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ABSTRACT 

Jansen, V.A.A. and Sabelis, M.W., 1992. Prey dispersal and predator persistence. Exp. Appl. Acarol., 
14: 215-231. 

To understand how patchiness influences population dynamics of a tri-trophic interaction, a tract- 
able model is formulated in terms of differential equations. Motivated by the structure of systems 
such as plants, phytophagous mites and predatory mites, the model takes dispersal into account at the 
middle trophic level. The effect of dispersal for the middle level in a tri-trophic system could be either 
stabilising or destabilising since the middle level acts both as prey and as predator. First a simple 
model with logistic growth for the lowest level is formulated. A model with logistic growth for the 
lowest level and instantaneous dispersal has a globally stable three-species equilibrium, if this equilib- 
rium exists. Addition of a middle level dispersal phase of non-negligible duration influences equilib- 
rium stability. In the absence of the top trophic level a limit cycle can occur, caused by the delay that 
exists in the reaction of the middle level to the changes in the lowest level. With low predator effi- 
ciency, it is also possible to have an unstable three-species equilibrium. So addition of a middle level 
dispersal phase of non-negligible duration can work destabilising. Next the persistence of the third 
trophic tevet is studied. Even when the three-species equilibrium exists, the third trophic level need 
not be persistent. A two-species limit cycle can keep its stability when a three-species equilibrium 
exists; the system is then bistable. It is argued that such a bistability can offer an alternative explana- 
tion for pesticide-induced outbreaks of spider mites and failure of predator introduction. 

INTRODUCTION 

Spatial heterogeneity is notoriously difficult to model. Often the only pos- 
sibility is to model all individuals separately and one is subsequently con- 
fronted with the formidable task of drawing clear conclusions from compli- 
cated simulation studies. In most analytical models spatial heterogeneity is 
ignored. To a certain extent these models can be expected to hold for non- 
uniformly distributed populations. If, however, individuals respond to the 
local population density rather than to overall density, we can expect an influ- 
ence of the spatial distribution on population dynamics. By formulating ana- 
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lytically tractable models that describe an extreme case of spatial heteroge- 
neity we attempt to bridge some of the gap that exists between these two 
approaches. 

When local populations are connected through occasional dispersal events 
only, we have a situation in which individuals only respond to local condi- 
tions. Suppose local populations have a certain probability of going extinct 
and new ones are formed by colonisation of suitable habitat from still existing 
populations. The sort of dynamics that the ensemble of local populations has, 
can be very different from the behaviour of one big population. If all individ- 
uals belong to a single population, persistence would not be possible because 
sooner or later the population would go extinct whereas the collection of local 
populations can persist (Reddingius and Den Boer, 1970; Levin, 1976; Zeig- 
ler, 1977; Crowley, 1978, 1981; Verboom et al., 1991 ). 

A population consisting of a collection of local populations as described 
above is normally referred to as a metapopulation. The concept of a metapop- 
ulation is used to illustrate the fact that, although populations on a local scale 
go extinct, persistence on a regional scale still can be possible. Local popula- 
tions can exist because only islands or patches in total space are suitable for a 
species, as is naturally the case with host-inhabiting species such as plant in- 
habitants, pathogens or parasitoids. The work in this paper is largely moti- 
vated by a system of plant-inhabiting mites and predatory mites. These mites 
do tend to occur in patches, and the concept ofa  metapopulation can be used 
to describe their population dynamics. 

The consequence of living in a patchy environment is that two different 
modes of movement exist: movement within patches and movement between 
patches. If mean successful movement between patches is of non-negligible 
duration it will have an effect on population dynamics. Since dispersal be- 
tween patches is inseparable from a patchy environment we will investigate 
what effect a dispersal phase of non-negligible duration has on stability. Thus 
we are able to capture an important feature of spatial heterogeneity in a tract- 
able model. 

