%. The esti-
mation of a remained entirely unchanged. The opposite case,

where we used this circle with two extra connections to gener-
ate the data and the matrix of the circle to analyze them, lead
to opposite results: The value of m was underestimated by 50%
and the width of the confidence interval was underestimated
by more than 50%. Again, the estimation of a remained un-
touched. Despite the shifted estimates for m, the confidence
intervals still contained the true value of m.

Since patches of suitable habitat might well be subjected to
similar environmental fluctuations, i.e. the noise that patches
experience might be correlated between them. We explored
how the presence of correlated noise influences the estima-
tion of the parameters. As an example we used blocks of two
patches with the same noise, so in the circle made of eight
patches, at any one time there would be only four different
noise terms. Fig. 6a shows that this spatial correlation between
the patches leads only to a small underestimation of the width
of the confidence intervals of m, whereas the estimation of a is
unaltered. We repeated this for several points in time. We fur-
ther investigated the influence of temporal correlation in the
noise. Fig. 6b shows how temporal correlation of the noise, i.e.
the same noise term for several points in time, leads to an un-
derestimation of m as well as a pronounced underestimation
of the width of its confidence interval which increases with in-
creasing correlation. In extreme cases, the confidence interval
does not include the true value any more. The opposite applies
to the estimation of a, which is markedly overestimated.

with spatially correlated (spatial correlation coefficient 0.25)
noise compared to the confidence intervals when the noise
was spatially uncorrelated, for a circle of eight patches at
different number of points in time, m = 0.1. (b) The
decrease in width of the confidence intervals of m
compared to the simulations in which the noise was
uncorrelated in time. Circle of patches, a = 0.5, T = 300.
Fig. 6 – (a) The increase in width of confidence intervals
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5. Discussion

Dispersal has important implications on an individual, pop-
ulation and meta-population level. Dispersal rates however
are difficult to measure. We presented a method to estimate
dispersal and per capita growth rates from time series data
using a first-order autoregressive model to describe and gen-
erate these data. The model explicitly takes the geometrical
organization of the patches into account and is as such an im-
provement compared to frequently used models such as e.g.
the island model or stepping stone model.

We show that the parameter estimation is robust against
a variety of possible violations of assumptions of the model.
Non-linear growth rates had little influence on the accuracy
of the estimation. Also transients of the parameters had lit-
tle effect on the estimation of the parameters; spatially corre-
lated noise has only a limited effect. Using incorrect connec-
tivities, i.e. the wrong matrix C, led to mis-estimation of m,
but the respective confidence intervals still included the true
values. Only pronounced temporally correlated noise as well
as a marked transient led to mis-estimates of the involved
parameters and present a problem. This can be dealt with by
cutting off any transients, and in the case of temporally highly
correlated noise another model than the AR1 model may be
needed. This is a standard method in time series analysis (Box
and Jenkins, 1970).
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models. Interestingly, we found that island models generally
perform badly in that they tend to result in large confidence
intervals. Stepping stone models perform better in this
respect, but will introduce error if the geometry is different.
The fact that our model can describe any geometry, comes
with a price: the connectivity of patches needs to be known.
Ideally, this information should be gained from independent
sources, such as, from ringing data or other forms of marking
and recapturing at other locations. If such information is
not available, one can make informed choices about possible
topologies using travel distance between patches. An interest-
ing extension of the work described here would be to develop
methods to choose the most likely of a number of plausible
connectivity matrices, using the data. This is possible, if one
would consider the matrix that would lead to the smallest
residuals, and hence that explains most of the variance, as
the most likely description of the connectivity matrix. In a
similar fashion one could investigate the details of a dispersal
kernel. This could be done by constructing various matrices
C with dispersal to the next, second, third-distant or other
patches, and assess through maximum-likelihood techniques
which dispersal kernel and connectivity matrix, respectively,
are the most suitable to describe the data.

