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Abstract. Kin and group selection are two different ways to describe
the evolution of social behaviour. Although these two explanations are
compatible in many cases, they lead to a different perspective on the
interpretation of the drivers of the evolution of social behaviour. Here,
I will illustrate that the haystack model, which is often used in the con-
text of group selection, allows a kin selection as well as a group selection
interpretation. To do so I will analyse a variant of the haystack model in
which the local dynamics are specified through a continuous time model.
From the description of the dynamics the cost and the benefits of the
interaction can be calculated, as well as the relatedness. We also re-
visit the interpretation of Maynard Smith, who originally described the
model, and show that this interpretation can be found if one assumes
strong selection. This shows how the various interpretations of the evo-
lution of social behaviour all can follow from the same model. It also
shows how ecological details of the interaction are crucially important
in interpreting and understanding the process of evolution.
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1. Introduction

The evolution of social behaviour poses a puzzle within the Darwinian par-
adigm. If the process of adaptation results from selection that benefits in-
dividuals with favourable traits, how is it then possible that behaviour that
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promotes the reproductive output of others at a cost to oneself evolves? Dar-
win himself was aware of this issue, and commented on it on various occasions.
He wrote: “A tribe including many members who . . . were always ready to
aid one another, and to sacrifice themselves for the common good, would be
victorious over most other tribes; and this would be natural selection” [1]. In
this we recognise what nowadays would be called a group selection argument.
In the context of insects with sterile casts he wrote: “. . . with the working ant
we have an insect. . . absolutely sterile; so that it could never have transmitted
successively acquired modifications of structure or instinct to its progeny. It
may well be asked how is it possible to reconcile this case with the theory
of natural selection?” and he continues: “. . . selection may be applied to the
family, as well as to the individual, and may thus gain the desired end. Thus,
a well-flavoured vegetable is cooked, and the individual is destroyed; but the
horticulturist sows seed of the same stock, and confidently expects to get
nearly the same variety” [2]. This last argument is reminiscent of what could
be called a kin selection argument.

Others, notably Fisher [3] and Haldane [4], commented on the evolution
of social behaviour, but it was W.D. Hamilton who elaborated and formalised
the explanation [5] that later became known as kin selection [6]. Hamilton’s
understanding appears to have been based on an intuitive insight, to which
he added a formal justification. Hamilton’s basic idea takes a gene centered
perspective and the observation that it is not so much the benefit to an indi-
vidual’s fitness that matters, as the benefit to the fitness associated with the
gene that conveys an advantage to the behaviour under study. He observed
that populations typically are structured and genes are somehow assorted.
This makes it more likely that interactions are with individuals that carry
the same gene than when the interactions would be with random members
of the population. If this is so, the benefits of a behaviour that are bestowed
on another individual benefit the gene that causes the behaviour if this gene
is also present in the other individual. Therefore, one need not just consider
the fitness consequences of a gene on the individual that carries the gene, but
also its effect on the same gene in other individuals that reap the benefit of
the interaction.

Hamilton quantified the idea that a gene would benefit directly through
its influence of the carrier it finds itself in, as well as indirectly through
increasing the fitness of other carriers of the same gene with which its carrier
interacts. A crucial part of the argument is that populations have structure,
which leads to assortment of genes. This can, for instance, be through limited
dispersal (Hamilton used the term ”viscous population” to describe this). The
fitness of an altruistic gene is then

−C +RB,

where C is the cost an individual pays for altruism, B is the benefit that
others receive from individuals carrying this gene, and R is a measure of
the correlation between the genotype of the acting individual and that of its
neighbour. Relatedness is proportional to the probability of a carrier of a gene
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to encounter this same gene among those that (s)he interacts with, over and
above the average frequency of this gene in the population. The coefficient
of relatedness is often defined as the regression coefficient that is obtained in
a plot of the actors genotype versus the genotype of the receiving individual
[7].

Prior to Hamilton’s idea being widely accepted, the main explanation for
traits from which others benefit was that such traits would be adaptations to
living in groups. Groups of similar individuals would benefit from such traits
and therefore more of such groups would be formed so that the trait would
eventually come to dominate a population. One of the main proponents of
this group selection perspective was Wynne-Edwards [8].

It was pointed out by John Maynard Smith [6] that there are two main
problems with the idea of group selection. Firstly, the explanation is limited
to situations where groups can be identified. To describe situations in which
the reproductive success of relatives of the individual carrying certain traits
is enhanced, Maynard Smith coined the word kin selection. Secondly, and this
was the main point of Maynard Smith’ argument, groups which are composed
of benevolent individuals are vulnerable to exploitation by individuals who
benefit from the advantages of the group without contributing to it. Such
exploitation easily arises if there is dispersal between the groups.

