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On the bifurcation structure of
two diffusively coupled
predator-prey systems

Summary

A model for a predator and prey population, living in two patches is analysed.
Within a patch the prey grows logistically and the predators react to local prey
densities with a Holling type II functional response. The two patches are coupled
through predator migration. The system is a model for a simple predator-prey
metapopulation in which the local densities are described explicitly, but also
1s a caricature of a spatially distributed predator-prey system. The dynamical
behaviour of the system is described using one and two parameter bifurcation
diagrams. Two types of attractors are identified in which lasting differences
between the densities in the patches exist. For small predator migration rates
attractors exist where the local (1.e. within patch) dynamics are asynchronous.
The attractors can be periodic, quasi-periodic or chaotic. For large predator mi-
gration rates attractors in the form of equilibria or limit cycles exist, in which
one of the patches contains no prey. The relation between these different attrac-
tors is described using one and two parameter bifurcation diagrams. The results
show that asynchronous local dynamics arise spontaneously in metapopulations
and that the fluctuations of a metapopulation can be reduced compared to the
fluctuations of a single isolated population. Moreover, they show that spatial
predator-prey populations can be regulated through the interplay of local dy-
namics and migration. For this regulation no density dependence at the level of
the individual is needed so that enrichment of the environment does not neces-
sarily have the paradoxical consequence that prey and predator densities reach
levels where extinction is likely to occur.
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7.1 Introduction

Regulation of population densities is mostly effected in mathematical models
through a negative feedback of the population densities on the per capita vi-
tal rates. Mathematical models of predator-prey systems with density depen-
dence at the level of the individual often predict extreme fluctuations in den-
sities, such that the predator and prey populations repeatedly reach very low
densities (Rosenzweig, 1971 and 1972). In many data series of predator-prey
systems fluctuations can be observed, but these are normally not as vigorous as
the fluctuations predicted by mathematical models. The difference between the
observed dynamical behaviour of natural populations and that predicted by such
mathematical models suggests that natural predator-prey populations are not
exclusively regulated by density dependence at an individual level.

An example of a regulatory mechanism that does not directly operate at indi-
vidual level is provided by so called "metapopulation” models. A metapopulation
consists of a set of local populations that are coupled through migrations. (For
a review on metapopulation theory see Gilpin & Hanski (1991) and Hastings
& Harrison, (in prep.)). A metapopulation persists when local populations go
through cycles of colonization and subsequent extinction, as long as these cycles
proceed asynchronously (Taylor, 1990). In a predator-prey metapopulation it is
not difficult to imagine that the local populations can go through large fluctua-
tions, perhaps actually going extinct, but that at the metapopulation level these
cycles are damped when the local oscillations proceed out of phase. The regula-
tion then is not only at the level of the individual but also at (local) population
level.

In itself this may sound as a truism: when local dynamics proceed out of
phase the effects of local fluctuations will simply average out in the regional
densities. However, this argument hinges on the asynchrony of the fluctuations
in the local densities. The crucial question thus is whether or not asynchronous
fluctuations in the local densities are to be expected in metapopulations. One
of the requirements of a metapopulation is migration between local populations
(Hanski, 1991). Migration tends to reduce differences. When no differences
between the local populations exist, the local densities fluctuate in phase. If
phase differences between the fluctuations in the local densities really are an
intrinsic property of metapopulations, metapopulations must then counteract
the equalizing force of diffusion.

There is some empirical evidence that asynchronous local dynamics occurs in
actual metapopulations (Nachman, 1991; Van de Klashorst et al., 1992). Asyn-
chronous local dynamics has also been demonstrated in simulation studies (Has-
sell et al., 1991; Comins et al., 1992), in two patch host parasitoid models (Adler,
1993) and in simple analytic models for a single species metapopulation (Gyllen-
berg et al., 1993; Hastings, 1993). Despite this there is no complete understanding
how and when asynchronous local dynamics may appear.

In this paper we demonstrate the existence of lasting differences in local
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densities in predator-prey models and the conditions under which these arise
naturally from the interplay of the local population dynamics and the spatial
interactions between local populations. The metapopulation we use here is the
simplest thinkable: a system of two identical patches whose dynamics are cou-
pled through migration of individuals. The work in this paper builds on results
presented in a previous paper where we studied two diffusively coupled identi-
cal patches (Jansen, in prep.), the dynamics in each patch being defined by the
Lotka-Volterra equations. For this system it was shown that, although eventually
all spatial differences vanish, closed orbits on which the local densities oscillate in
phase with a large amplitude are unstable for appropriate choices of parameters
and that orbits starting from nearby initial conditions converge towards closed
orbits with in phase local oscillations with a small amplitude. Here we will pro-
ceed similarly and show that in a two patch metapopulation, where the local
dynamics corresponds to a predator-prey system with logistic prey growth and
a Holling type II functional response, limit cycles with in phase oscillations can
be unstable for small predator migration rates. The limit cycles that branch off
the limit cycle with in phase oscillations connect, when parameters are varied, to
stable attractors with out of phase oscillations. Furthermore we will show that
for large predator migration rates stable equilibria or limit cycles, in which the
local predator and prey densities differ, exist. As an appetizer, Figure 7.1 shows
some of the different types of dynamics for our predator-prey system. We finally
address the case where the prey growth is exponential instead of logistic and
show that also in this case stable attractors with out of phase oscillations exist.

The model studied here deserves attention not only for its biological signif-
icance but also for its surprisingly rich dynamical behaviour. We have found
periodic, quasi-periodic and chaotic attractors in all of which the local dynamics
proceed out of phase. By means of one and two parameter bifurcation diagrams
we will describe the ”genesis” of these attractors. When prey growth is exponen-
tial instead of logistic we have partly revealed the bifurcation structure.

