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Abstract

We formulated a mathematical model to study the evolution of biodiversity. Our
model describes a collection of sites and incorporates a simple but explicit description
of the competitive processes within a site. In our model the characteristics of
component species evolve towards an evolutionarily stable state and in this way an
evolutionarily stable assemblage of species is formed. We show that the number of
species in these assemblages matches two well-documented patterns in biodiversity:
the increase in the number of species towards the equator and the dependence of the
number of species on the productivity of habitat: the average number of species rises
to a maximum and then falls when plotted against increasing productivity of that
habitat. Our results show that population dynamical and evolutionary processes can
undetlie patterns in biodiversity.
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INTRODUCTION

The distribution of species over the earth is not even or
random but seems to follow certain distinct patterns.
Probably the best known example of such a pattern is the
increase in the number of species towards the equator
(Rosenzweig 1995; Gaston & Williams 1998). Another
pattern is the dependence of the number of species on the
productivity of habitat; the average number of species
rises to a maximum and then falls when plotted against
increasing productivity of that habitat (Rosenzweig 1995).
Such patterns in biodiversity are well documented but as
yet not unequivocally explained.

Most species do not exist in isolation but coexist and
compete with other species. Although communities of
competitive species can harbour a large number of species
(Zobel 1992), theoretical results predict that the number
of competing species is limited by the number of resources.
This apparent paradox has been explained by models that
describe a collection of sites or patches in which the
different species interact. Competing species that cannot
coexist in a single site can coexist in a collection of
coupled sites, and in this way many species can coexist in
the collection of sites, despite the fact that local
competition is for a small number of resources (Hastings
1980; Tilman et al 1994; Tilman 1994; Nowak & May
1994; May & Nowak 1994; Lehman and Tilman 1998).

The number of species that can coexist somehow
depends on the species’ characteristics. In most models for
biodiversity these characteristics are predefined constants.
In real communities, however, the characteristics to a
certain extent are formed through evolution. It is still very

much an open question how the properties of competitive
communities emerge through the evolution of their
component species (Levin et al. 1997). Here, we employed
the concept of evolutionary stability (Maynard Smith
1982) to gain insight into the evolution of biodiversity
through the evolution of assemblages of species.

Most models of competitive communities (Hastings
1980; Tilman et al. 1994; Tilman 1994; Nowak & May
1994; May & Nowak 1994; Lehman and Tilman 1998) are
based on the assumption that, within a patch, a superior
competitor immediately replaces an inferior competitor.
Therefore a mutant that is a marginally better competitor
will immediately replace its ancestral wild type assuming
they occupy the same patch, and eventually will replace
the wild type’s entire population (Nowak & May 1994),
and all types gradually evolve towards maximal competi-
tiveness. No assemblage is evolutionarily stable, and
biodiversity will not be maintained under evolution unless
types that are much less competitive appear continuously
through mutations (Nowak & May 1994; May & Nowak
1994; Lehman and Tilman 1998). The creation of very
different types through mutation is plausible for patho-
gens, but seems unlikely for organisms in which the
competitive abilities are controlled by many genes.

To maintain biodiversity we relaxed the assumption of
immediate replacement. To do so we employed a model
that is detailed enough to describe both the interaction
between types or species which are rather different and
between wild types and closely related mutants. In order
to describe the within patch dynamics in detail we used a
"haystack" model (Maynard Smith 1964). Our model
relates to and extends previous models with a description
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of within patch dynamics (Cohen & Eshel 1976; Comins ez
al. 1980, Geritz er al. 1999) for a competitive community
of self-pollinating plants that inhabit a large collection of
patches. It is assumed that throughout the season the
plants compete within a patch for a single resource. At the
end of the season, plant biomass is converted into seeds.
We assumed a trade-off between within patch competitive
ability and fecundity, such that good local competitors are
bad colonisers (Tilman 1997). All seeds are distributed
randomly over the patches. Evolution enters via a small
probability that a seed is a mutant, in which case its
growth rate and fecundity is slightly different from its
parent. We solved the model to find the number of types
that can coexist in an evolutionarily stable assemblage.

METHODS
Model description

To analyse evolutionary stability a measure of fitness is
needed, which we will derive from the population
dynamics. To do so, we follow Metz et al. (1992, 1996)
and consider two types: an abundant resident and a rare
mutant that only differ in a particular trait. The
interaction within a season between these two types takes
place in a large number of patches, which are seeded at the
beginning of the season. Whenever a patch is seeded by
both types we assume that the types compete within a
patch for a single resource according to the Lotka-
Volterra competition model for a single resource
(Hofbauer & Sigmund 1998). The model uses the
variables and parameters given in Table 1.