To illustrate this idea Maynard Smith used a simple model describing
mice living in haystacks. At the beginning of a season a haystack is colonised
by a pregnant single female mouse. The female carries an allele which renders
her timid or aggressive. Each mouse produces a colony and within a colony
aggressive individuals will replace the timid ones through competition. The
only colonies that will produce timid mice are those that were founded by
females carrying only homozygously timid offspring. Although timid mice
are competitively at a disadvantage, they can produce far more offspring in
a colony they solely occupy. Maynard Smith showed that if mating is mainly
within the colony the timid allele will increase in frequency. Mixing between
the colonies will make that the selection is easily favoured towards aggressive
mice. This model has become known as the haystack model.

A similar type of argument is used extensively in the literature on group
selection. Within groups individuals, often haploid, interact and influence
their own and each other’s fitness through interactions. At the end of the
interaction time individuals disperse and colonise new groups (such groups
are sometimes referred to us “trait groups” [12]). The point that is often put
forward with these models is that it is possible that a trait evolves that loses
out in all groups to competition yet can still evolve because of the increased
outputs of groups it produces on its own.

Here, I will scrutinise these arguments by formulating a model for the
haystack scenario, based on a detailed, if fictitious, description of the local
dynamics of the model. The model is a variation of a mathematical model
with a detailed description of the dynamics of the haystack model [9]. We will
analyse this model to demonstrate how the details of the local interaction and
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the details of the biology impact the findings of the model, and in how far it
is justified to interpret these models in the light of group and kin selection.

2. Local dynamics including resource

Our model is akin to the haystack model, in that it consist of isolated patches
that are colonised at the beginning of a season by a number of haploid individ-
uals. We assume that within the patches there is a total amount of resource U
available. The individuals in the patch can sequester this resource with rate
ci. The sequestered resource is converted into new individuals, which can die
with rate d and are then converted back into resource.

There are two strains, the numbers in each strain is given by vi, that
compete through the availability of resource. The strains differ in the rate
with which they sequester resource, ci. The strain that sequesters the most
resource will also be the most competitive strain.

At the end of the season both type of strains produce dispersers. To
produce dispersers, the remaining free resource is converted into dispersers.
To optimise the number of dispersers the best strategy would be to be prudent
with resources. However, such a strategy backfires if the patch is shared with
another strain that sequesters the resource faster and which will be the winner
of the competition.

This is a typical scenario used in group selection studies: we have a
situation where a strain could lose out in competition, in almost all patches,
but where the premium that is gained in patches that are not shared, is
sufficient to provide a selective advantage.

3. Model description

We will find out how evolution proceeds in such a system by analysing the
dynamics in some detail. The within-patch dynamics are given by

u̇ = −u(c1v1 + c2v2) + d(v1 + v2) ,

v̇1 = c1uv1 − dv1 ,

v̇2 = c2uv2 − dv2 ,

where u is the amount of free resource, and vi is the number of mice of type
i. Note that the total amount of resource U = u+ v1 + v2 is constant. Using
this, we can simplify the local dynamics to

v̇1 = v1(c1(U − v1 − v2)− d) ,

v̇2 = v2(c2(U − v1 − v2)− d),
(3.1)

and thus within a patch the local dynamics of v1 and v2 take the form of a
Lotka-Volterra type interaction. It is a well-known result from this type of
competition model that the local dynamics can result in a process of com-
petitive exclusion in which the type with the highest ci will be the dominant
local competitor. In that case the system has 2 equilibria in which one species
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is present, and the other absent. The equilibrium in which which can main-
tain the highest population density, and in which thus the amount of free
resource is most reduced, is stable and the other equilibrium is unstable, in
the sense that it can be invaded by the other type. This means Fig. 3.1 shows
a typical example of the dynamics in the patch, it shows how a more prudent
type, that sequesters resources at a low rate, is outcompeted by a type that
sequesters resource more readily.

Following the seeding of the patch, system (3.1) will determine the local
dynamics. After the patch has incubated for an amount of time, say T , the
season ends and the patch has to produce migrants. We assume that this
happens through the conversion of all freely available resource that are then
availably. These resources will be shared out pro-rata to types in the patch.

The amount of freely available resource at time T is given by u(T ) =
U − s(T ), where s = v1 + v2. The fraction of type 2 individuals is given by
f = v2/s, and consequently, the fraction of type 1 is than 1− f = v1/s. Let
the number of type k migrants in a patch that received i fundatrices of type
1, and j of type 2 be given by mk(i, j). We can then express these quantities
as

m2 (v1(0), v2(0)) = f(T )(U − s(T )) ,

m1 (v1(0), v2(0)) = (1− f(T ))(U − s(T )) .