A dispersal phase can have a stabilising effect when it concerns prey, and a 
destabilising one when it concerns predators (Diekmann et al., 1988; Sabelis 
et al., 1991 ). When plant dynamics is taken into account, the effect of pre- 
dator dispersal will not change dramatically. The situation is different in the 
case of dispersing prey. Herbivore prey have a double role: they are prey to 
their predators, but are predators for the plants, and the respective stabilising 
and destabilising effects will interact. In this paper we will investigate the 
effect of a herbivore dispersal phase on stability in a tri-trophic system. 

In natural ecosystems spider mites are normally present in low densities. 
The widespread intensive use of organic pesticides after world war II induced 
outbreaks of spider mites. The explanation frequently given for this is that 
after spraying, both prey and predator are suppressed. For the surviving prey, 
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life now is good (less predators); for the surviving predators life is bad be- 
cause food is harder to find. This does explain for a rise in the prey density to 
]levels higher than before pesticide application but does not explain for total 
predator extinction and continued outbreaks. We will demonstrate using a 
:simple tri-trophic model that predator extinction is possible after perturba- 
tion from a stable steady state and that predator extinction critically depends 
on the size of the perturbation. Moreover, we will show that success of pre- 
dator introductions hinges on the number of predators released. 

A SIMPLE PREDATOR-PREY PATCH MODEL 

The method we will use to investigate the effect of a prey dispersal phase 
on model stability is the same as the touchstone technique used in Sabelis and 
Diekmann (1988) and Sabelis et al. (1991): first a simple model is formu- 
]ated and the stability of its equilibria determined. Then some further process 
is added to this simple model. By comparing the stabilities of the equilibria 
of both models, it is concluded whether the process under study acts in a sta- 
bilising or destabilising manner. As a touchstone we will use a simple tri- 
~:rophic model to which we will add herbivore dispersal. 

We simplify our view to a caricature of prey-predator interaction in a patchy 
environment as schematically indicated in Figs. 1 a and 1 b. For the sake of 
simplicity we will call the trophic levels plant, herbivore and predator, but 
other interpretations are possible, of course. The prey in our model are her- 
bivores and they can only live on plants. These plants form suitable patches 
in a world which is unsuitable as a rule. Some plants are inhabited by herbi- 
vores who feed and reproduce there (Fig. 1 a). After some time the resources 

(a) 
/ oo.  

>o 

" o '  ~  

o 

o 

�9 " ,  o , . .  

�9 o , . o 

" o o " . o " "  �9 

�9 o �9 ~  ~  " 

(b) 
o 

o 

o 

Fig. 1. (a) A simple universe with free plant patches, herbivore patches and dispersing herbi- 
vores. (b) the same universe with herbivore-predator patches and dispersing predators. Open 
spots: patches, o: herbivore, O : predator. 
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of a plant get exhausted because of the growing number of herbivores that 
feed on it. The residing herbivores then leave this patch, they disperse and 
search for new uninhabited patches. Most dispersing animals do not find 
empty patches and die. Some dispersers are lucky and find a new patch, oc- 
cupy it and start reproducing there until after some time also this patch gets 
exhausted and the process repeats itself. 

The world as conceived by the predators is one of unoccupied patches that 
are converted into prey patches that live for some time and then disappear, 
as is sketched in Fig. 1 a. Predators search for these herbivore patches. Once a 
predator finds a herbivore patch, it stays there and starts reproducing at the 
expense of the herbivores present in the patch. A predator and its offspring 
stay in the patch until no more prey is left. Then the predators too leave the 
patch, disperse and search for new herbivore patches. Figure l b shows our 
simple world of plants, herbivores and predators. 

The model used as a touchstone in Sabelis and Diekmann ( 1988 ) and Sa- 
bells et al. ( 1991 ) is the well-known Lotka-Volterra model in which the vari- 
ables are interpreted as the number of patches instead of number of individ- 
uals. The Lotka-Volterra model is neutrally stable and as a consequence of 
that, structurally unstable. This means that small changes in the equations 
can have a profound influence on the dynamics. This structural instability is 
often considered the major shortcoming of the Lotka-Volterra model, be- 
cause it implies an extreme sensitivity to the precise nature of simplifications 
of reality that have been made. On the other hand, it is precisely this property 
of the Lotka-Volterra model that makes it an ideal instrument for the use as 
a touchstone. 