Our results show that through the interplay of local dynamics and migration
asynchronous oscillations can arise and that the fluctuations in the total densities
are damped compared to the fluctuations in a single isolated population. Our
results have a wider significance, however. The one but crudest discretisation
of space is a subdivision in two regions. The model used here can serve as
a caricature of predator-prey systems in a spatially homogeneous environment.
This leads us to the conclusion that spatial interactions can regulate predator-
prey populations, even in absence of regulatory mechanism at the level of the
individual .

7.2 Model description

We describe the local interaction between predator and prey by a special case
of the Rosenzweig-Mac Arthur (1963) model in which the prey population is
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Figure 7.1: The prey density versus time for some attractors of system (7.2) with
the parameters r = p = 1, b = 9.96, ¢ = 25, dn = 0. The prey density in patch 1 is
represented by a drawn line, the prey density in patch 2 by a dashed line. (a) A stable
limit cycle in which the densities in the patches are equal, the dashed line is therefore
not visible. The limit cycle is stable for d < 0.275 and d > 0.558. The fluctuations are
identical to those in a predator-prey system in a single, isolated patch. (b) A stable
limit cycle for d = 0.675 in which the densities in the patches fluctuate out of phase
with a phase difference of half a period. (c) A stable limit cycle for d = 20 in which the
prey density in patch 2 is zero. The predator densities fluctuate in both patches. (d)
the logarithm of the average prey densities for the limit cycles in (a), (b) and (c).

growing logistically and the predator has a Holling type II functional response:

i = rNaQ-X) __nP

dr 1+N7/b
aP NP (7.1)
dat = T+N/b —uP

The variable N denotes the density of the prey population and P the density of
the predator population. The parameters have the following interpretation:

prey growth rate at low prey densities,
carrying capacity of the prey population,

the saturation value of the functional response,
the predator death rate in absence of prey.

T a3
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The variables in (7.1) are already scaled to reduce the number of parameters. The
scaling chosen preserves the carrying capacity, which is the factor that predomi-
nantly expresses regulation, as a bifurcation parameter. Furthermore, by taking
the limit of ¢ and b tending to infinity, system (7.1) reduces to the Lotka-Volterra
system.

Now a two patch metapopulation with identical patches in which the local
dynamics are defined by (7.1) is described by:

dg- — ,,N’.(l - —*Ii ) 1+NN./b f dn(NJ' = Na') = {1 2} : # '
i 4,1 ] ) & J
P N, P, — : + ] Pi ‘
ddt - 1+N;/b I‘P' d(P’ ')

(7.2)
where N; and P; denote the densities of the prey and predator population in patch
i. The parameters d,, and d denote the per capita migration rate of, respectively,
prey and predator.

We note that, since the parameters describing the within patch dynamics are
identical for both patches, system (7.2) is symmetrical. By defining the reflection
operator R, as:

R(I’yruav) = (U,'U,.’L‘, y)

it can be seen immediately that when S(t) = (Ni(t), Pi(t), No(t), Po(t)) is a
solution of (7.2), RS(t) is also a solution. Moreover, the diagonal subspace
D = {(Ny, P, N2, P) € ]Rj_|N1 = N3, P, = P>} is symmetrical in the sense that
RD = D. It can be seen directly from the equations that when the densities in
both patches are equal, migration has no effect and hence D is invariant. On D
the dynamics of N; and P; are given by (7.1). The dynamics of (7.1) are well
known. System (7.1) allows for a single two species equilibrium. This equilibrium
can be either locally stable or unstable. If the equilibrium is unstable a stable
limit cycle exists. Hence, when the parameters are chosen such that for (7.1) a
stable limit cycle exists, system (7.2) also has a symmetrical limit cycle I'(¢) with
RI(t) = I'(t) in which at every moment in time the densities in the two patches
are equal and so the fluctuations in the local densities are strictly in phase. In
order to locate asymmetric attractors of (7.2), we will study the stability of the
equilibria and of the symmetric limit cycle T' and continue the solutions that
bifurcate off these solutions. Guided by the observations on two coupled patches
with Lotka-Volterra local dynamics (Jansen, submitted b) the other parameters
were fixed at: r = p = 1,b = 9.96,d,, = 0. For the parameter values chosen all
equilibria of (7.1) are unstable and the two species equilibrium is surrounded by a
stable limit cycle. As bifurcation parameter we have used d, which expresses the
coupling between the two patches. As a second bifurcation parameter we have
used ¢, which represents the carrying capacity. For location and continuation
of equilibria and limit cycles the program "LOCBIF” (Khibnik et al., 1993) has
been used.



98 Chapter 7. Two coupled predator-prey systems

Eoo (0,0,0,0)
EOI (Ovoicl 0)
£n (¢,0,c,0)
dr \T V v r(p+d) o vV
Eiy (0. iz N (1= 5), 8, Zed (1 - X))
Bz (Ve oV =) N e Nt - X))
Exp | (Nayr(1=Za)(1 4 Ba) Ry, r(1 - )1+ 4y)
d =
ol (2 — )"
L i
No | 3(e=N")~y+3/[c=3N"—2))(N" 4 c + 27)
Ny | 3(e=N)—y- L\ e—3N" —2)(N" +c+ 2)
b(2du+u” —bd—bpu
v e

Table 7.1: Equilibria of (7.2) with d, = 0. Three more equilibria are possible which are
R images of the equilibria not lying in D: Eo; = REo;, E»; = RE;; and Ea2c = REq.

7.3 Bifurcation structure

The bifurcation diagram of (7.2) is rather complex. We therefore start with
describing the equilibria and the behaviour for d = 0, followed by the bifurcation
structure within the face Ny = 0, i.e. when no prey is present in patch 2. Within
this invariant subspace less w-limit sets exist than in the complete state space.
In two separate subsections we will describe the connections between w-limit sets
in ]Ri and those in the faces N; = 0.