The number of migrants is proportional to the amount of free resource, so
that more prudent types can produce more migrants. For a patch that is
composed of a single type, for sufficiently long T , the number of free resources,
and therefore the number of migrants is approximately d/ci.

To fully specify the model we need to detail how the patches are seeded.
We will denote the probability that a patch receives i fundatrices of type 1
and j of type 2 with Q(i, j;N1, N2), where Ni is the average number of that
type per patch. We will assume that Q, which details the way fundatrices
are distributed over the patches, does not depend on the traits ci. It does, of
course, depend on the number of individuals that carry the trait through N1

and N2. As a consequence the total number of individuals in a patch depends
only on the total number in the population:

P (n;N1 +N2) =

n∑
i=1

Q(n− i, i;N1, N2).

Furthermore, as the allocation of individuals to patches does not depend on
their traits, a fundatrix is of type 2 with probability ϕ and of type 1 with
probability 1 − ϕ where ϕ = N2/N and N = N1 + N2. Therefore, for a
patch that receives n fundatrices in total, the distribution over the types is
binomial, so that we have:

Q(i, j;N1, N2) =

(
i+ j

i

)
(1− ϕ)iϕjP (i+ j;N). (3.2)

The average density in the next season is found by harvesting all dis-
persing individuals from the patches, and exposing them to overwintering
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Figure 3.1. The local dynamics in a patch. In the top panel
the densities of type 1 and type 2 versus time. Type 2 has
a higher value of c and therefore this type is competitively
superior. In the bottom panel the fraction of type 2 in the
patch is depicted. Note how after an initial phase, which
lasts as long as the local population has not reached its quasi
equilibrium, this fraction changes fast. Following this phase
a slow process of replacement takes place. Parameters: c1 =
0.1, c2 = 0.11, U = 250, T = 3, d = 1
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mortality:

N ′
1 = µ

∞∑
i=0

∞∑
j=0

Q(i, j;N1, N2)m1(i, j) ,

N ′
2 = µ

∞∑
i=0

∞∑
j=0

Q(i, j;N1, N2)m2(i, j),

where µ is the survival between seasons. This completely defines the dynamics
of the haystack model.

This model assumes that the local population growth is a purely de-
terministic process. This, of course, will rarely be true as in particular the
initial phases of the colonisation of the local patches will go through a phase
in which stochastic effects can dominate. This will give an advantage to faster
growing types (larger ci). These issues are discussed in more detail in [10].

4. Fitness calculation

The above description is sufficient to simulate the change in frequency of the
two types in the population by simulation. However, rather than studying
the dynamics, we are interested in how evolution will shape the parameter
ci. We will therefore calculate the rate of invasion of type c2 in a population
dominated by c1. Once we have established the pattern of invadability we
can from that conclude if it is possible to have evolutionarily stable levels of
prudence, i.e. parameter c1 that cannot be invaded by any c2.

We will apply the concept of invasion dynamics to find out the pattern
of evolutionary change. We will therefore assume that there is a resident pop-
ulation of which all individuals are take up resources with rate c1. We assume
that in this population individuals with rate c2 very infrequently appear, as
it would occur through a process of mutation. Because these mutants oc-
cur very infrequently, the resident population will converge to its equilibrium
value. The dynamics of type 1, in the absence of type 2, is given by:

N ′
1 = µ

∞∑
i=0

Q(i, 0;N1, 0)m1(i, 0) = µ

∞∑
i=0

P (i;N1)m1(i, 0).

At equilibrium we have

N∗
1 = µ

∞∑
i=0

P (i;N∗
1 )m1(i, 0).

If in this population a new type appears, it will be very rare initially. To
find out if such type can invade we will therefore calculate the rate of invasion
when it is rare. If it is rare, it will have very little influence on the equilibrium
density, which we therefore assume to be, to a good approximation, at N∗

1 .
The dynamics of type 2 when it is rare is then approximately given by:
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N ′
2 = µ

∞∑
i=0

∞∑
j=0

(
Q(i, j;N∗

1 , 0) +N2
dQ(i, j;N1, N2)

dN2

∣∣∣∣
N2=0,N1=N∗

1

)
m2(i, j)

=
µN2

N∗
1

∞∑
i=0

(i+ 1)P (i+ 1, N∗
1 )m2(i, 1),

where we used m2(i, 0) = 0. This shows that if type 2 is rare, one would not
expect to find more than one individual of this type in a haystack. Following
[11] we define the fitness of type c2 in an environment dominated by c1 as:

Sc1(c2) =
N ′

2

N2
=

µ

N∗
1

∞∑
i=0

(i+ 1)P (i+ 1, N∗
1 )m2(i, 1).