While the Lotka-Volterra model can indeed serve as a touchstone model 
because its dynamical properties are on the knife's edge between stability and 
instability, there is no such neutrally stable touchstone for tri-trophic inter- 
actions. As an alternative we will use the following tri-trophic null model: 

R 
- ~ = r R ( 1 - c  l - ~ R N  

d~t = ~RN- k N -  rlNM ( 1 ) 

dM 
d t  = rlNM- vM 

The variable R denotes the number of available free patches, and can be 
thought of as plant density. We assume that patches are 'disposable': depleted 
patches disappear like wilted leaves shrivel and fall. Patches that are occupied 
by herbivores do not inhibit growth of free patches as much as unoccupied 
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patches. For simplicity growth of free patches is assumed to be independent 
of occupied patches. The number of free patches grows logistic, with initial 
growth rate r and carrying capacity c. In the presence of herbivores free patches 
are discovered and converted into herbivore patches. Prey dispersers are as- 
sumed to act independently, and the duration of the dispersal phase is as- 
sumed to be negligible. The number of prey dispersers is therefore propor- 
tional to the number of prey patches that get exhausted. The number of free 
patches discovered per unit of time equals (RN; this also amounts to the as- 
sumption that the probability for each free patch of being discovered is inde- 
pendent of the density of free patches. This assumption will be valid as long 
as the regions of attraction of free patches do not overlap. 

A free patch that is discovered by a herbivore is by definition converted to 
a herbivore patch and so the rate of formation of herbivore patches equals 
(RN. Herbivore patches disappear for two reasons, a patch can get exhausted 
or it can be discovered by predators. These patches have an exponentially 
distributed lifetime in absence of predators and thus a constant fraction gets 
exhausted per unit of time, say kN. Because of patch disposability these de- 
pleted patches do not come back as free patches. 

The number of herbivore patches that are discovered per unit of time by 
predators is proportional to M, the number of predator patches (here, we 
assume that dispersing and searching does not take time for predators either). 
The number of discovered patches also depends on the number of herbivore 
patches available for predators. If all herbivore patches have a constant prob- 
ability of being discovered (that is no overlapping attractive regions), the 
number of herbivore patches discovered per unit of time by predators is given 
by tlNM with r/again a constant. 

The number of predator patches increases because of discovered herbivore 
patches; this amounts to t/NMper unit of time. It decreases because of patches 
getting depleted of preys. We assume that per unit of time all predator patches 
have an equal probability v of getting depleted. Although patches in which all 
herbivores are removed, could be re-invaded by herbivores, we assume that 
the number of herbivores that still could be produced in such patch is negli- 
gible compared to the production of a truly free patch. Therefore the depleted 
predator patches are not added to the free patches. 

This model has been analysed before (Freedman and Waltman, 1977 ) and 
we will recapitulate the main results. In the absence of herbivores and preda- 
tors the plants grow to their carrying capacity. If the carrying capacity is cho- 
sen smaller than k/(, the equilibrium with plants at carrying capacity and 
neither herbivores nor predators is stable in the presence of herbivores. This 
means that the herbivores cannot invade the system. With a carrying capacity 
chosen bigger than this threshold, the 'plants only' equilibrium becomes un- 
stable with respect to the herbivores. If herbivores are added, invasion will 
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now be successful and the densities will go to a new equilibrium with plant 
density below carrying capacity and positive herbivore density. This equilib- 
rium is stable as long as predators are absent. For moderate carrying capaci- 
ties ( k / ( < c <  ( k / ( ) / (  1 - (v /rr l )  ) it is also stable in presence of predators: if 
predators are added they will produce less than one new predator each and 
they will disappear again. The densities of plants and herbivores will go back 
to that of the two-species equilibrium. 