7.3.1 Equilibria

System (7.2) with d, equal to zero maximally allows for nine equilibria (see
Appendix). These equilibria are listed in Table 7.1. The equilibria are denoted
by Ejij where i refers to the number of species in patch 1 and j to the number of
species in patch 2. When more equilibria are possible for a certain combination
a letter added to the subscript indicates this.

The equilibria Eqgg, E1; and Eqs, all lie in D and correspond to the equilibria
of (7.1) with identical equilibrium densities in both patches. Equilibrium Eyy is
always a saddle, E, is stable for ¢ < 1 and a saddle otherwise. Equilibrium E»;,
is positive iff ¢ > b—"_& and stable as long as ¢ < b:—i’f. When increasing ¢, Fag,, is
subject to a Hopf bifurcation and is subsequently surrounded by the symmetrical
limit cycle I'. The equilibrium Es, can not lose its stability otherwise than in a
Hopf bifurcation (Segel & Jackson, 1972). When E'94 is unstable it can undergo
a pitchfork bifurcation in which Eq9; and Eas, branch off.

Since we restricted ourselves to the case d,, = 0, four equilibria are possible
in which one of the patches contains no prey. These equilibria lie within one of
the invariant subspaces {(Ny, Py, Ny, Ps) e IR::_IN,- =0,7= 1,2} to which we will
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further refer as the faces N; = 0. The equilibria in which the densities are not
identical always have a symmetrical counterpart so that in total nine equilibria
are possible The computation of the equilibria is given in the Appendix.

7.3.2 Decoupled patches

When both migration rates are equal to zero the two patches are decoupled and
the dynamics in both patches are described by (7.1). For the parameters chosen,
system (7.1) allows a stable limit cycle and three unstable equilibria with zero,
one or two species present. In the decoupled system therefore nine equilibria
exist which consist of combinations of equilibria of (7.1), six limit cycles exist
which consist of a combination of an equilibrium of (7.1) in one patch and the
limit cycle of (7.1) in the other patch and an invariant torus exists, when both
patches are on the limit cycle of (7.1).

The nine equilibria are listed in Table 7.1. In the equilibrium Fqo both patches
are empty and in Fyo and Ep; one patch is at the one species equilibrium while
the other patch is empty. In E;; we have the one species equilibrium in both
patches where in Eys, both patches are at the two species equilibrium. As can
be seen from Table 7.1 the equilibria Ey and Ej5 for d = 0 correspond to the
case where one patch is empty and the other is at the two species equilibrium.
Finally F335 and Es2. for d = 0 represent the cases where one patch is at the
one species equilibrium while the other is at the two species equilibrium. Since
all equilibria of (7.1) are unstable for the choice of parameters used here, all
equilibria of (7.2) are unstable for small d. Furthermore we note that for small
positive d the equilibria Es3; and E3y. have a negative predator density in one
of the patches.

Six other w-limit sets exist for d = 0 consist of combinations of a limit cy-
cle in one patch and an equilibrium in the other patch. Since (7.1) allows for
three equilibria, three different combinations can be formed and since every com-
bination has an R image we come to six w-limit sets. Since for the choice of
parameters used here all equilibria of (7.1) are unstable, for small d no stable w-
limit sets formed out of a combination of equilibrium and limit cycle exist. Four
of these limit cycles could be detected with the continuation procedure used and
for small d all four are unstable. The two limit cycles at d = 0 corresponding
to the combinations of the limit cycle and the one species equilibrium, could not
be continued but simulation runs of (7.2) gave clear indication that they do not
give rise to positive stable w-limit sets.

For d = 0 also an invariant torus exists, corresponding to the state where both
patches exhibit limit cycles (possibly with a phase difference). The invariant torus
contains the symmetrical limit cycle I'. The symmetrical limit cycle and a limit
cycle in which the fluctuations in the patches have a phase difference of 7 are the
only limit cycles stemming from the invariant torus that could be continued for
small d. The symmetrical limit cycle is the only attractor for small d, all other
w-limit sets are unstable.
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Figure 7.2: A one parameter bifurcation diagram in d for (7.2) in which only the
branches in the face N, = 0 are drawn. On the vertical axis the value of N7 in the
equilibria and the maximum of N; for limit cycles is given. Dashed lines represent
unstable equilibria, thin drawn lines unstable limit cycles and thick drawn lines stable
limit cycles. Black dots indicate bifurcations. Labels: H1, H2: Hopf bifurcations,
TC: transcritical bifurcation of limit cycles, TE: transcritical bifurcation of equilibria.
Parameter values as in figure 7.1.

It is often stated that in metapopulations the migration rates should be not
too small because then the metapopulation will behave like a system of decoupled
local populations. This implies that some of the w-limit sets that exist for zero
migration rates will be stable for small migration rates. For system (7.2) such
a statement does not hold: all w-limit sets that exist for d = 0 are unstable for
small d, the only exception being the symmetrical limit cycle. We will show that
asymmetrical attractors do exist, but that they are not directly connected to the
structures that exist for d = 0.

7.3.3 One patch without prey

Figure 7.2 gives the bifurcation structure within the face N» = 0, i.e., when no
prey is present in patch 2. For d = 0 only three w-limit sets with positive prey
densities in patch 1 exist, being the prey-only equilibrium Eg, the predator-prey
equilibrium Fs; and a limit cycle formed out of the combination of a limit cycle
in patch 1 while patch 2 is empty. All these w-limit sets are unstable for small d.