The amount of biomass of the resident (V) and the
mutant (V*) changes throughout the season as:

)

i S
dt ¢

where the parameter ¢ describes the quality of the patches
and m, m* (m, m*>my;,) represent the initial growth
rates of, respectively, the resident and the mutant. As it
turns out, the type with the largest initial growth rate is
also the best competitor within a patch. Throughout this
paper we will therefore refer to a type with a large initial
growth rate as a competitive type. (Note that because of
the redistribution of seeds a type that is locally the best
competitor within a season need not be the best
competitor over the seasons.)

If a patch contains only resident seeds the dynamics are
given by a logistic equation with equilibrium V' = ¢z This
reflects the fact that a type which grows faster is likely to
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Table 1 Variables and parameters used in the model.

Variables

14 Resident’s standing biomass in a patch

1% Mutant’s standing biomass in a patch

S(2) Total standing biomass in patch at time #

K Fraction of mutant standing biomass at time #

V,V* Equilibrium density of resident and mutant
biomass

N Average nr. of resident seeds per patch

N Average nr. of residents seeds per patch in
equilibrium

W Average nr. of mutant seeds per patch

t Time within a season

m Initial growth rate of resident biomass

m* Initial growth rate of mutant biomass

Mhinin, Mimax  Minimum, maximum values of initial growth rate

m Evolutionarily stable growth rate

c Quality of the local environment

ke, e+ Amount of biomass of resident and mutant at
beginning of season

T(m) Fecundity as function of the growth rate

W(m*,m)  Fitness as a function of mutant and resident
growth rates

® Conversion factor from biomass to seeds

T Length of season

have more standing biomass. We made the additional
assumption that the growth of biomass is fast compared
with the length of the season, so that at the end of a season
of length T the amount of biomass can be approximated by
the equilibrium density, hence V(t)~ V. Similarly, if a
patch is only seeded by mutant seeds the mutant’s biomass
at the end of the season will be approximately given by the
mutant’s equilibrium density V= em*.

If a patch contains both resident and mutant seeds the
type that is locally most competitive, i.e. the type with the
largest growth rate, will replace the other type if the
season would last indefinitely. However, in seasons of
finite length the exclusion will not be complete. To
approximate the amount of biomass at the end of the
season we introduce as new variables the total amount of
biomass S= V+V* and the fraction of mutant biomass
F=V*/S. These new variables change over time as

j;f: [m(l—F)wLm*F—g]S

()

dF
o (m—mR1=B)

The latter equation can be solved to give

e

Fp=—_"~
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where 4 and A* are the respective biomass of resident
and mutant at the beginning of the season (which we
assumed to be proportional to the number of seeds).
Because the growth of biomass is fast compared with the
length of the season we can use a quasi steady state
approximation for the total amount of biomass, hence:
Sy~ c[m+ (m*—m)F(2)]. We can thus approximate the
biomass of the mutant at the end of the season as
V¥(1)= F(1)S(t)x F(t)[V+ (V¥ — V)F(1)]. This approx-
imation works well for seasons of sufficient length (Fig. 1).

At the end of the season all biomass is converted into
seeds. We assume a trade-off between fecundity and local
competitiveness, such that in the absence of local
competition a less competitive type produces more seeds
than a highly competitive type. The fecundity per amount
of biomass is given by

X

T = Minax — M
(===

whete #,,, is the growth rate at which no seeds are
produced and ® is the conversion factor from biomass
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Figure 1 Exact, eqn. (1), and approximated solutions for the
biomass growth in a patch. The graph shows solutions for
k=k*=1 and ¢=50. In (a) m*=0.76, m=0.75, in (b) m* =0.35,
m=0.75. The drawn lines are the exact solutions, the dashed
lines the approximations. The approximation works well for
seasons of sufficient length. Note that the exclusion by a similar
mutant takes very long but that a very different mutant is
excluded rapidly.

to seeds. A possible justification for this trade-off is
that plants can set aside a part of their assimilates in
storage tissue, for instance a pen root, which they can
remobilise when they set seed. If the amount of stored
biomass is proportional to the amount of standing
biomass, the amount of seeds of a type at the end of the
season is T(m)W(1) for the resident and 7(m*)V*(1) for
the mutant.

Next we describe the dynamics over the seasons. Let NV
denote the average number of resident seeds in a patch. If
seeds are distributed randomly and if the number of
patches is large, the number of seeds per patch will follow
a Poisson distribution. We first consider the case in which
there are no mutants. The fraction of patches with at least
one resident seed is given by 1— e N In every patch the
resident produces 7(m) V= cO(Mpu— m) sceds. In the
next season the average number of seeds per patch is
therefore given by

N=TmV(i—e ™ (3)

The dynamics of /V go to a unique and stable equilibrium
if 7{m)V >1, which we denote by N.