With the carrying capacity chosen such that each introduced predator will 
produce at least one new predator (c> (k / ( )  ( 1 - (v / rr l )  ), invasion of pre- 
dators is possible and now the equilibrium with plants and herbivores be- 
comes unstable with respect to predators (still it is stable in the sense that in 
the absence of predators the densities of herbivores and plants will go to these 
values.) In this case there also exists a three-species equilibrium and local 
stability analysis reveals that this equilibrium is always stable. It is even pos- 
sible to show that this equilibrium is globally stable (Harrison, 1978; Gard 
and Hallam, 1979; So, 1979; Hofbauer and Sigmund, 1988), meaning that 
any initial conditions with positive plant, herbivore and predator density will 
eventually end up in this three-species equilibrium. 

The equilibria of this model, are not neutrally stable. The reason why is not 
difficult to see: in the plant level we included logistic growth and this has a 
stabilising effect. A straightforward way to get rid of this stabilising effect 
would be to replace the logistic growth with exponential growth, as in the 
Lotka-Volterra model. This can easily be done by taking the limit of the car- 
rying capacity tending to infinity. The consequence of this is, however, that 
also the three-species equilibrium disappears into infinity and that we end up 
with no equilibrium to compare stability with. Therefore we have chosen this 
model with a stable three-species equilibrium above the alternative with no 
equilibrium at all (see Sabelis et al. ( 1991 ) for the alternative choice). This 
choice puts some restrictions on the use of the touchstone technique. Because 
of the bias towards stability we will only be able to get results on destabilisa- 
tion. Next we will extend this model with a herbivore dispersal phase and 
compare stabilities of the equilibria. 

HERBIVORE DISPERSAL IN A TRI-TROPHIC CONTEXT 

In the previous model it was assumed that the rate of formation of herbi- 
vore patches is proportional to the number of herbivore patches. If prey dis- 
persal is of non-negligible duration this assumption is no longer valid. For- 
mation of new herbivore patches then depends on the number of dispersing 
prey which is no longer a simple multitude of the number of herbivore patches. 
We will explicitly describe the number of herbivores that are dispersing with 
the variable P. Again we assume a constant probability per free patch to be 
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discovered and independent dispersal and so the number of patches formed 
per time unit becomes 7RP. 

Once a herbivore patch is founded it has, as before, an exponential life time 
in the absence of predators. The number of herbivore patches that go extinct 
per unit of time equals kN. A patch that goes extinct contributes z dispersers 
to P, the total number of dispersing herbivores. Dispersing herbivores can 
disappear for all sorts of reasons but one: they cannot be found and eaten by 
predators. We assume a constant death rate/zso that the life time of dispers- 
ing herbivores is distributed exponentially. The dynamics of the predators is 
the same as in system ( 1 ). In the presence of predators a quantity tlNM of 
herbivore patches per unit of time is converted into predator-prey patches. 
This assumes independent predator dispersal, predator dispersal of non-neg- 
ligible duration, no overlap in the attractive regions of the herbivore patches 
and a constant fraction of predator-prey patches becoming depleted of prey 
per unit of time. This fraction equals vM. All these considerations result in 
the equations: 

dN 
-d7 = ~,RP- k N -  •NM (2) 

~ =kzN-lzP 

dM 
dt = t lNM- uM 

First we observe that by taking the limit ofp and z tending to infinity, keep- 
ing the ratio lt/z constant, the dispersal phase is again of nil duration and the 
model becomes the null model again. We will analyse the extended model in 
the same fashion as we analysed the tri-trophic null model, beginning with 
absent predators and then later consider the behaviour in the presence of 
predators. 