Starting from d = 0 the w-limit sets can be continued in d. The topmost
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horizontal line denotes E1o: the equilibrium is always unstable and no bifurcations
from it were found. The limit cycle corresponding to the situation at d = 0 where
patch 2 is empty while the densities in patch 1 follow a limit cycle is always
unstable but is a stable attractor within the face Ny = 0. The limit cycle is
unstable with respect to introduction of prey in patch 2. For increasing d this
limit cyle shrinks and connects to equilibrium E3,; in the Hopf bifurcation labelled
in Figure 7.2 with H1 (in what follows we will simply refer to figure labels in the
text by putting them between brackets). In Hopf bifurcation (H1) the stability
of the limit cycle within the face No = 0 is transferred to E2;. The equilibrium
is unstable because it has an eigenvector transversal to the face N3 = 0 with
positive corresponding eigenvalue.

For larger d E3; goes through a second Hopf bifurcation (H2). The limit cycle
that branches off attracts within the face N3 = 0 but initially is unstable. When
d is increased further first a transcritical bifurcation of equilibria (TE) can be
detected on E»;. For still larger d the limit cycle that came into existence at
(H2) goes through a transcritical bifurcation of cycles (TC) in which the limit
cycle in the face No = 0 gains stability. This limit cycle now is stable against
introduction of small amounts of prey; when introduced in patch 2 they will go
extinct because they will be consumed quickly by the predators in patch 2 which
are feeded into this patch from patch 1. No other w-limit sets with positive prey
values in patch 1 were found.

7.3.4 Small predator migration rates

In this subsection we will give a detailed description of the bifurcation structure
in ]Ri for small predator migration rates. Figure 7.3 summarizes this subsection.
Later we will describe the series of events that leads to the stability of the limit
cycle in Figure 7.2 for large predator migration rates. The w-limit sets described
in the previous subsection are also depicted in Figure 7.3. Figure 7.4a gives the
phase portfait of the limit cycle that connects to E3; in Hopf bifurcation (H1).
For small values of d the predator density in the equilibria E33, and Epp. are
negative in one of the patches and therefore not shown in the figure. In addition
to the equilibria given in Figure 7.2 the equilibrium E3z4 exists. For the choice
of the other parameters used here, this equilibrium is always unstable within
D, hence Eq, is unstable for all d. For increasing d a limit cycle approaches
Es24 and connects to it in a Hopf bifurcation (H3). Due to the symmetry this
limit cycle approaches the equilibrium from a direction transversal to D. As the
phase portrait of this limit cycle (Fig. 7.4b) indicates, on the limit cycle the local
oscillations have a phase difference of 7. For d = 0 this limit cycle lies in the
invariant torus described in the previous subsection.

Two limit cycles bifurcate off this limit cycle in a pitchfork bifurcation of
limit cycles (PC). For increasing d these limit cycles disappear in a saddle-node
bifurcations of limit cycles (Fla, F1b). In the saddle node bifurcation, to which
we will further refer as a fold bifurcation, the limit cycles meet two other limit cy-
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Figure 7.3: A one parameter bifurcation diagram for (7.2) for small values of d, giving
the value of N, in the equilibria and the maximum of N for limit cycles. The legends for
lines and labels is given in figure 7.2; numbers refer to the phase portraits in figure 7.4.
Additional labels: Fla, F1b, F2, F3: fold bifurcations of limit cycles, FL1, FL2 : flip
bifurcations, H3: Hopf bifurcation, NS1: Neimark-Sacker bifurcation, PC: pitchfork
bifurcation of limit cycles. Parameter values as in figure 7.1.

clesin which at d = 0 the densities in one patch are at the two species equilibrium,
while they lie on limit cycle for the other (phase portrait given in Figure 7.4c).
All these limit cycles are unstable.

We will next turn to the only stable w-limit set that exists for small d: the
symmetrical limit cycle T' (phase portrait shown in Figure 7.4d). This limit cycle
is stable for small d, then loses stability with increasing d in a flip bifurcation
(FL1) and for still larger d gains stability, again in a flip bifurcation (FL2).
Both flip bifurcations are subcritical: close to the bifurcations an unstable limit
cycle with a period of approximately twice the period of T' exists, while T is
stable. The unstable limit cycles formed in the flip bifurcations disappear in fold
bifurcations (F2, F3). The phase portrait of the limit cycle which is met in the
fold bifurcation is given in Figure 7.4e. This limit cycle is stable close to (F3)
and loses stability for decreasing d in a Neimark-Sacker bifurcation (NS1). In
this bifurcation an invariant torus forms around the limit cycle and the stability
is transferred to a quasi-periodic solution living on the invariant torus. (For this
bifurcation the name Hopf bifurcation is also used. Since the bifurcation is not
equivalent to a Hopf bifurcation from an equilibrium we use the name Neimark-
Sacker bifurcation throughout this paper for the formation of an invariant torus
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Figure 7.4: Phase portraits for a number of limit cycles in figure 7.3. The solid and
open triangles give the position of the densities at the same moment for the densities
in the two patches. For the symmetrical limit cycle in (d) the solid and open triangles
superimpose.

around a limit cycle).

