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Abstract

Since Robert May’s work on random community matrices it has been known that

stability tends to decrease with complexity. Recently, it was shown that this is not

necessarily true in competitive ecosystems. We investigated the stability of random

ecosystems and found that it can largely be predicted by simple matrix statistics such as

the mean and the variance of the interaction coefficients. We use this to explain why

stability can increase as well as decrease with complexity in ecological communities. We

argue that the variance, and to a lesser extent the mean, of the interaction coefficients go

a long way in explaining patterns in the stability of ecosystems.
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I N T R O D U C T I O N

Does complexity beget stability after all? Rozdilsky & Stone

(2001) claim it does. Since May’s (1972, 1974 seminal work

many theoretical ecologists have studied ecological commu-

nities using random community matrices (see Pimm 1982,

1984; Hall & Raffaelli 1993; McCann 2000 for reviews).

Most of this work supports the conclusion drawn by May

that an increase in the number of links in a food web

decreases the ecosystem’s stability. In May’s model all types

of interaction are possible and species can be engaged in

mutualistic (+, +), antagonistic (+, )) and competitive

interactions (), )). However, in strictly competitive systems

increased complexity can lead to increased stability (Rozdil-

sky & Stone 2001). Also in food webs this might be the case

(Fussmann & Heber 2002).

In this paper we will reconcile these results and show

that in random ecosystems the local stability and feasibility

of the equilibrium depends on simple statistical properties

of the interaction matrix, such as the mean and the variance

of the interaction coefficients. This provides a more

parsimonious explanation for stability than the complexity.

We also discuss the importance of weak links in

communities and argue that, rather than to look at the

presence of weak interactions per se, the effect of weak

interactions depends on their effect on the mean and the

variance of the interaction matrix. To understand the effect

of weak interactions they need to be compared with the

distribution of the interaction coefficients in the rest of the

community.

M E T H O D S

We used a generalized Lotka–Volterra interaction model to

describe the population dynamics of a community of n

interacting species. The density of species i is given by xi and

changes according to

dxi

dt
¼ rixi 1 þ

Xn

j¼1

aij xj

 !
ð1Þ

The interaction coefficients, aij, represent the per capita effect

of interaction of an individual of species j on species i. The

interaction matrix has the interaction coefficients as elements.

The intraspecific interaction coefficients aii are set to )1 and

the basic growth rates, ri, are set to unity. The interspecific

interaction coefficients are chosen randomly according to the

following scheme: aij ¼ 0 with probability 1 ) C and with

probability C the interaction coefficient is drawn randomly

from a uniform distribution on the interval [a, b]. The

connectance, C, determines the fraction of links in the

community. For competitive communities a, b £ 0, for food

webs a £ 0 £ b. For simplicity we will refer to the interspe-

cific interaction coefficients as interaction coefficients.

The equilibrium densities x̂xi of this model can be found

by solving the n equations:Xn

j¼1

aij x̂xj ¼ �1

The equilibrium is feasible if all equilibrium densities are

positive, i.e. x̂xi > 0 for all i. The stability properties of the
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equilibrium follow from the eigenvalues of the Jacobian

matrix, J ¼ fx̂xiaijg. The equilibrium is locally stable if all

eigenvalues of J are negative if real or have negative real

parts if complex. The diagonal elements of the Jacobian

matrix are given by �x̂xi . In what follows we will refer to

locally stable equilibria as stable. This is not necessarily the

best measure of stability (see e.g Jansen & Sigmund 1998)

but it allows comparison with earlier work.

Model (1) always has one eigenvalue equal to )1 (see

Appendix 1). We are not aware of any other analytical

results with regard to the distribution of the remaining

eigenvalues [but see Stone 1988 for sufficient conditions on

global stability in large systems]. The stability of the

equilibrium strongly depends on the statistical properties,

like the mean and the variance, of the interaction

coefficients (Kokkoris et al. 2002). We numerically investi-

gated how the probability of model (1) to have a stable and

feasible equilibrium depends on the mean and variance of

the interaction coefficients for varying levels of connec-

tance.

R E S U L T S

We studied the dependence of the probability of a stable

and feasible equilibrium by varying the model parameters

whilst keeping either the variance or the mean of the

interaction coefficients constant. We did this in two

different ways: either by changing the connectance, C,

while choosing all non-zero interaction coefficients the

same, i.e. a ¼ b, or by keeping the connectance constant

but by varying the midpoint and the width of the interval

[a,b]. The mean of the interaction coefficients is given

by l ¼ (C/2)(b + a) and the variance by r2 ¼
ð 4

3C
� 1Þl2 � Cab

3
and from these expressions the inverse

relationships by which the model parameters can be

changed but for which either mean or variance remain

constant can be found.

In Fig. 1 the probability for the equilibrium of model (1)

to be stable and feasible is plotted against the variance of the

interaction coefficients. The mean interaction coefficient is

constant in these graphs. The probability of the equilibrium

to be feasible and stable decreases with increasing variance.