Dynamics with only plants and herbivores present 
In the absence of predators and herbivores plant growth is logistic and the 

model is identical to the tri-trophic null model. With herbivores present but 
predators absent we have to consider the system (2) with M=0.  With low 
carrying capacity the introduction of herbivores just results in extinction of 
herbivores. The herbivores cannot establish themselves: the 'plants only' 
equilibrium is stable (with respect to herbivores) and a plant-herbivore 
equilibrium does not exist. For bigger carrying capacities the herbivores can 
establish themselves: now the plant-herbivore equilibrium also exists. For 



222 V.A.A. JANSEN AND M.W. SABELIS 

moderate values of the carrying capacity all is the same as in the null model, 
the plant-herbivore equilibrium is,stable and after introduction of herbivores 
densities will settle down at equilibrium values. 

All this changes if we increase the carrying capacity above a certain critical 
value. The plant-herbivore equilibrium then loses its stability to a limit cycle, 
which attracts all orbits. An introduction of a small amount of herbivores in 
a plant population that is at carrying capacity, will result in an increase in 
herbivore patches and a decrease in the density of free patches. Because of the 
lack of replenishment the herbivore density will subsequently go down. In- 
stead of damping out, the cycle will enhance itself and finally the system will 
show stable oscillating behaviour. This means that a non-instantaneous dis- 
persal phase for herbivores causes instability. What we have here is the effect 
of herbivore dispersal with herbivores in the role of plant predators. Indeed 
predator dispersal works destabilising and this is exactly what we find here. 

How big exactly the threshold, above which the plant-herbivore system 
shows sustained cycles, is, depends on some of the model parameters con- 
cerning plants and herbivores. To show of what form this dependence is we 
introduce the new parameters t, the reciprocal of the total average herbivore 
patch lifetime including time needed for dispersal relative to initial plant 
growth and f, the fraction of total patch lifetime that is devoted to dispersal. 
The parameter t is simply the harmonic mean of i t / r  and k/r: 

1 r r Itk 
- -  + 

t # -~r  

andfequals  mean disperser lifetime divided by mean total herbivore lifetime 
which can be computed from 

1/it t k 
f =  1/rt - r  - It It + k 

In Fig. 2 the stable and unstable domains of the herbivore-plant equilib- 
rium are plotted. These domains are separated by the threshold for limit cycle 
behaviour. This figure shows that an increase in mean patch lifetime can bring 
the system from the unstable to the stable domain. If we keep mean total 
patch lifetime ( l / t )  constant we see that an increase in the relative impor- 
tance of the dispersal phase (f) destabilises the model as long as the dispersal 
phase occupies less than half of the total lifetime. This can be visualised in 
Fig. 2 by walking along a horizontal line from left to right. It is possible to 
come from the stable into the unstable domain. This is not very surprising 
because a predator dispersal phase is destabilising. If, however, it occupies 
more than half of the total lifetime we see that with a further increase in rel- 
ative importance becomes stabilising again! Hence, we find maximum insta- 
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Fig. 2. Stable and unstable domains of the two-species equilibrium as related to total mean 
herbivore patch lifetime ( 1 It) and fraction of total herbivore patch lifetime devoted to disper- 
sal (f). 

bility when the dispersal phase occupies exactly half of  the total lifetime or, 
in other words when dispersal takes as much time as does consuming the patch. 

In Fig. 3 the probability of  forming a daughter patch is plotted against the 
age of  a patch. The parameters r,/z and k are chosen such that the mean total 
lifetime 1/ t  is the same for all drawn distributions, but that the relative im- 
portance of the dispersal phase varies. In Fig. 2 this would give a collection of  
points that are on a horizontal line. We see that as the relative importance of  
the dispersal phase gets closer to 1/2 there is an increasing delay in the onset 
of  the formation of  new patches. It is this delay that causes instability. The 
fact that this delay is maximal when the time spent as a disperser equals patch 
lifetime depends on the chosen exponential distributions for patch and dis- 
perser survival. The biological significance of  these observations lies first of 
all in the fact that a delay in the formation of  daughter patches can cause 
instability. 