Figure 7.3 does not show an attractor in the d-region where T is unstable.
The dynamical behaviour in this region can be clarified using a two parame-
ter bifurcation diagram. In Figure 7.5 the fold bifurcations of cycles (F2, F3),
the flip bifurcations (FL1, FL2) and the Neimark-Sacker bifurcation (NS1) are
continued. We first note that the flip bifurcations meet for decreasing ¢ and dis-
appear. For ¢ chosen lower than the minimum of the flip curve in figure 7.5 the
arc connected to the I' at (FL1) and (FL2) in Figure 7.3 closes and forms an iso-
lated closed curve. A properly chosen Poincaré section will now show three fixed
points: one symmetrical fixed point for ' and two asymmetrical fixed points,
of which one is a saddle, for the two asymmetrical limit cycles. In the fold bi-
furcations (F2, F3) the two asymmetrical fixed points meet and disappear. At
the curve for the fold bifurcation a fixed pointexists with a multiplierat one. In
the Neimark-Sacker bifurcation (NS1) an invariant closed curved is formed in the
Poincaré map around the stable asymmetrical fixed point. At he Neimark-Sacker
curve the two multipliers are complex with real part equal to one. As can be
seen in Figure 7.5, the curves for the Neimark-Sacker bifurcation and the fold
bifurcation meet in one point. In this codimension two bifurcation point the two
asymmetrical fixed points collide and must have two multipliers of value one at
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Figure 7.5: A two parameter bifurcation diagram for (7.2) in d and ¢ giving the curves
for the flip, Neimark-Sacker and some of the fold bifurcations of figure 7.3. At the point
where the Neimark-Sacker curve meets the curve for the fold bifurcation a co dimension
two bifurcation point can be found. See the text for explanation. Parameters (except
¢) as in Figure 7.1.

the point of collision, we will refer to this point as the strong resonance 1:1 point.
At the strong resonance 1:1 point also a curve corresponding to a saddle connec-
tion or homoclinic bifurcation is attached (not shown in figure, see Arrowsmith
& Place (1990) or Kuznetsov (to appear) for a more detailed description of the
behaviour around the strong resonance 1:1 point). In the homoclinic bifurca-
tion the invariant closed curve formed in the Neimark-Sacker bifurcation touches
the saddle and forms a connection between the stable and unstable manifolds
of the saddle. The invariant closed curve disappears in this global bifurcation.
The curve for the homoclinic bifurcation lies above the Neimark-Sacker curve in
Figure 7.5 (not shown). The homoclinic bifurcation takes place for the Poincaré
map and therefore the connection between the stable and unstable manifolds of
the saddle fixed points is structurally stable; the stable and unstable manifolds
of the saddle intersect not only at the homoclinic bifurcation but in a region
situated in parameter space around the curve for the homoclinic bifurcation. In
this region the intersections of the stable and unstable manifolds of the saddle
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equilibrium create a horseshoe map. The dynamics of the horseshoe map can be
chaotic (Wiggins, 1990). The dynamics on the intersecting stable and unstable
manifolds is such that the system stays near the saddle for a number of itera-
tions followed by an excursion away from the saddle, then to return again to the
neighbourhood of the saddle. The dynamics are chaotic in the sense that the
sequence of the numbers of iterations spent in the neighbourhood of the saddle
can take any form.

Armed with this knowledge we can now reconstruct the dynamics in the
region of Figure 7.3 where no stable attractor is depicted. For a change we will
describe the events for decreasing d, i.e. going from left to right in Figure 7.3. For
d > 0.683 the symmetrical limit cycle I is the only stable attractor. When d is
decreased below 0.683 two asymmetric limit cycles form in a fold bifurcation (F3),
one of these limit cycles is stable, the other is a saddle. The stable limit cycle
grows away from the saddle cycle and then loses stability in a Neimark-Sacker
bifurcation (NS1). Here an invariant torus is formed around the limit cycle on
which stable quasi-periodic solutions live. For decreasing d the torus blows up
and grows away from the limit cycle that is enclosed in it. Meanwhile the saddle
cycle approaches I' and disappears in a flip bifurcation (FL2) at d = 0.558; the
limit cycle I' then becomes unstable. For d decreased further the torus grows in
the direction of an unstable limit cycle and the stable and unstable manifolds of
this saddle cycle (this can be either I' or a saddle cycle that is formed in one of the
flip bifurcations) move toward each other and meet. Then the stable and unstable
manifolds intersect. Now the dynamics can be either quasi-periodic (for orbits
lying on the torus) or chaotic. The chaotic behaviour shows irregular visits to the
saddle cycle, mixed with excursions in which the amplitude of the oscillations are
decreased (Figure 7.6). Next the torus touches the saddle cycle and disappears.
The intersections of the stable and unstable manifolds of the saddle cycle persist
and give rise to chaotic dynamics. When I' is unstable and the invariant torus
does not exist, chaotic dynamics will result from almost all initial conditions. For
a further decrease of d the intersections of the unstable and stable manifolds of
the saddle cycle disappear. Before they disappear totally T' regains stability in
a subcritical flip bifurcation (FL1). Finally, the two asymmetrical unstable limit
cycles grow towards each other, collide and disappear in a fold bifurcation (F2).

For small predator migration rates we now have completed the description of
the dynamical behaviour. An obvious next question is how this behaviour changes
under an increase of c. We remind the reader that the carrying capacity ¢ has a
negative feedback on the prey densities und asserts a stabilizing influence on the
dynamics. By increasing c the feedback is reduced and in an uncoupled predator-
prey system, i.e., system (7.1), the amplitude of the oscillations increases while
the minimum density along the limit cycle decreases.

Figure 7.7 gives a two parameter diagram in d and ¢. For increasing ¢ the
curve for the flip bifurcation closes, hence, for large carrying capacities I' be-
comes attracting again. The curve for the fold bifurcation widens and encloses a
region where asymmetrical attractors exist, indicating that locally asynchronous
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Figure 7.6: The average prey density versus time for a "chaotic” solution of (7.2).
Parameter values: 6 =9.96, c=25b,d=0.5,dr, =0, p=1,r = 1.

dynamics persist with increasing carrying capacities. Since neither the curves for
the homoclinic bifurcation nor the formation of w-limit sets resulting from the
intersection of stable and unstable manifolds can be located with the software
used, it is unclear in what part of this region asymmetrical attractors can be
found. Simulations showed that asymmetrical attractors of the types as dicussed
in this subsection, do exist in a large part of this region.