Note that the dependence on the resident trait c1 comes through both N∗
1 and

m2(i, j) both are potentially dependent on c1. If c1 = c2 there is no selection.
It is easy to show, using that if c1 = c2 then m2(i, 1) = m1(i+ 1, 0)/(i+ 1),
that Sc1(c1) = 1

This allows us to find out if a type carrying c2 can invade a population
dominated by c1, and from this, deduce some properties of the evolutionary
process. In figs. 4.1 and 4.2 we have shown such plots for 2 different choices of
P . In fig. 4.1 the patches are seeded by a constant number of individuals. We
see that in this case any trait can always be invaded by types that sequester
marginally more resources. We can deduce that in this case the evolutionary
process leads to an ever increasing value of ci, which only stops at the point
where the ci is so large that the population can not persist. In fig. 4.2 the
number of fundatrices is Poisson distributed. In this case for low values of c1
types with a (somewhat) larger value than c1 can invade, but for very high
values of c1 types with a lower value of c1 can invade. If evolution would
involve a sequence of invasions with small steps, this will eventually lead
to the value found at the crossing of the two invasion boundaries: this is a
type that cannot be invaded by other types which have a marginally different
value of. This can be seen in the figure because below the crossing point the
marginal fitness is negative (but only just for these parameter values).

5. Weak selection and marginal fitness calculation

We can work out how the process of evolution works under small mutational
steps through knowing the marginal fitness. To derive the marginal fitness
we will revisit the local dynamics. Much of the above argument is based on
a process where the differences between c1 and c2 are small. In this case
the pressure of selection is weak. We will derive an approximation of the
selection coefficient under weak selection. To do so, we make use of the fact
that if selection is weak the replacement of one strain by another through
competition is a slow process. We will use throughout the shorthands ϵ =
c2 − c1 and c = c1
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Figure 4.1. A pairwise invasibility diagram for the case
where all occupied patches have received 3 fundatrices. Re-
gions in which type 2 can invade a population of type 1, and
for which combination of trait values the marginal fitness is
positive (labelled with +) or negative (labelled −). If c2 > c1
there is a large range of values for which invasion if possible.
The area just above the diagonal is labelled +: types with
a marginally larger value of c than the resident population
can always invade. This will lead to a process of replacement
leading to increasing values of c.

The dynamics in the variables s, and f are given by:

ṡ = s [u(c+ ϵf)− d] , (5.1)

ḟ = ϵf(1− f)u, (5.2)

and remember that u = U − s. If ϵ is small clearly the change in f is slow
compared to the changes in s. For sufficiently large T the dynamics of u will
settle on a quasi steady state, given by

ũ(ϵ) =
d

c+ ϵf
.

For small ϵ this is approximately ũ(0)
(
1− ϵ f(0)c

)
. The dynamics of s will

also settle at a quasi steady state s̃ = U − d
c+ϵf . Based on this argument

it is possible to find a approximation for the number of dispersers produced
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Figure 4.2. A pairwise invasibility diagram for the case
where patches have received a number of fundatrices that
is Poisson distributed. A process of repeated invasion of
marginally different types will make that the evolutionary
dynamics proceed to a value of c1 for which the 2 curves
cross. Here, marginally different types cannot invade (al-
though the region of stability is small). Parameters: U = 250,
T = 3, d = 1, µ = 0.15

under weak selection (see appendix)

m2(i, j) ≈ ũ(0)f(0)− ϵ
ũ(0)

c
f(0)2 + ϵũ(0)f(0)(1− f(0))g(0, T ),

where g(0, T ) =
∫ T

0
u(t)dt

∣∣∣
ϵ=0

which for sufficiently large T is approximately

g(0, T ) ≈ ũ(0)T +
1

c
ln

s̃

s(0)
.

The fitness is now given by

µ

N∗
1

∞∑
i=0

(i+ 1)P (i+ 1;N∗
1 )ũ(0)

1

i+ 1

[
1 + ϵ

(
−1

c

1

i+ 1
+

(
1− 1

i+ 1

)
g(0, T )

)]

= 1 + ϵ

∑∞
i=1 P (i;N∗

1 )
[
− 1

ci + (1− 1
i )
(
ũ(0)T + 1

c ln
s̃
i

)]
1− P (0;N∗

1 )
,
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and the marginal increase in fitness is

ϵ

∞∑
i=1

P (i;N∗
1 )

1− P (0;N∗
1 )

[
− 1

ci
+

(
1− 1

i

)(
dT

c
+

1

c
ln

U − d/c

i

)]
.