Now that we know why stable oscillations occur, we will turn our attention 
to the appearance of  these cycles. Figure 4a shows a typical sequence of  cycles, 
Fig. 4b is a blow up of  one such cycle. What happens is that after a peak in 
disperser density the densities of  herbivore patches and free patches are low. 
Then a build-up period follows in which the density of  free patches grows 
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Fig. 3. The probability of  forming daughter patches versus age of  a patch for various values off,  
the fraction of  herbivore patch lifetime devoted to dispersal, t=  1. 
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Fig. 4. (a)  A typical sequence of stable oscillations of  system (2)  with only plants and herbi- 
vores present (R - - ,  N -  - - ,  P . . . . .  ). r= 1, c =  10, y=  1 , / t=  1 and k =  h (b)  as 4a, blow up of 
one cycle. 
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logistically towards carrying capacity. In the same time there is a slow build 
up of herbivore patches, albeit that the herbivore density is still extremely 
low. Because plant growth slows down as the carrying capacity is approached 
there comes a point where the number of dispersers gets high enough to allow 
for a rapid transition of almost all available free patches into herbivore patches. 
This is followed by the collapse of herbivore patches and the consequent pro- 
duction of dispersing herbivores. All these transitions are of a shorter time 
scale than the build up in the density of free patches. Finally the dispersers 
die off exponentially and the cycle starts all over again. 

Dynamics with all three trophic levels 
In the absence of predators the herbivores act solely as the predators of 

plants and thus a dispersal phase for herbivores works destabilising, as seen 
above. In the presence of predators the herbivores will play a double role: they 
remain plant predators but now are also prey to their predators. The effect of 
prey dispersal is stabilising. With all three trophic levels present there will be 
an interplay of stabilising and destabilising effects of which the outcome is 
not obvious. 

With predators present the model allows for at most one equilibrium with 
plants, herbivores and predators present. The equilibrium is identical to the 
three-species equilibrium of the null model. This means that for low values of 
the carrying capacity no positive equilibrium is possible and the predators 
cannot maintain themselves in the system. For higher carrying capacities an 
equilibrium exists with plants, herbivores and predators. The equilibrium 
value of plants increases with increasing predator efficiency (t/), the equilib- 
rium value of herbivores decreases and the equilibrium value of the predators 
increases first and then decreases again. 

The stability of the three-species equilibrium is different from that of the 
null model. The three-species equilibrium of the null model is always stable 
if it exists, whereas the equilibrium of this model can be stable or unstable. In 
Fig. 5 the stable and unstable domains of the three-species equilibrium are 
plotted for a combination of parameter values. For higher values of q, the 
predator efficiency in converting herbivore patches to predator patches, the 
equilibrium is stable. It is tempting to conclude that the stabilising action of 
prey dispersal is influencing the equilibrium stability but because of the stable 
equilibrium in the null model such a conclusion is not justified. 

For lower predator efficiency instability is possible. It can be shown that 
< (5/4)vk/r  is a necessary condition for instability. When herbivores are 

not properly controlled they dominate the dynamics and the delay, with which 
they react on the plant density, causes these instabilities. Apart from an influ- 
ence on the destabilising delay, the predators just respond to the changes in 
herbivore densities. This results in a limit cycle of which the structure is the 
same as the one that results from plant-herbivore interaction, the difference 
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being that the herbivore peak is followed by a predator peak (Figs. 6a and 
6b). 

The predators cause an additional removal of herbivore patches and the 
presence of predators shortens average patch lifetime. Their presence has an 
influence on the delay in the onset of forming new patches. Whether this delay 
increases or decreases compared to the situation without predators, depends 
on the model parameters. Therefore the predators can both stabilise and de- 
stabilise the herbivore plant interaction. 