7.3.5 Large predator migration rates

Figure 7.8 shows some of the stable and unstable w-limit sets in the four di-
mensional state space for large values of d. Firstly we remark that throughout
this range the symmetrical limit cycle T is stable (thick horizontal line) but that
this limit cycle nowhere is connected to the limit cycle in the face Ny = 0. The
equilibrium Fas,, denoted by the thin horizontal dashed line, is also unstable
for all values of d. From this equilibrium the unstable equilibria Fss; and Foqs.
branch off in a pitchfork bifurcation (PE). With increasing d the equilibria move
through the positive state towards the faces and leave the positive state space
through, respectively, E9; and E;5 in transcritical bifurcations of equilibria (TE).
After this bifurcation E2s and Eso, are negative and unstable. For increasing d
a Hopf bifurcation (H4) can be detected on the unstable equilibrium E39; (and of
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Fold

(x b)

Figure 7.7: As figure 7.5. In regions I. and II. the symmetrical limit cycle T is stable,
in region III. it is unstable. In regions II. and III. other attractors than I' can exist.

course on Fy3. although this is not shown in the figure), where an unstable limit
cycle forms on which the prey densities in patch 2 are negative. This limit cycle
gains stability for somewhat larger d in a Neimark-Sacker bifurcation (NS2). The
now stable limit cycle enters the positive state space through the limit cycle that
branched off E5; in a transcritical bifurcation of cycles (TC). In this bifurca-
tion the limit cycle transfers its stability to the limit cycle that lies in the face
Ny = 0. The stable manifold of the now unstable limit cycle that entered the
positive state space forms the separatrix between the attracting domains of the
stable limit cycle in the face Ny = 0, the stable limit cycle in the face Ny = 0
and I

When the transcritical bifurcations of equilibria (TE) and the Hopf bifurca-
tion on E5; (H4) are continued in a two parameter space, the curves correspond-
ing to these bifurcations cross (Figure 7.9).

At the point of crossing an equilibrium exists with two purely imaginary
eigenvalue and an eigenvalue that equals zero. The eigenspace associated with
the imaginary eigenvalues lies in the invariant face and the eigenspace associated
with the transversal eigenvalue at zero is transversal to the face. Here a Hopf
bifurcation takes place in the invariant face simultaneously with a transcritical
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Figure 7.8: As figure 7.3 for large values of d. Dashed lines represent unstable positive
equilibria, fine dashed lines unstable non-positive equilibria, thin drawn lines unstable
limit cycles, thick drawn lines stable positive limit cycles, thick dashed lines stable
non-positive limit cycles. Black dots indicate bifurcations. Labels: H2,H4: Hopf bi-
furcation, NS2: Neimark-Sacker bifurcation, PE: pitchfork bifurcation of equilibria,
TC: transcritical bifurcation of limit cycles, TE: transcritical bifurcation of equilibria.
Parameter values as in figure 7.1.

bifurcation in which an equilibrium crosses the invariant face. Curves corre-
sponding to a Hopf bifurcation at the "entering” equilibrium and a transcritical
bifurcation of cycles are attached to this codimension two bifurcation point (Kle-
banoff & Hastings, 1994; McCann & Yodzis, submitted; Jansen, submitted a).
Figure 7.9 shows these curves. Also the curve for the Neimark-Sacker bifurcation
is attached to the point (Klebanoff & Hastings, 1994) (not shown in Figure 7.9).
Note that the curve for the pitchfork bifurcation point does not go through the
codimension two point since it is associated with equilibrium F4y3, which cannot
move out of ]Rj_ through E15 or Es;.

Figure 7.9 shows that for values of ¢ lower than the value of ¢ corresponding
to the codimension two bifurcation point, a stable attractor in the face Ny = 0
can be formed through a different scenario (Van der Laan, in prep.). When a
cross section through figure 7.9 is made for fixed ¢ below the codimension two
bifurcation point the following sequence of bifurcations takes place for increasing
d: first a pitchfork bifurcation of the unstable equilibrium Esy, (PE) is encoun-
tered in which the unstable equilibria E2s; and E3. are formed, as in Figure 7.8.
These two equilibria gain stability in a Hopf bifurcation (H4) where unstable

[Ip—
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Figure 7.9: A two parameter bifurcation diagram for (7.2) in d and c giving the curves
for the Hopf bifurcations on equilibria E2; and Ej2 (H2), the Hopf bifurcations on
equilibria E5;p and Ez;. (H4), the transritical bifurcations of the equilibria F,,p with
Ez1 and Ezzc with Ei2 (TE), the transcritical bifurcation of limit cycles (TC) and the
pitchfork bifurcation on equilibrium FE3, (PE). At the point where the curves H2, H4,
TE and TC cross (note that TE and H4 actually cross) a codimension two bifurcation
point exists. Around the codimension two bifurcation six different regions exist with
different arrangements of limit cycles and equilibria in the non-negative state space. In
region I. two unstable limit cycles and two unstable equilibria lie in the faces N; = 0,
the equilibria F23, and E3;. are positive and unstable. Region II.: two unstable limit
cycles and two unstable equilibria lie in the faces, equilibria Ezzp and F3. are non-
positive and in part of the region surrounded by non-positive limit cycles. Region III.:
stable limit cycles and unstable equilibria in the faces, two unstable limit cycles exist
in positive state space. Region IV.: two stable equilibria lie in the faces, two unstable
limit cycle exist in positive state space. Region V.: two unstable equilibria in the faces,
two stable equilibria and two unstable limit cycles lie in positive state space. Region
VI. two unstable equilibria in the faces and two unstable equilibria in positive state
space. In all regions I' is stable and equilibrium E32, is unstable. Parameters (except
c) as in figure 7.1.