The marginal fitness can be used to find candidate end points of the
evolutionary process. These are values of c for which the marginal fitness is
zero. If these points in the phenotype space are stable against invasion, and
if the evolutionary process leads towards them, they are called evolutionary
stable states. Here, we are not so much interested in the value of the ESS,
as in the interpretation of the marginal fitness equation. We will discuss two
ways to interpret the marginal fitness

5.1. Inclusive fitness representation

To interpret the marginal fitness in terms of inclusive fitness, we will intro-
duce the concept of relatedness. This is the normalised probability to pick
two individuals of the same type from the same patch over and above the
probability of picking two of the same type from the overall population. We
show in the appendix that this is

R =

∑∞
i=1 P (i;N∗

1 )
1
i

1− P (0;N∗
1 )

. (5.3)

Using this, we can rewrite the marginal fitness as:

ϵ

[
−R

c
+ (1−R)

dT

c
− 1

c

∞∑
i=1

P (i;N∗
1 )

1− P (0;N∗
1 )

(
1− 1

i

)
ln

U − d/c

i

]
.

The last term in the marginal fitness results from the difference in growth
rate between individuals. In the initial stages of the exploitation of the patch
the growth is approximately exponential, and a faster growing type will come
to occupy a larger proportion of the patch. How long the period of approx-
imate exponential growth lasts, depends on the logarithm of the number of
fundatrices a patch receives.

One can interpret the terms in the sum as relatedness measures by
defining

R′
i =

1

i
,

that is, as the normalised probability to pick two identical individuals from
a patch that was seeded by i individuals, relative to the probability in the
population as a whole (see appendix). With this the last term in the marginal
fitness can be written as

∞∑
i=1

P (i;N∗
1 )

1− P (0;N∗
1 )

(1−R′
i) lnR

′
i(U − d/c).

Strictly speaking we can thus interpret the marginal fitness in terms of a
relatedness measures. Although this is formally correct, this is practically of
little value. The usefulness of the relatedness measure comes, in part, through
the fact that one can assess the relatedness through sampling of neutral genes.
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By introducing the measures R′
i which depend on the number of fundatrices

a patch receives, one can only assess such measures if one knows how many
fundatrices a patch has received; information which would normally not be
available after the incubation period.

It is, in fact, possible to link the sum
∑∞

i=1
P (i;N∗

1 )
1−P (0;N∗

1 )

(
1− 1

i

)
ln 1

i to

the average rate of finding a rare mutant in a patch (see appendix). This
shows that it is, in principle, possible to uncover this information from a
population, without having to know how many fundatrices funded a patch.
However, where the relatedness is independent of the frequency of a particular
gene in the population, this measure does depend on the frequency (hence
the requirement of the gene to be rare) which makes the applicability limited.

Therefore, it is helpful to approximate the sum in the last term by Taylor

expanding the logarithmic term around the average for i =
N∗

1

1−P (0,N∗
1 )
, which

if all patches that have at least one fundatrix go to quasi equilibrium is

approximately
N∗

1

1−P (0,N∗
1 )

≈ µd
c so that we find for the last term in the fitness

equation:

∞∑
i=1

P (i;N∗
1 )

1− P (0;N∗
1 )

(
1− 1

i

)
ln

U − d/c

i
≈ (1−R) ln

(
cU − d

µd

)
(see [13] for a similar argument and an application to the evolution of social
behaviour in aphids). With this we can now write the marginal fitness as:

−R
ϵ

c
+ (1−R)

ϵ

c

(
dT + ln

(
cU − d

µd

))
,

in which we recognise the effects of the change in the free resource which a

change in c will cause (note dũ(0)
dc = − 1

c ). This effect will contribute to the
fitness through all related individuals. The term preceded by (1− R) repre-
sents the effects of competition. A increase in c will increase the competitive
ability.

Alternatively, we can partition the marginal fitness as

ϵ

c

(
dT + ln

(
cU − d

µd

))
︸ ︷︷ ︸

−C

+R
ϵ

c

(
−1− dT − ln

(
cU − d

µd

))
︸ ︷︷ ︸

B

.

A decrease the amount of resource sequestered, i.e. a negative ϵ, is costly in
that the first term is negative and will constitute a negative direct effect, yet
will result in a positive indirect effect and is therefore an act of altruism.

5.2. Group selection

For a group selection interpretation of the same model we will partition the
fitness differently. A group, or multi-level, selection perspective considers the
variation within and between patches. One can then interpret the advantage
of an altruistic act as a consequence of the higher yield of groups which largely
consist of altruists.
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Now that we have an expression in terms of costs and benefits we can
relate this to personal costs and benefits. We will denote the phenotype of
individual j in patch i with xij which takes the value 0 if the individual has
phenotype c1, and 1 if it has phenotype c2. We can assign the approximate
personal fitness to individual j in patch i

Wij = W0 − Cxij +Bx̄i,

where W0 is the fitness if all individual carry trait c1 (which will be 1, but for
generality we keep this open) and x̄i =

1
ni

∑n
j=1 xij is the mean phenotype

among the individuals that i interacts with, which here is the same as the
mean phenotype of the individuals in the patch. The number of fundatrices
in patch i is ni. It is straightforward, if tedious, to calculate the variation
in fitness between groups E(varg(W )) = −(1 − R)Cvar(x), and the average

variation within groups var(W i) = R(−C+B)var(x), where var(x) = ϕ(1−ϕ)
is the variation in the variable x.