O N  P R E D A T O R  PERSISTENCE 

The question whether predators can invade or not was simple to answer in 
tlae section 'A simple predator-prey patch model'. Because the plant-herbi- 
vore system always settles down on its equilibrium values, it is enough to 
consider whether or not invasion is possible in this equilibrium. The ability 
of predators to invade, stability of the plant-herbivore system with respect to 
predators and the existence of a three-species equilibrium go strictly together. 
If a plant-herbivore limit cycle exists, it is not sufficient any more to study 
whether the predators can invade the two-species equilibrium as we did be- 
fore. What should be studied now is the predator invasion over the limit cycle. 
This is the same as studying the stability of the limit cycle with respect to 
predators. In general it is difficult to find conditions for this. The techniques 
that are used to determine stability of equilibria, such as local stability anal- 
ysis by means of Jacobian matrices and Routh Hurwitz criteria, cannot be 
used. Because of the simple form of this model it is possible to find criteria 
for invasion over the limit cycle. For this particular model invasion over the 
limit cycle is possible if the average herbivore patch density (N) over one 
cycle, exceeds the herbivore patch density in the three-species equilibrium. 
The relation this condition has with the existence of the three-species equilib- 
rium is that it can only be fulfilled if the three-species equilibrium exists. The 
reverse is not true and it is possible that the three-species equilibrium exists 
but that invasion over the limit cycle is not possible. 

The concept of uniform persistence or permanence is closely related to the 
ability of predators to invade. A system is called uniformly persistent if no 
species will go extinct, no matter what initial conditions are chosen (Butler 
et al., 1986; Hofbauer and Sigmund, 1988 ). It is clear that a system can only 
be uniformly persistent if invasion is possible, because if it is not possible a 
small number of predators, introduced while plants and herbivores are on the 
limit cycle, would go extinct. In this model the ability of predators to invade 
over the plant-herbivore cycle and uniform persistence are equivalent prop- 
e~ies if a single plant-herbivore limit cycle exists. 

If our system is uniformly persistent nothing is said yet about the stability 
of the three-species equilibrium. The outcome of a predator introduction can 
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be that all densities settle on their equilibrium values. It can also be that the 
equilibrium is unstable and that all densities keep oscillating. 

If the system is not uniformly persistent introductions of predators can have 
several outcomes. If invasion takes place close to the plant-herbivore limit 
cycle (this means a small number of predators) the predators will sooner or 
later go extinct (Fig. 7, lower part) and plant and herbivore densities will 
keep oscillating as before. It is possible that extinction will occur, no matter 
how many predators are introduced. It is even possible that while an unstable 
three-species equilibrium exists, all initial conditions but one (the unstable 
three-species equilibrium) will lead to predator extinction. But it is also pos- 
sible that while introduction of small numbers results in extinction, introduc- 
tion of larger quantities does not! If initial conditions are chosen further away 
from the limit cycle it is possible that all species settle down at their equilib- 
rium density or at the three-species limit cycle, that is the predators will not 
go extinct (Fig. 7, upper part). With the same parameter setting different 
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Fig. 7. The effect of introduction of an identical amount of predators (0.01 ) in the same plant-  
herbivore limit cycle at different moments. In the topmost graph plant ( - - )  and herbivore 
(- - -) densities are plotted against time, under it is a graph of the predator density ( - - )  after 
introduction, versus time. In the two bottom-most graphs the same is depicted, the only differ- 
ence being the moment of introduction, introductions are indicated with arrows. In the two 
topmost graphs predator introduction results in a stable three-species equilibrium where in the 
two bottom-most graphs the predators disappear from the system, leaving the plant-herbivore 
cycle virtually unchanged. Note the difference in the scales forM. r=  1, c=  10, 7= 1,/x= 1, k =  1, 
t/= 2.4 and u=2.  
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final states are possible. Which final state will be reached depends critically 
on the number of predators that are introduced and the time relative to the 
two-species cycle that is chosen for introduction. 