Evolutionary analysis

The seasonal dynamics of the two types can be formulated
similarly. However, here we are mainly interested in the
dynamics of a rare mutant because the fitness of the
mutant in a population dominated by the resident is the
population growth rate of the mutant when it is rare and
when the resident is at its equilibrium value N (Metz er al.
1992). We will therefore formulate the dynamic of a rare
mutant directly. Let N* denote the average number of
mutant seeds per patch. If the mutant is rare the fraction
of patches with more than one mutant seed is negligible
and the probability of receiving one mutant seed is
approximately /N*. The linearised dynamics of a rare
mutat therefore read N*' = N* W(m*,m) where

00 —N N7k
W m) = 3 T(m ) V() S
k=0 :
00 6—1\7 Tk
~ S T ) FO)V + (V= V)F(r)]TN

k=0

is the fitness of a mutant with trait m* in a resident
population with trait m [note that because the mutant is
rare we only consider patches with one mutant seed, hence
#*=1 and K1) only depends on the number of resident
seeds, £].

The fitness depends on the trait value of the mutant and
of the wild type. The fitness function can be conveniently
visualised in a pairwise invadibility plot (Metz e al. 1992),
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which depicts the parameter combinations for which a
mutant can invade a resident population (Fig. 2). The
evolutionary singularities and the convergence and
evolutionary stability of the singularities can be easily
determined from such a plot (Metz et al. 1996, Geritz et al.
1998). Figure 2 shows that a process of adaptation
through evolution by small mutation steps leads either to
the minimum growth rate or to a relatively large
evolutionarily stable growth rate. In some cases, the
latter can become evolutionarily unstable and adaptive
radiation occurs in which two disjunct types are formed
from a single type (Metz et al. 1992, 1996; Getitz et al.
1997; Kisdi 1999). The evolutionarily stable growth rate m
can also be determined analytically through evaluation of
the conditions for evolutionarily stability:
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Figure 2 A pairwise invadability plot for the interaction between
wild type and mutant. The regions where a mutant’s fitness
exceeds unity (denoted +) and regions where fitness is smaller
than unity (grey, denoted —) are plotted against the wild types
and mutant’s growth rate for T=10 and ¢=8. The lines in this
plot are the curves where W(m*,m)=1. If mutation causes a
small change in the trait value, mutants will have trait values
close to the diagonal. Consecutive replacements will gradually
change the value of the growth rate. The direction of the
evolutionary change depends on the sign structure around the
diagonal, evolution can lead to my,;, or the evolutionary
attractor m. If the wild type’s growth rate equals  this state
is locally evolutionarily stable because no mutants with a similar
growth rate can invade and convergence is stable, because in the
neighbourhood of the attractor, evolution with small mutation
steps will lead towards the attractor.
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and

8 W(m*,m)

87)’1*2

<0
(Maynard Smith 1982). The first condition can, by
evaluating the partial derivative and by using the
equilibrium condition for the resident, after some tedious
but straightforward algebra, be rewritten as

(4)

where y=0.5772 . .

. et —1 X’

(Abramowitz & Stegun 1965).
The evolutionarily stable growth rate 7 depends on ¢
through V. Equation (4) has either zero, one or two real

. is Eulet’s constant, and

roots for every ¢ If it has two real roots numerical
evaluation of the second condition shows that the root
with the smallest numerical value is always evolutionarily
unstable, whereas the root with the largest value is
evolutionarily stable except for a very small range of
parameters for which we found adaptive radiation. There
exists at most one evolutionarily stable growth rate
M > My, in an interaction between two types.

The evolutionary stability only holds locally and the
coexistence of two types, one of which with growth rate
m is possible, if the growth rate of the second type is
much smaller than m [coexistence is possible if a type with
growth rate 7 can invade in a population with growth
rate 7 and a type with growth rate m can invade in a
population with growth rate 7. This can be deduced from
Fig. 2 by considering whether invasion is possible for (7,
m) and (mi, m) pairs. Coexistence is possible for all (7, #i)
that lie on the part of the dashed line that is situated in the
+ region]. Because the fraction of the type with growth
rate m, F, changes logistically and #7 <, the exclusion
of this type is fast and the immediate exclusion scenario is
recovered: the population dynamics of the superior
competitor is virtually unaffected by the presence of
weaker competitors, while the latter perceive the presence
of the superior competitor as a reduction in the number of
patches that are effectively available. This can also be
expressed as a scaling of the quality of the local
environment, ¢, with the fraction of patches that do not
contain seeds of the superior competitor e N The
reduction on the number of patches that is caused by
the presence of a stronger competitor acts in the same way
as a reduction of the quality of the environment.