We can now rewrite the marginal fitness as:

−C +RB =
E(varg(W ))

var(x)︸ ︷︷ ︸
variation within patch

+
var(W i)

var(x)︸ ︷︷ ︸
variation between patches

.

6. Strong selection and fitness calculation

The above shows how the marginal fitness can be partitioned in the difference
in variances within and between group, as it is frequently done in the context
of multilevel (group) selection. However, to explain group selection verbally
an argument along the lines of that of Maynard Smith [6] is sometimes given,
stating even if altruists are at a competitive disadvantage to the point that
they disappear in all patch, but the ones where they are the sole occupants.
If the output in the solely occupied patches is sufficiently high, it is possible
for altruists to invade a population of selfish individuals. This implies that
selection is strong and is therefore not covered by the arguments above. To
find out if this is the case in our model we consider the situation in which
selection is strong (large ϵ) or the interaction is of sufficiently long duration
so that local competition would always oust the inferior competitor.

If ϵ > 0 than the type with c2 will outcompete all c1 in mixed patches.
The fitness then is

µ

N∗
1

∞∑
i=0

(i+ 1)P (i+ 1, N∗
1 )m2(i, 1).

If c2 the local dynamics are sufficiently fast for type 2 to outcompete type 1,
and for the dynamics of type 2 to settle at the equilibrium u(ϵ, T ) ≈ d

c2
we

find that the fitness is

µ

N∗
1

∞∑
i=0

(i+ 1)P (i+ 1, N∗
1 )

d

c2
=

d

c2

µ

N∗
1

∞∑
i=0

iP (i,N∗
1 ) =

dµ

c2
.
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If ϵ < 0 than the type with c2 will be outcompeted all c1 in mixed
patches. Type 2 will be able to produce dispersers only in patches which had
a type 2 fundatrix and no type 1 fundratices will. The fitness then is

µ

N∗
1

P (1, N∗
1 )m2(0, 1).

If we assume the local dynamics approximately go to equilibrium this is

dµ

c2

P (1, N∗
1 )

N∗
1

.

Note that because the equilibrium level N∗
1 depends on c1, the fitness of

type 2, does depend on the trait that type 1 carries because the number of
dispersers that type 1 produces depends on how it exploits its local resources.

This argument formalises the group selection argument: a trait that is
competitively inferior will be ousted from any group in which it would not
have sole occupancy. However, if groups which exclusively consist of such a
trait produce a sufficient excess of migrants so that it compensates for the loss
due to competition, such a trait can invade in a population. This analysis also
shows that this argument is based on a number of implicit assumptions. If the
interaction within the groups is time limited, which is a realistic requirement
for this mechanism to work, the difference between the traits needs to be
large. Therefore the group selection argument assumes implicitly that strong
selection is at work.

If selection is strong, this assumption gives a reasonably good indica-
tion of when an altruist can invade in a selfish population. In figure 6.1 we
have plotted the invasion boundaries by numerically calculating our earlier
derived fitness function. It can be seen that if the difference between c1 and
c2 is sufficiently large that the agreement can be good (provided c1 is not
too small). This shows that if the difference between the two types is suffi-
ciently large the replacement argument can be valid. If the difference is small,
the argument is clearly not valid. Extrapolating the immediate replacement
argument to marginal differences between two types leads to qualitatively
incorrect approximation (the crossing point between the curves moves away
to a point where no population can be sustained.)

7. Discussion

The analysis given above demonstrates that the inclusive fitness argument
and the group selection argument can both be valid, albeit under different
conditions. Inclusive fitness arguments, which rely on the fact that the fitness
can be partitioned in additive components, normally requires weak selection.
Moreover, if the distribution of genes depends on the trait, one can only
validly infer the statistical association of two traits from the association of
neutral genes if one assumes weak selection.

The partitioning of fitness in between and within group variance gen-
erally works if one actually can identify the groups to which it applies. It is
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Figure 6.1. A pairwise invasibility diagram for the case
where patches have received a number of fundatrices that
is Poisson distributed to which the approximate invasion
boundary is added for which it is assumed that replacement
is immediate and complete and that the local dynamics go
to equilibrium within the lifetime of a local patch (dashed
line). Note that there is good agreement if c1 ≫ c2 and c1
not too small. Parameters: U = 250, T = 3, d = 1, µ = 0.15

generally not possible to independently measure or assess these fitness com-
ponents in a real world population.