110 Chapter 7. Two coupled predator-prey systems

limit cycles branch off. The stable manifolds of these limit cycles form the sep-
aratrices between the domains of attraction of Eass, Eaz. and the attracting
symmetrical limit cycle I'. For larger d the stable equilibria can leave the pos-
itive state space through, respectively, F15 and E9; in transcritical bifurcations
(TE). The stability then is transferred from Ej25 and Eas. to E1 and Es;. For
d still larger Ey3 and E»; can go through Hopf bifurcations (H2) in which stable
limit cycles in the faces N; = 0 come into existence.

7.3.6 Exponential prey growth

Although the diagram in Figure 7.7 illustrates some of the consequences of in-
creased carrying capacity, the figure only gives results for a relatively small range
of carrying capacities. For larger values of ¢ continuation for some limit cycles
becomes numerically difficult, whereas other limit cycles can be continued easily.
Therefore we will further concentrate on the the case where prey growth is ex-
ponential, which can be derived from (7.1) and (7.2) by taking the limit of ¢ to
infinity. This results in the equations:

dN  _ NP
@ = TN- 1+N/b

(7.3)
P _ NP __ .p
a  — TENj5 T H

and for the corresponding two patch system:

G = M- +da(N; - )
dP, NP 2,] € {112}s i#] (74)
@ T TeNgs kP Hd(P - F)

System (7.3) maximally allows for three equilibria with zero, one or two species
present. The two species equilibrium is an unstable focus when it exist. Solutions
of (7.3) show oscillations over which the predator and prey densities become un-
bounded and can be brought to arbitrarily large and small values. Simulation
runs of system (7.4) show that the diagonal subspace D, which contains all sym-
metrical solutions, is attracting. For larger d orbits can also converge to one of
the faces {(Ny, Py, Ny, Ps) € IRilN,' = 0,7 = 1,2}, in which the orbits also show
unbounded divergent oscillations. Yet, for suitable chosen initial conditions also
bounded fluctuations are possible.

Figure 7.10 gives a partial bifurcation diagram in d for system (7.4). As before
we have chosen the prey migration, d,,, zero. The equilibrium E4s, is represented
by the horizontal dashed line. On this equilibrium a Hopf bifurcation takes place
from which a limit cycle is born, on this cycle the local densities in the patches
fluctuate with a phase difference of 7 (see the phase portrait in Fig. 7.10). From
in which the densities in one of the patches are close to the two species equilibrium
while in the other patch the densities oscillate regularly. This part of the picture
is identical to that of Figure 7.3. Then, the limit cycle born from Ess, turns
back in a fold bifurcation, goes through a pitchfork bifurcation
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in which two limit cycles branch off (only one of these limit cycles is shown in
figure 7.10) and completes a loop by turning again in another fold bifurcation in
which a stable limit cycle is formed. The stable limit cycle then loses stability
in a Neimark-Sacker bifurcation where a torus forms around the limit cycle (not
shown). The now unstable cycle goes through a number of other bifurcations
and forms new loops. In every loop in the bifurcation diagram also a loop forms
in the phase portrait (Figure 7.10). We note that the stable asymmetrical limit
cycle of figure 7.3 can be continued to the stable limit cycle of figure 7.10. It is
still unclear how, along this path, the connection with the Hopf bifurcation (H1)
on Eqy, is formed.

N1, N2 ——

0.1 0.2 03 0.4 0.5

Figure 7.10: A one parameter bifurcation diagram for (7.4). The equilibrium values
of P; or the maximum of P; over the limit cycle is plotted against d. Dashed lines
represent unstable equilibria, thin and very thin drawn lines unstable limit cycles and
thick drawn lines stable limit cycles. Note that the dashed lines for equilibria E>; and
E224 lie very close to each other. The limit cycle is formed from a Hopf bifurcation on
FE33q4. The insets are the phase portraits for a number of limit cycles. The solid and
open triangles give the position of the densities at the same moment for the different
patches.
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The pattern of loops that can be observed in Figure 7.10 can result from a
homoclinic bifurcation, known as Sil’nikovs phenomenon (Glendinning & Spar-
row, 1984). Although the phase portraits confirm that with every loop the limit
cycles spend more time in the neighbourhood of E;5 or Es;, it is unclear how such
a global bifurcation could take place. Since our aim is merely to demonstrate
that in a two patch system bounded asynchronous solutions are possible in total
absence of regulation through a limited carrying capacity, a complete analysis of
the behaviour of (7.4) lies beyond the scope of this paper.

7.4 Discussion

In a two patch predator-prey model with only predator migration spatial differ-
ences can persist. This can happen in two ways: for larger predator migration
rates the prey can disappear asymptotically in one patch while it stays present
in the other patch. For small predator migration rates the prey remains present
in both patches while the local densities fluctuate asynchronously. Such asyn-
chronous local dynamics can come in the form of periodic, quasi-periodic or
chaotic behaviour.

Vandermeer (1993) found behaviour qualitatively similar to the dynamics
found here in a loosely coupled predator-prey system. The persistence of spatial
differences has also been demonstrated two patch sytems with coupled logistic
maps (Gyllenberg et al., 1993; Hastings, 1993) and with a Nicholson-Bailey host-
parasoid system (Adler, 1993). This seems a general property of spatial predator-
prey systems. The paper by Adler shows that also for positive prey migration
rates, spatial differences persist. For the coupled logistics it was shown that this
behaviour persists under differences in the within patch dynamics. Incidental
observations clearly indicated that the same holds for the systems studied here.
Since the two patch predator-prey model turned out to behave far more complex
than we initially expected and we will not digress in speculations about the exact
bifurcation structures.