The model described in this paper relates directly to the
issues of synchrony between populations (Lloyd and Jansen,
2004; Matter, 2001; Li et al., 2005). The techniques discussed
here could form the basis for a method to quantify synchrony
We have assumed that there are no losses incurred dur-
ng dispersal, hence, that there is no dispersal mortality. This
s a simplification, since the crossing of unsuitable areas in
earch of a new habitable patch is often dangerous and there-
ore could incur considerable losses. It is easy to include a
ertain fixed mortality (equal to all dispersers) into the dis-
ersal process by simply discounting the growth rate by that
ortality. We have also assumed that censuses as well as dis-

ersal would take place once per generation and that gen-
rations do not overlap. This is a reasonable assumption for
number of species, particularly insect species. In the case

f overlapping generations one would need an continuous
odel, which can be constructed along the lines outlined in

his paper. Also if the population has a pronounced structure
he model will need to be adapted accordingly. For instance,
f only certain life stages are able to disperse, as is the case
or aphids where only the adults are winged and can fly, this
s particularly important. The method described, however, is
lso applicable to the case of more than one species. Multiple
pecies scenarios could include complete amensalism, (cyclic)
redator–prey dynamics and competition for a resource. One
ould also include a density-dependent dispersal rate which
ould account for dispersal as a reaction of e.g. overcrowding.
s shown in the results part, a non-constant dispersal rate is
ot a problem per se. Analysis of density-dependent disper-
al can be performed in a similar way to density-independent
ispersal (Huang and Diekmann, 2003). The method presented
ere can with little effort be generalised to include all these
cenarios.

Our method makes no a priori assumptions about the way
n which patches are connected, but provides a method that
an be applied to any population geometry. In that respect
t is a substantial advance over the commonly used island
in ensembles of linked populations. Although such methods
have been developed they are often based on simplifying as-
sumptions such as a linear or exponential decay of the syn-
chrony with distance (Myers et al., 1995; Liebhold et al., 2004).
The ideas put forward in this paper could be used to generi-
cally quantify the effect of synchrony in a network of coupled
patches. Similarly, one could envision applying such ideas to
the quantification of the Moran effect; synchronisation due
to the correlation of environmental noise between patches
(Moran, 1953; Royama, 1992; Ripa, 2000). There is, however, a
practical problem: the Moran effect requires the population
dynamics to be correlated beyond the correlation that one
would expect from the dispersal process. If one has access
to only one data set one cannot estimate both the dispersal
rates and the environmental correlation from the same data.
If the amount of dispersal is known, for instance if there is
no dispersal between subpopulations, one can, in principle,
disentangle the relative contributions of dispersal and envi-
ronmental correlation.

The main disadvantage of the method discussed here is
the considerable amount of points in time needed to get ac-
curate estimates of the dispersal rate m. In order to get small
confidence intervals one would need a large number of obser-
vations, and this might be problematic in ecological research.
Having said this, we have applied this method in an experi-
mental setting with as little as 20 data points and obtained
useful results. Also note that this disadvantage is likely to hold
for most methods which are based on the redistribution of a
population of markers and that rely on repeated observations.
This method is therefore, in terms of confidence intervals, of
similar quality as other methods but has the advantage over
other methods that it allows the use of information about the
topology. One way in which a large number of observations
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can be achieved is by automated observation. The method de-
scribed here allows for the analysis of such data.

An interesting finding with respect to the limited length of
time series in ecology is that in estimating the dispersal rate
it is possible to replace space for time, i.e., by halving the time
points sampled and doubling the number of locations sam-
pled, by studying a larger area, one can determine the disper-
sal rate with slightly greater precision. This does assume that
the patches are connected in such a way that changing the size
of the overall area would not cause major changes in the lo-
cal dispersal structure and that edge effects play a minor role.
This will be the case if dispersal is mainly to nearby localities.
This observation is useful for the design of studies which are
limited in time. It also is somewhat reminiscent of ideas on
time series embedding which suggest that observations on a
single location can be used to infer information on the popu-
lation dynamics on the full spatial system (Takens, 1980; Rand
and Wilson, 1995; Keeling et al., 2000).

There is currently much interest in invasions and species
shifting their ranges in response to climate change. Many of
the details of these processes depend on the quantification
of dispersal and the approach outlined here offers a way to
estimate this parameters. An expanding population would in-
crease its range, and will normally do so relatively slowly com-
pared to its characteristic return time. This implies that in
most locations the population dynamics will still be around
the equilibrium density. Our method therefore allows the es-

for this we will describe the local population in patch j at time
t by a m× 1 column vector xj,t = (xj,t, x2

j,t
, x3
j,t
, . . .)T. With this

vector we can now describe the dispersal as xj,tm11 + x2
j,t
m12 +

x3
j,t
m13 + x4

j,t
m14 + · · · and, hence, the density dependence dis-

persal is captured by the coefficients in the first row of M. Note
that this is a generic but not necessarily the most efficient
way to describe density-dependent dispersal. If the functional
form of the dependence is known other description could fol-
low naturally.