The growth rate of the second type, 7, can adapt in a
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similar way in a process of repeated invasion and takeover
by a third, mutant type. (Note that no mutant which is
similar to the superior competitor with growth rate 7 can
possibly replace it.) The evolutionarily stable growth rate
of the second type, with growth rate 7, can be determined
easily by realising that it is the same as that of the superior
competitor in a smaller number of effectively available
patches, which is equivalent to a poorer environment. The
evolutionarily stable growth rate of the second type is the
same as that of the superior competitor in an environment
in which the quality of the environment equals ce” ~. This
argument can be applied iteratively to find the evolutio-
narily stable growth rates m; of all types in the
evolutionarily stable assemblage by scaling the parameter
¢ to ¢;=cexp(— Z]l;i 1\7}), where N; is the equilibrium
density of the type with growth rate 7; The maximum
number of types in the evolutionarily stable assemblage is
determined by applying this procedure until no further
evolutionarily stable growth rate 72; > m,;, exists.

RESULTS

Simulation runs of a version of this model that can
accommodate a large number of types, show that different
types can coexist, as they can in other biodiversity models
(Hastings 1980; Tilman et /. 1994; Tilman 1994; Nowak
& May 1994; May & Nowak 1994, Lehman and Tilman
1998), and diversity is possible despite the fact that the
local competition is for a single resource (Fig. 3). Due to
mutation and selection the growth rates adapt and hence
the diversity evolves. In our model biodiversity is
maintained under evolution based on small mutation
steps and it can be both ecologically and evolutionarily
stable. The evolutionary dynamics can cull types until a
stable assemblage is reached (Fig. 3a), or biodiversity can
increase by the creation of a polymorphism through
adaptive radiation (Fig. 3b). Although many assemblages
are possible that are ecologically stable, most of these are
not evolutionarily stable. Our approach differs from that
taken in most other biodiversity models in that we
concentrate on the evolutionarily stable assemblage.

We determined the value of the evolutionarily stable
growth rates by the method described in the previous
section. The composition of the stable assemblage
depends on the quality of the environment and the length
of the season. In very poor environments and short
seasons evolution is towards a common type with minimal
competitive abilities (Fig. 4a). In slightly richer environ-
ments a single, more competitive type evolves. The
evolutionarily stable growth rate of this type increases
with the quality of the local environment. The reason for
this is that in richer environments the equilibrium density
is higher, hence fewer patches remain empty so that local

7 lya b
7
6
6
5
= 5 4
E| 3
(0] (0]
o 4 X
3 4 8
© I
2 S
3 g
S 3 o
L 3 S
o
2
2
1 1
0 1o

0 0.4 08 O 0.25 0.5

Growth rate (mj)
Figure 3 Results of the simulation model. (a) For 1=10, ¢=10,
O=1, Mpin=0.02, 7, =0.9 three types can coexist in
ecological time, but at the evolutionary attractor only two
coexist. (b) For 1=30, ¢=2.2, ®=1, my;, =0.01, m,,=0.55
evolution generates biodiversity through the generation of new
morphs by adaptive radiation. Note the difference in time scales.

competition becomes mote important. An increase in
environmental quality also causes an initial increase in the
number of types in the evolutionarily stable assemblage,
followed by a decrease. Figure 4(b) gives the maximum
number of types that can coexist in the evolutionarily
stable assemblage, as a function of the environmental
quality and the length of the productive season.

DISCUSSION

The biodiversity in our model increases with season length.
Since the length of the productive season decreases with
latitude, our model predicts an increase in the number of
types towards the equator. For a given season length the
maximum number of types in a stable assemblage is
achieved for intermediate environmental quality, thus the
curve of the average number of types against productivity
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Figure 4 (a) The values of the evolutionarily stable growth rates,
m;, against the quality of the local environment, ¢ (dotted lines
illustrate the scaling procedure as outlined in the text). In the
grey area no type can persist. (b) The maximum number of types
in the evolutionarily stable assemblage.

is humped. These patterns in the biodiversity of types in
the stable assemblage show a striking resemblance to
patterns in species’ diversity. Given that the same selective
forces that can create diversity in types can give tise to
speciation (Dieckmann & Doebeli 1999), we postulate
that our results also apply to diversity in species.