Our results not only have a meaning for two patch systems. For similar
predator-prey systems that ”live” on large grids, spatial patterns arise from the
interplay between migration and local dynamics (De Roos et al. 1991; Hassell
et al., 1991; Comins et al.,, 1992). The asynchrony of local dynamics has also
been demonstrated in an experimental predator-prey system (Van de Klashorst
et al., 1992; Lingeman & Van de Klashorst, 1992). Interestingly, the densities in
the different compartments of the experimental system fluctuated in phase for
about a year, then to proceed out of phase for another year. This resembles the
dynamics of the model system in this paper where the symmetrical limit cycle,
on which the densities fluctuate in phase, can be stable or weakly unstable while
attractors with asynchronous local dynamics exist.

The fact that spatial differences can be maintained in homogeneous predator-
prey systems confirms one of the essential presumptions of metapopulation the-
ory. The mechanism behind the asynchrony of the local dynamics, possibly is
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somewhat different from what it is often believed to be. It is often argued that
asynchronous local dynamics will arise from environmental differences between
patches (Taylor, 1990). Our results show that environmental differences between
patches are not a necessary requirement for asynchronous attractors: in the sys-
tem studied in this paper both the symmetrical limit cycle and an asymmetrical
limit cycle over which the local densities fluctuate asynchronously, can be stable.
In a system with small differences between the parameters describing the local
dynamics, say in the carrying capacities, the same solution the local dynamics
proceed synchronously despite the differences in carrying capacities, while in the
other stable solution the local dynamics are asynchronous. Hence, the asyn-
chronous fluctuations need not result from environmental differenced but can
arise from the interplay of migration and local dynamics.

In predator-prey systems in a single compartment an increase in the prey’s
carrying capacity will lead to fluctuations in predator and prey densities with in-
creased amplitudes, bringing the predator and prey populations ever closer to the
boundaries of extinction (Rosenzweig, 1971 and 1972). In spatial predator-prey
systems the differences in densities can be less extreme through lasting differences
between the local densities, preventing the populations to reach densities where
global extinction is likely to occur. The mechanism that maintains differences
in densities lies in the near to exponential prey growth that can be observed
during large fluctuations. During exponential prey growth the difference in prey
densities will also grow exponential. Thus, paradoxically, large fluctuations of-
fer a mechanism for the reduction of the fluctuations in an ensemble of patches.
Therefore, an increase of the carrying capacity in a spatial predator-prey system
will first give rise to an increase in the amplitude of the fluctuations but for a
sufficiently large carrying capacity the local dynamics can become asynchronous
and the increase in amplitudes stops. A single compartment, predator-prey sys-
tem with exponential prey growth and a Holling type II functional response will
eventually drive itself to extinction due to the absence of density dependence.
In a predator-prey system with more compartments the interplay of spatial and
local interactions can regulate the populations in total absence of density depen-
dence at the level of the individual. Seen this way there is nothing paradoxical
about the enrichment of predator-prey systems.
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7.5 Appendix
Computation of the equilibria

The equilibria of (7.2) with d, = 0 are the roots of the following system of
equations:

N; N; P;

T‘N,;(]. - ‘c—) - —-—1 T N,/b = 0 (75)
N; P; _
TN b pPi+d(Pj—F) = 0 (7.6)

Clearly, when P; = P, the roots are:

Ni=0VP =0, N =cVP=0, or N,-:N‘vP,-:iN‘(l—Ai)
where i 1

* _ (- _ Iy=1

e

These roots correspond to the equilibria Egg, E11 and Eqg,4, respectively.
When N; = 0 we have the relation: P; = l—i—i—pP,-. After substituting this
relation in (7.6) we find the root:

- r(d+p) - . N dr . N
i=N,Pi= 50—~ -—)Nj=0,Pj=——7F5N(1-—
N . u2+2d;tN(1 c) i=0.5 p? + 2dp c

where i+ 1

Y H =1

N=(—=—T2 =
(,u2 + 2du b) '

corresponding to the equilibria E15 and Es;.

When both N; > 0 and N; > 0 matters are somewhat less straightforward.
Elimination of P; and P; gives:

N; N; N; N;
(1= =)(p+d)(1+ )= Ni) =d(1 - L)1+ =21)
¢ b c b
so that the problem reduces to the finding of the roots of:
M d
(¢ = Ni)((r +d)(1+ 1) = N)= (e = Na)(d+ SNy (7.1)

d N.
(c = M)(d+ 3 Ni)= (e = No)((p + d)(1+ ) = Na). (78)
By subtracting the two equations from each other we find:

(Ni = 1/2(c + N*))2 + (N; = 1/2(c+ N*))? = 1/2(c — N*)? (7.9)
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which expresses that the equilibrium values of N1 and N, lie on a circle in the
Ny, N3 plane. Multiplication of (7.7) by (u + d)(1 + Ebz) — N3 and (7.8) by
—(d+ %Ng) gives after addition:

(ot 420y — w4 22y~ v a4 My )

b
X(C 2 Nl) =0
from which N, can be solved, under the condition that N, # e

(N” +29)N* — 4N,
¥+ Ny

Ny = (710)

where
_ b(2dp + p? — bd — b))

(b —p)(b— p—2d)
By plugging in (7.10) in (7.9) and multiplying both sides by (y + N1)? we find:

(Ny — N*)? (N12+2 (’y+ -;—(N* —c)) Ni+ (N +9) +4(y+ N* —c)) =0

Clearly, the polynomial has a double root at N* and the other two at:

. 1 1
Na=3g(e=N") =7+ 5V(c=3N* —2)(N* + c+ 27)

" 1 1

Ny = §(c— N*)—y-— 5\/(c~3N" = 27)(N* +c+27)
Hence, the equilibria E5y;, and Esyy, are given by:
Na

Ban = (Vo (1 = Z0)(1+ 52, By, (1= Dyg 4 Do)

: N Ny, - N N
Bz = (Noy (1= —)(1 4+ 1), Moy (1 - —4)(1+5%)