For the group selection argument based on local replacement to work,
the traits under study need to be sufficiently different. This requires strong
selection, as it would result from a finite, and sufficiently different set of
different phenotypes, or from sufficiently large mutation steps. What the
group selection argument can predict is whether two types can replace each
other or whether they can coexist, but the argument is ill-suited to predict
the long term course of evolution under small mutations steps.

Whilst this analysis confirms that most of the views in the debate on
kin and group selection can be shown to operate in the haystack model, it
also demonstrates why this debate is so persistent. In most of the mathemat-
ical arguments that are presented in the literature, arbitrarily chosen fitness
functions are used. Mostly these define what the fitness of different types
is, without being specific how the fitness will vary under a change of trait
values. Therefore, it is ambiguous whether these statements refer to a weak
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or a strong selection scenario. I hope that the above analysis demonstrates
how these ecological details are of importance in interpreting the results from
mathematical models as used in evolutionary ecology.
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Appendix A. Relatedness calculation

We first observe that the probability to pick an single individual from a
patch is simply ϕ. This follows directly from the assumption that the types
are distributed according to a binomial distribution in patches of equal size.

Let us call the probability to pick, with replacement, two individuals of
type 1, from the same patch

p1(ϕ) =

∑∞
i=1

∑∞
j=0 Q(i, j;N(1− ϕ), ϕ)

(
i

i+j

)2
1−Q(0, 0;N(1− ϕ), ϕ)

,

and likewise

p2(ϕ) =

∑∞
i=0

∑∞
j=1 Q(i, j;N(1− ϕ), ϕ)

(
j

i+j

)2
1−Q(0, 0;N(1− ϕ), ϕ)

,

where ϕ is the fraction of individuals of type 2, and N is the total population
size. Note that p1(ϕ) = 1− 2(1− ϕ) + p2(ϕ)

The relatedness is measure of how likely it is that two genotypically
individuals are found in the same haystack, relative to the probability of
picking the same individuals in the population at large (this is (1−ϕ)2+ϕ2).
This measure is normalised so that if haystacks only contain a single type
the relatedness is unity. The relatedness is defined as [14]

R =
p1(ϕ)− (1− ϕ)2 + p2(ϕ)− ϕ2

1− (1− ϕ)2 − ϕ2
=

p2(ϕ)− ϕ2

ϕ(1− ϕ)
.

If we now evaluate this p2(ϕ) to find∑∞
i=0

∑∞
j=1 P (i, j;N(1− ϕ), ϕ)

(
j

i+j

)2
1− P (0;N)

=

∑∞
n=1

∑n
j=0 P (n;N) n!

j!(n−j)!

(
j
n

)2
1− P (0;N)

=

∑∞
n=1 P (n;N)

(
ϕ(1−ϕ)

n + ϕ2
)

1− P (0;N)

= ϕ(1− ϕ)

∑∞
n=1 P (n;N) 1n
1− P (0;N)

+ ϕ2,

from which (5.3) follows.
Similarly, we have for R′

n :

R′
n =

∑n
i=0 P (i,n−i,N(1−ϕ),Nϕ)(( i

n )
2
+( i−n

n )
2
)

P (n,N) − ϕ2 − (1− ϕ)2

1− ϕ2 − (1− ϕ)2

=

(∑n
i=0 ϕ

i(1− ϕ)n−i n!
i!(n−i)! (2

(
i
n

)2 − 2 i
n + 1)

)
− ϕ2 − (1− ϕ)2

2ϕ(1− ϕ)

=

(
ϕ(1−ϕ)

n + ϕ2
)
− ϕ2

ϕ(1− ϕ)
=

1

n
.
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Appendix B. Interpretation of logarithmic term

Here we will demonstrate that the term
∑∞

i=1
P (i;N∗

1 )
1−P (0;N∗

1 )

(
1− 1

i

)
ln 1

i can be

interpreted in terms of a sampling procedure.
The sampling procedure we apply is as follows: identify a rare mutant,

which is not selected for in the process. Within a patch, keep drawing indi-
viduals, with replacement, until this mutant is encountered. Subtract 1 from
the number of individuals, and, if the result is larger than 0, take the average
of the reciprocal of this number by sampling over different patches.

In a patch containing i mutants among n individuals, the probability of
encountering the mutant for the first time after k draws is given by the hyper-

geometric distribution i
n

(
1− i

n

)k
. The expectation of reciprocal of positive

values of k − 1, provided i > 0, is

∞∑
k=2

i

n
(1− i

n
)k

1

k − 1
= − i

n

n− i

n
log

(
i

n

)
.