The phenomenon that different initial conditions can bring the system to 
two different final states is called bistability. These final states of course are 
stable and both stable states have a domain of attraction. Disturbances can 
bring the system in the domain of attraction of the other stable state, resulting 
in a different final state. The two stable states in our system are the plant- 
herbivore limit cycle and a three-species stable state. A sufficiently big distur- 
bance while the three-species are in the three species stable state can result in 
the extinction of predators. On the other hand, if only herbivores and plants 
are present in a limit cycle, introduction of predators can either result in the 
inclusion of predators in the system, or in their rejection. 

The notion of persistence is frequently used in biology and then refers to 
the expected time till extinction. If this expected time is relatively long com- 
pared to the time interval that has our interest the system is called persistent. 
Also in simulation studies the term persistence is frequently used. The normal 
procedure is to perform a number of simulations and to conclude that the 
system is persistent when the introduced predators remain present. This con- 
cept of persistence is similar to uniform persistence, but it is far from identi- 
cal. If in simulations of a bistable system, like the one presented here, initial 
conditions are chosen repetitively outside the domain of attraction of the limit 
cycle one observes only predators that do not go extinct. Introductions in the 
same system, made under different starting conditions will result in the op- 
posite situation and in the opposite conclusion. 

D I S C U S S I O N  

A predator dispersal phase has a destabilising effect because of the delay it 
introduces in the response to changes in prey densities. The pattern one typi- 
cally observes is that of a build up of plants, followed by an outbreak of her- 
bivores. Outbreaks of spider mites follow qualitatively the same scenario 
(Burnett, 1979). The regularity in the outbreaks in the current models is 
caused by the unrealistically low densities that are allowed in these models 
(Mollison, 1991 ). In a more realistic situation outbreaks will occur after an 
occasional invasion and a more random pattern of outbreaks should be 
expected. 

On the other hand, a prey dispersal phase has a stabilising effect because of 
the refuge it offers. If both mechanisms occur together, as they do in herbi- 
vore dispersal, it depends on the importance of the relations in a food web 
which effect overrules the other. Care should be taken when some possible 
sl:abilising or destabilising mechanism is observed in a biological system. It 
depends on the strength of the relations whether such a mechanism will really 
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stabilise or destabilise the dynamics. Observation of a prey refuge is not a 
guarantee for stability. 

The equivalence of the stability of the plant-herbivore equilibrium, exis- 
tence of an interior equilibrium, the ability of predators to invade and uni- 
form persistence is often true for the simplest models. With slightly more 
complicated systems it can easily be lost. Whenever a limit cycle can exist for 
two species, no matter for what reason, these equivalence relations as a rule 
do not hold. In such cases it is not justified to conclude from one successful 
(simulated) predator introduction that all introductions will be successful. 

Our tri-trophic model with herbivore dispersal can be bistable; two possible 
stable states, namely the plant-herbivore limit cycle and a stable state with 
all three species present can exist. This can explain outbreaks of spider mites 
after pesticide treatment. It is rather unlikely that after pesticide application 
all predators without exception are killed, whereas spider mites are not, even 
if different vulnerabilities are taken into account. Yet, use of pesticides can 
bring the system into the domain of attraction of the plant-herbivore limit 
cycle. The remaining predators, not being able to bring the system back to the 
three-species stable state, are less and less abundant after every cycle. Finally 
this results in elimination of predators and continued spider mite outbreaks. 

Introduction of predators in a bistable system can have two different re- 
suits. It will not come as a surprise to workers in biological control that some 
introductions are successful whereas others are not. What we can learn from 
these simple models is that these failed introductions do not have to be caused 
by bad luck or external causes, it can be intrinsic to the biological system. 
What can happen is that predators at low predator density are not able to 
produce enough offspring during one cycle to survive the time when prey den- 
sities are low. At higher predator densities the fluctuations in the prey density 
are less severe, so that in the same system a predator population can be estab- 
lished. Introduction of natural enemies can fail because the system resists in- 
vasion, even though the same system can allow for lasting predator existence. 
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