We will now proceed by using a tensor notation to capture
the descriptions of the local densities. In this tensor we glue
together all the vectors that describe the local densities so the
m× n tensor

Xt = (x1,t,x2,t, . . . ,xn,t) =

⎡
⎢⎣
x1,1,t . . . x1,n,t

...
. . .

...
xm,1,t . . . xm,n,t

⎤
⎥⎦

has the density of class i in patch j at position i, j. In a similar
fashion are the noise terms now arranged in tensor

�t = (�1,t, �2,t, . . . , �n,t)

Using tensor notation we can efficiently rewrite the dynam-
ics as
timation of the dispersal rate in an expanding population in
the part of the population where it is reasonably close to equi-
librium.
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Appendix A

In case the population within one patch is structured, or con-
tains more than one species, a similar formalism an be applied
(Jansen and Lloyd, 2000). Let us assume there are m different
classes or species to be kept track off. The local densities in
patch j at time t in such a case can be described by the m× 1
column vector xj,t = (x1j,t, x2j,t, x3j,t, . . .)T. The stochastic model
takes the form

xj,t+1 = Axj,t + �j,t +M

n∑
i=1

cij (xi,t + �i,t)

The m×m matrix A is the Jacobian at equilibrium, and the
m×mmatrix M contains the dispersal rates. Note that the off-
diagonal termsmij represent the impact of the density of class
j on the dispersal of class i. The column vector �j,t describes
the noise in patch j at time t.

This same formalism can be applied to describe density-
dependent dispersal. If this is the case the total amount of
dispersal not only depends the product of the density and the
dispersal rate, but may depend on higher order terms. To allow
Xt+1 = AXt +�t +M(AXt +�t)C

where �t is a row vector that has �j,t as elements, i.e., �t =
(�1,t, . . . , �n,t) (see Jansen and De Roos, 2000; Jansen and Lloyd,
2000; Hunter and Caswell, 2006). This notation is an economic
way to describe all n autoregressive processes at once. Note
that all operation concerning the interactions within a patch
are given by pre-multiplication of a tensor with a matrix,
whereas operations concerning interactions between patches
are given by post-multiplication of a tensor with a matrix.

The analysis of such system is completely analogue to the
analysis given in this paper. To do so we will use the same
matrix B as described in the text to transform the tensorXt into
the tensor 	t = XtB. The back transform is given by Xt = 	tB−1.
The transformed vector at the next time point is given by

	t+1 =Xt+1B= (AXt +�t +M(AXt +�t)C)B=A	t +MA	t�+˝t

where ˝t = (�t +M�tC)B. Note that the elements of ˝t again
have zero mean. This operation decouples the coupled autore-
gressive processes into n decoupled AR1’s as it did before. The
individual autoregressive processes are given by

 j,t+1 = Lj j,t + ωj,t

where Lj = (I+ �jM)A and �j is the jth diagonal element of �.
To estimate the matrices Lj we apply the Kronecker product

with  j on both sides. The Kronecker product is an operator
which takes two arbitrarily dimensioned matrices A with di-
mension v×w and B with dimension p× q and results into a
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vp×wq matrix with the structure

A⊗ B =

⎡
⎢⎣
a1,1B . . . a1,wB

...
. . .

...
av,1B . . . av,wB

⎤
⎥⎦

This yields

 j,t+1 ⊗  j,t = Lj j,t ⊗  j,t + ωj,t ⊗  j,t

After summing up over t and dividing by T we find

1
T
 j,t+1 ⊗  j,t = 1

T
Lj

T−1∑
1

 j,t ⊗  j,t + 1
T

T−1∑
1

ωj,t ⊗  j,t

Since the noise is uncorrelated with x, it follows that also  i,t
and ωi,t are uncorrelated (Karlin and Taylor, 1975), thus, the
last term in the equation above vanishes for T → ∞. In the
limit we find

E( j,t+1 ⊗  j,t) = LjE( j,t ⊗  j,t)

This allows us to estimate the matrix L̂j = (I+ �jM̂)Â as

L̂j = E( j,t+1 ⊗  j,t)E( j,t ⊗  j,t)
−1
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