On the left of the graph the interaction coefficients are

always negative and we are dealing with competitive

communities. On the right the interaction coefficients can

be negative as well as positive and food webs can exist. The

probability of a stable and feasible equilibrium changes in a

continuous fashion between these regimes and is approxi-

mately the same for the simulations in which the connec-

tance was kept constant as for those in which the

connectance differed. The larger the number of species,

the smaller the difference between the two curves. Note the

saw tooth in the curves for which a ¼ b. At the point of

discontinuity a ¼ b ¼ )0.5 and a �team� of two species

compete with another team for, what can be interpreted as,

a single resource (see Appendix 2). In the vicinity of a saw

tooth feasible but unstable equilibria tend to occur. By

changing the interaction strength from below )0.5 to above

interaction changes abruptly from competitive exclusion to

competitive coexistence.

In Fig. 2 the mean of the interaction coefficients was

varied while the variance was kept constant. For one set of

curves the connectance was kept constant while it varied for

the other set. With an increase in the mean value the

probability to be feasible and stable can increase as well as

decrease, however, for a large range the stability increases

with the mean, and, hence, for the dashed curves more

Figure 1 (a) The probability that model (1) has a stable and

feasible equilibrium (FS) as a function of the variance of the

interaction coefficients. The variance was changed in two ways: for

the drawn curves the connectance was constant and the interval

from which the non-zero interspecific interaction coefficients were

chosen was varied. The interaction coefficients were chosen from

the grey area in Fig. 1b while the connectance was C ¼ 0.7. For

the dashed curves all non-zero interaction coefficients were chosen

identical (a ¼ b) but the value and the connectance varied as

shown by the dashed lines in Fig. 1b. The mean value of the

interaction coefficients was kept constant in both cases. The

different lines depict the results for communities of six (top

curves), nine (middle curve) and 12 (bottom curve) species. Per

curve 50 equally spaced data points were used, for each data point

10 000 matrices were generated.
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connected systems tend to be more stable. Two saw teeth

can be seen in the dashed curves for a ¼ b ¼ )0.5 and

a ¼ b ¼ )1. Generally, the variance has a stronger impact

on the probability to be feasible and stable than the mean.

Rozdilsky & Stone (2001) demonstrated that in model

(1) the probability of the equilibrium to be feasible and

stable takes a U-shaped form if the connectance is changed

from 0 to 1. To illustrate how their result can largely be

explained by the variance of the interaction coefficients we

choose a ¼ b and reconstructed their U-shaped graph

(Fig. 3a). For this choice of parameters the mean l ¼ Ca is

an increasing function of connectance. The variance,

r2 ¼ C(1 ) C)a2, increases for small C, takes its maximum

value at C ¼ 0.5 and then decreases in the same manner

(Fig. 3b). We constructed a similar U-shaped curve by

keeping the connectance constant at unity and by changing

the interval from which the interaction coefficients were

chosen in such a way that the interaction coefficients had

the same mean and variance as in the dashed curve. The two

curves are very similar. This demonstrates that the mean and

the variance, rather than the connectance, determine the

probability of the equilibrium to be feasible and stable.

In Rozdilsky & Stone’s (2001) study all feasible equilibria

were found to be stable. Although this may often be the case

in competitive systems, it is by no means the rule. For

instance, if we choose a ¼ )0.8, b ¼ )1.25 and C ¼ 0.15

we found that out of 10 000 randomly constructed six

species systems 12.33% were feasible and stable, 2.27%

unfeasible and stable, 1.53% were feasible and unstable and

the remainder unfeasible and unstable (see also Kokkoris

et al. 2002). This illustrates the merit of using a Lotka-

Volterra model over a Jacobian matrix model, as in the latter

Figure 3 (a) The probability of a stable and feasible equilibrium

(FS) as a function of the mean of the interaction coefficients for

communities with 40 species. For the dashed curve the connec-

tance was varied while the non-zero interaction coefficients were

all set at the same value a ¼ b ¼ 0.15: the mean therefore changes

linearly with the connectance. The corresponding values for the

connectance are given in brackets. For the drawn curve the

connectance was set at C ¼ 1 (no non-zero entries) while values of

a and b were chosen such that the mean and variance of the

interaction coefficients matched the mean and the variance of

the dashed curve; 1000 matrices were generated per data point.

(b) Variance of the interaction coefficients as a function of the

mean of the interaction coefficients for the curves in Fig. 3a.

Figure 2 The probability that model (1) has a stable and feasible

equilibrium (FS) as a function of the mean of the interaction

coefficients. For the drawn curves the connectance was kept

constant at C ¼ 0.7 while the interval from which the non-zero

interaction coefficients were drawn varied as shown in Fig. 2b. For

the dashed lines all non-zero interaction coefficients were chosen

identical but their value and that of the connectance varied

(Fig. 2b). The different lines depict the results for communities of

six (top curves), nine (middle curve) and 12 (bottom curve) species.

Per curve 50 equally spaced data points were used, for each data

point 10 000 matrices were generated.
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it is not possible to discern between stable and feasible

equilibria and stable and unfeasible equilibria.