If i = 0 then

lim
i/n→0

∞∑
k=2

i

n

(
1− i

n

)k
1

k − 1
= 0.

When sampled over occupied patches, and if ϕ is the mutant’s fraction
of the population the expectation is

−
∞∑

n=1

P (n,N)

1− P (0, N)

n∑
i=0

n!

i!(n− i)!
ϕi(1− ϕ)n−i i

n

n− i

n
ln

(
i

n

)
.

For small ϕ this is approximately

−
∞∑

n=1

P (n,N)

(
1− 1

n

)
ln

(
1

n

)
.

Appendix C. Derivation of marginal fitness under weak
selection

The find the change over the incubation time of the fraction of type 2, f , we
will solve (5.2). To do so we first rearrange:(

1

f
+

1

1− f

)
df = ϵu(ϵ, t)dt,

which we can solve by integration from t = 0 to t = T :

ln
f(T )

f(0)
− ln

1− f(T )

1− f(0)
= ϵ

∫ T

0

u(ϵ, t)dt

and thus

f(T ) =
f(0)

f(0) + (1− f(0))e−ϵ
∫ T
0

u(ϵ,t)dt
.
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To make the dependence of u on ϵ explicit we have written u(ϵ, T ). If ϵ is
small the we can now find the approximate value of f(T ) as:

f(T ) ≈ f(0) + ϵf(0)(1− f(0))

∫ T

0

u(0, t)dt.

To solve the integral we will turn our attention to s. The dynamics of
s for ϵ = 0 are given by the logistic growth model: from a positive initial
condition the total number of individuals will increase and saturate at s̃(0).
The solution to the logistic equation is

s(t) =
s(0)s̃

s(0) + (s̃− s(0))e−cs̃t
. (C.1)

This also prescribes the dynamics of u(t) = U − s(t).

For g(0, T ) =
∫ T

0
u(0, t)dt we have

g(0, T ) = ũ(0)T +
1

c
ln

s(T )

s(0)
.

For sufficiently large T this is approximately

g(0, T ) ≈ ũ(0)T +
1

c
ln

s̃

s(0)
.

If we assume that the resource levels settle on the quasi equilibrium
u(0, T ) = ũ we find that if there is a marginal difference in the traits number
of type 2 dispersers that will be produced for large T is equal to

m2(i, j) = u(ϵ, T )f(T )

≈ ũ(0)f(0)− ϵ
ũ(0)

c
f(0)2 + ϵũ(0)f(0)(1− f(0))g(0, T ).

Appendix D. Calculation of within and between group
variance in fitness

Assume a local group is seeded by ni individuals with k with trait value c2,
and n− k with trait value c1. Such a group has as mean value x̄i =

k
ni
, and

the variance in x in the local group is

varg(x) =
1

ni

ni∑
j=1

(
xij −

k

ni

)2

=
k

ni

(
1− k

ni

)
.

The expected value of this variance is

E[varg(x)] =

∞∑
ni=1

ni∑
k=0

P (ni, N)

(
ni

k

)
ϕk(1−ϕ)ni−k i

n

(
1− k

ni

)
ϕ(1−ϕ)(1−R).

The expected value of the group mean is

E(x̄i) =

∞∑
ni=1

P (ni, N)

1− P (0, N)

n∑
k=0

(
ni

k

)
ϕk(1− ϕ)ni−k k

ni
= ϕ,
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and the variance

var(x̄i) =

∞∑
ni=1

ni∑
k=0

P (ni, N)

1− P (0, N)

(
ni

k

)
ϕk(1− ϕ)ni−k(

k

ni
− ϕ)2

=

∞∑
n=1

P (n,N)

1− P (0, N)
ϕ(1− ϕ)

1

n
= ϕ(1− ϕ)R.

The overall variance in x is given by var(x) = ϕ(1− ϕ).
A group selection interpretation partitions the fitness in the variation

in fitness within and between patches. Now that we have identified the in-
dividual fitness we can calculate the average mean fitness within a patch j
as

W i =
1

ni

n∑
j=1

Wij = W0 + (−C +B)x̄i.

The average within patch variance is given by

E(varg(W )) = E(
1

ni

ni∑
j=1

(Wij −W i)
2)

= −CE(
1

ni

ni∑
j=1

(xij − x̄i)
2)

= −CE[varg(x)] = −Cϕ(1− ϕ)(1−R).

The variance between the mean fitness of patches is

var(W i) = E[(W i −W0 − (−C +B)ϕ)2]

= (−C +B)E[(x̄i − ϕ)2]

= (−C +B)var(x̄i)

= (−C +B)ϕ(1− ϕ)R.
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