An increase in season length will select types, or
species, that are locally more competitive. Because a more
competitive type is less fecund, such a type will attain a
lower population density. This will leave a larger fraction
of patches open for the next best competitor. This
argument applies to all types in the assemblage and
explains the increase in the number of species in the
evolutionarily stable assemblage with season length.

Similarly, we can explain the humped curve for
biodiversity against local environmental quality: a richer
local environment will generally increase the population
density of the most competitive species. For a less
competitive type an increase in environmental quality
will have two opposed effects: because the local environ-
ment is richer, it will produce more seeds. But because a
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richer environment will also increase the number of
patches occupied by the best competitor, it will decrease
the number of effectively available patches. The combined
action of these two opposed effects causes an optimum for
all types but the best competitors. Because these explanations
are independent of the details of the model we can expect
these patterns in biodiversity to be robust and to occur in
other models. A similar pattern has been observed by
Hochberg & Van Baalen (1998) in a coevolutionary
predator—prey model. In this model biodiversity is
maintained through a combination of a discrete trait
space with migration over a productivity gradient.

To keep our model tractable a number of assumptions
had to be made. Many of the assumptions can be relaxed
without changing the qualitative outcome of the model.
For instance, different forms of within patch dynamics can
be chosen without changing the outcome drastically, as
long as the trade-off between competitive ability and
fecundity is maintained. Different within patch dynamics
can be analysed using techniques similar to the ones used
in this paper, although the mathematics will be more
complicated. We also assumed that seeds were distributed
according to a Poisson distribution. For many plant
species this might not be the case. However, for other
seed distributions we expect similar qualitative results, as
long as the distribution is sufficiently clustered so that
some patches receive no or few seeds (Cohen & HEshel
1976). The clustering affects the relatedness, which is an
important factor in models of kin and group selection and
models for the evolution of altruism (Frank 1999). Also in
our model the selection is partly through relatedness and
its associated inclusive fitness.

Our results indicate that patterns in biodiversity result
less from a process of assembly, of which the outcome is
more or less random, than a process of selection and
evolution with a strong deterministic component. If this
were true, the biodiversity in locations with the same
latitudes and environmental parameters should be similar.
In marine ecosystems many environmental conditions,
like the amount of solar radiation or surface water
temperatures, strongly depend on the latitude. Our model
predicts that in this case biodiversity should almost
uniquely depend on latitude. The biodiversity of marine
prosobranch gastropods in the American coastal waters
provides some empirical support for this hypothesis: the
number of species at the same latitude on the Atlantic and
Pacific coast are remarkably similar (Roy et al. 1998). This
indicates that biodiversity patterns may be generated by a
deterministic evolutionary process driven by the local
population dynamics. The outcome of this process will
depend on the parameters of the environment it is set in.
Geographical variation in environmental parameters can
thus lead to patterns in biodiversity, but the mechanism



Evolving biodiversity 385

producing these patterns is natural selection.
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APPENDIX: DESCRIPTION OF THE SIMULATION
MODEL

For the simulation model we extended the model for a
mutant and resident to a model containing many types
by assuming that within a season, the amount of biomass
of a type (V; within a patch changes according to
dV/dt=m;,— S/c)V;, where §= Z;Zl Vs the total amount
of biomass in a patch. To calculate the densities we used

the variables S and F;=V;/S, which change as

Lo (3, ma-s/e)s

(©)

dE; n

The latter equation can be solved: F{Kf)=k; " ;-1:1 kj
¢"', where k; is the amount of seeds of type j in a patch
(which is assumed to be proportional to the amount of
biomass of type jat t=0), Kis a vector that contains the 7
non-negative integers £ S is approximated by its quasi
steady state: SK 1)~ ¢y ., mF;(K1). Hence the amount
of seeds of a type at the end of the season is 7{m;) V{K1).
The average number of seeds per patch of type 7 (/V)) in the
next season, N, is given by N/ =X, xT(m) V(K1) XK= K)
where (K= K), the probability that a patch has 4 seeds of
type 1, A seeds of type 2 etc., is multivariate Poisson
distributed: P@(=K)=H;:1 e f]\é-kf//e]-!. These sums wete
evaluated until P decreased in 4; and had fallen below a
threshold. If the expected number of seeds in the total
population was less than one it was set to zero, i.e. if N;<1/g,
where g= 10° is the total number of patches in the
population. To describe evolution in our simulation the
phenotype space is partitioned into 50 equally sized
compartments and every seed can be a mutant in an adjacent
compartment with a probability of 5x 10", To avoid that
new mutants were removed as soon as they were produced it
was assumed that for a newly produced mutant /V;=1.2/q.
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