D I S C U S S I O N

The stability of ecosystems strongly depends on statistical

properties of the interaction matrix, such as the mean and

the variance of the interaction coefficients. This indicates

that in our model the distributions of the equilibrium

densities and the eigenvalues converge in a fashion that is

relatively independent of the way in which the interaction

matrices are generated. This in itself is hardly surprising.

What is surprising is that even for the relatively small

ecosystems used here the specific details of the way in which

the species interact hardly matter beyond the mean and the

variance of the interaction coefficients (see also Stone 1988).

This is not to say that there are no factors beyond the

mean and the variance of the interaction coefficients.

Haydon (2000) showed that the statistical properties of

stable matrices can differ from the properties of the set of all

matrices. This indicates that stable matrices have a special

internal structure. Such structures can, but need not,

manifest itself in the mean and the variance of the interaction

coefficients. Kokkoris et al. (2002) show how correlations

between different interaction coefficients can have a large

impact on the feasibility and stability of a system.

We argue that the mean and variance of the interaction

coefficients provide a more parsimonious explanation for

the change in stability than the complexity. This seems to

contradict May’s (1974) conclusion. However, in May’s

(1974) model, a perfect balance between positive and

negative interactions is assumed. Therefore, the mean of the

interaction coefficients is zero, variance always increases

with the number of connections and stability always

decreases with complexity. In competitive communities

the mean value of the interaction coefficients is not zero. If

the mean value is small, increased complexity leads to

reduced stability. However, if the mean is large a U-shaped

relationship between complexity and stability is found.

A change in connectance can decrease as well as increase

the variance. This explains why the probability of a

community to have a stable and feasible equilibrium can

increase with increasing connectance. Obviously, if none of

the species interact all interaction coefficients are zero,

hence there is no variance and this ensures stability. Also if

all species interact the variance in the interaction coefficients

is small, which again leads to stability. For intermediate cases

the interaction coefficients have considerable variance

because they are either zero or come from a range not

containing zero. This leads to the U-shape of the probability

of finding a stable equilibrium when plotted against

complexity as found by Rozdilsky & Stone (2001). However,

this U-shape can also result from other effects and we

managed to recreate this result by keeping the connectance

constant but changing the variance of the interaction

coefficients in a different way.

The mean and variance of interaction coefficients can

explain the effects of weak interactions on stability. Weak

interactions have been found in abundance in natural

communities (Paine 1992; Raffaelli & Hall 1992; Fagan &

Hurd 1994; Berlow 1999) and assembled theoretical

communities (Kokkoris et al. 1999). It has been shown that

in specific systems weak interactions can lead to stability

(Ives & Jansen 1998; McCann et al. 1998). Rather than look

at the presence of weak interactions per se, our results

suggest that the effect of weak interactions depends on how

interactions are distributed in the rest of the community. If

most interactions are strong, a few weak interactions will

increase the variance and decrease the probability of

stability. If most interactions are weak, the effect of a few

more weak interactions will make little difference. If all

interactions are weak the mean interaction strength and the

variance is low which correlates with increased stability

(Kokkoris et al. 2002). This shows how the variance and

mean of the interaction coefficients can be used to

understand the stability of ecosystems.
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A P P E N D I X

1 The stability of the non-zero equilibrium of model (1) can

be derived from eigenvalues of the Jacobian matrix J. One

of these eigenvalues for model (1) is always )1. This can be

shown as follows: the vector which contains the equilibrium

densities x̂x ¼ ðx̂x1; . . . ; x̂xnÞT
is an eigenvector of matrix J.

Let the A ¼ {aij} and note that x̂x ¼ �A�1 � ð1; . . . ; 1ÞT

and J ¼ Diagðx̂xÞ � A. It follows that J :x̂x ¼
�Diagðx̂xÞ � A � A�1 � ð1; . . . ; 1ÞT ¼ �x̂x hence x̂x is an

eigenvector of J and the eigenvalue associated with this

eigenvector is )1.

2 If a ¼ b teams of two competing species can exist. This

happens if the interaction matrix is similar to

A ¼ �

1 0 a a

0 1 a a

a a 1 0

a a 0 1

2
664

3
775:

An interaction governed by this matrix eventually conver-

ges to a state in which x1 ¼ x2 and x3 ¼ x4 (this can be

shown by means of the Lyapunov functions

ðx1 � x2Þ=ðx1 þ x2ð ÞÞ2
and ðx3 � x4Þ=ð ðx3 þ x4ÞÞ2

).

In this state the system can be described as dv1/dt ¼
v1(1 ) v1 ) 2av2), dv2/dt ¼ v2(1 ) 2av1 ) v2), where v1 ¼
x1 + x2 and v2 ¼ x3 + x4. This system has a feasible and

stable equilibrium if a < 1/2, and a feasible and unstable

equilibrium if a > 1/2. If a ¼ 1/2 determinant of the

interaction matrix is zero. This situation can be interpreted

as competition for a single resource. For teams of n species

a similar analysis is possible. The critical point is at

a ¼ )1/n.
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