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The dynamics of two diffusively
coupled, identical Lotka-Volterra
patches.

Summary

The idea that fluctuations in population densities are less in a metapopulation
than in an isolated single population is based on the presumption of asynchrony
of local dynamics. To scrutinize the validity of this presumption we formulate a
model for a metapopulation consisting of two identical patches. Each patch is
inhabited by a prey and a predator who interact according to the Lotka-Volterra
model and migrate randomly. We investigate the stability of synchronous so-
lutions i.e. solutions in which the densities in both patches are equal. Large
amplitude synchronous solutions can be unstable for low prey migration rates
and intermediate predator migration. In orbits starting close to these unstable
solutions the differences between local densities can increase. In the long run
all orbits with positive initial conditions converge to a synchronous orbit. How-
ever, through the temporal asynchrony of local dynamics, the fluctuations in the
two patch Lotka-Volterra metapopulation are reduced compared to those of an
isolated population. This offers a mechanism for the regulation of predator and
prey populations without density dependence at the level of the individual.
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6.1 Introduction

Metapopulation theory describes a population that lives in a collection of habitas.
patches. The local populations that occupy these patches interact through =
gration. Local populations can go through cycles of colonization and extinctica
When the cycles of extinction and colonization are not synchronized, patches thas
become empty because the local populations that occupied them went extimes
can be recolonized from still existing local populations. Through this mechanism
a metapopulation is likely to persist for much longer periods than a single lzsge
population.

Predator and prey populations that live and interact in an ensemble of patches
can exhibit metapopulation dynamics. Each local predator-prey populatiom &
self is capable of exhibiting fluctuations. When these local populations fluctmase
asynchronously the peaks in the densities of some local populations coincide =
the troughs in the densities of some other local populations. Such asynchromoss
dynamics has empirically been observed in predator-prey metapopulations ( Nasie
man, 1991; Van de Klashorst et al., 1992). A metapopulation with asynchromoms
local dynamics therefore not only is more persistent than a single large pog
tion, but on a large spatial scale also fluctuates less.

Differences in local densities are intrinsic to asynchronous local dynams
Lasting differences between local densities in a system of patches coupled thre
migration may seem unexpected: how can migration, which will tend to level ¢
differences, at the same time enhance differences? Turing (1952) was the
to demonstrate the existence of such diffusive instabilities. Turing’s equatas
describe a spatial biochemical system. Without diffusion the system settles & &
stable equilibrium. The combined forces of diffusion and the chemical reactas
can make this equilibrium unstable. The spatial symmetry in the coupled sysz=
is broken and differences between the local concentrations persist. Predator-g
systems can behave like Turing’s system and in spatial predator-prey syste
diffusive instabilities can occur (Segel & Jackson, 1972).

The existing work on diffusive instabilities focuses on systems which settls i
stable equilibrium without diffusion. A local predator-prey population, ho
can settle on a limit cycle in the absence of migration. For metapopulations.
relevant question is thus whether or not the state in which the local populatiss
cycle in synchrony is diffusively unstable. Despite a vast literature on spats
predator-prey systems, diffusive instabilites in predator-prey systems, which
cillate when left to themselves, has received hardly any attention until recestis
Last years a number of papers appeared on coupled oscillating ecological =
tems. Gyllenberg et al. (1993) and Hastings (1993) demonstrated the exisi=

of asynchronous local oscilations in a system of two coupled logistic maps
Adler (1993) showed that differences between local densities can persist m &
system of two coupled host-parasitoid populations.

In this paper we explore the dynamics of the simplest possible model fae
continuous time predator-prey metapopulation: a Lotka-Volterra system in #
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identical patches. Although this model has a respectable history (Comins &
Blatt, 1974; Murdoch & Qaten, 1975), the stability of its synchronous solutions,
and that of the spatially constant solutions of its continuous space analogue (see
Levin, 1976) for a review) to our knowledge, never has been studied in detail.
We will show that synchronous oscillations can be unstable and that a temporal
increase of asynchrony between local population densities can occur. Moreover,
we will show that population densities in one isolated patch can fluctuate stronger
than those in the corresponding two patch ”metapopulation”.

The two patch Lotka-Volterra model has also received attention to exam-
ine the stabilizing effect of predator aggregation on (meta)population dynamics
(Godfray & Pacala, 1992; Murdoch et al., 1992; Nisbet et al., 1992). For a single
species it has been shown that migration can reduce the fluctuations in the densi-
ties (allen et al., 1993). For predator prey sytems this question is still for a good
deal open. The two patch Lotka-Volterra model has the advantage over many
other models for predator aggregation that it describes aggregation at a behav-
ioral, rather than at a phenomenological level. Our results show that predator
aggregation can indeed dampen the fluctuations in densities through an increase
in asynchrony.

The work presented in this paper has significance beyond metapopulations:
a two patch system is a coarse discretisation of a spatial system. When in the
two patch situation symmetry can break, it can happen as well in a full spa-
tial predator-prey system. Symmetry breaking gives rise to spatial patterns.
Predator-prey systems in a homogenous environment can display spatial pat-
terns (Hassell et al., 1991; Comins et al., 1992; Boerlijst et al., 1993; Wilson
et al., 1993). These populations seem to be regulated rather through the spa-
tial interactions than through density dependence at the level of the individual
(De Roos et al., 1991). Here we will demonstrate that the spatial interactions
can regulate predator-prey populations even in the absence of individual density
dependence.

6.2 The two patch Lotka-Volterra model

The Lotka Volterra model describes a system of interacting prey and predator
populations. After a scaling the model corresponds to:

% = rN-NP
a = —H

N represents the density of the prey, P the density of the predator, r is the the
growth rate of the prey population in absence of predators and p the death rate of
predators. The phase portrait of the Lotka-Volterra system consists of a family of
closed orbits around a neutrally stable equilibrium. We will study the dynamics
of a system of two identical coupled patches, in which the dynamics within a
patch is described by (6.1). The two patches are coupled through migrations.
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For the system of two patches the equations read:

dN;

G = N NiPitda(N;-N) .

y 16 1)21 ? J! (6
G = NiPi—pP,+dy(P - P)) e {LEk i% '

where N; and P, denote the density of, respectively, the prey and the predator m
patch i. The constant d, is the migration rate of the prey and dp the migration
rate of the predator.

6.3 The stability of the synchronous solutions

When the densities of both prey and predator are equal in both patches the
effects of migration cancel and the densities are not affected by migrations. Simes
the patches are equal the densities will then forever remain equal. Hence. the
diagonal {(Ny, P;, Ny, P,) € ]R1|N1 = N,, P, = P,} is invariant and contzims
all synchronous solutions of (6.2). The dynamics on it are those of the Lotk
Volterra equations (6.1): a family of closed orbits surrounds a neutrally stafie
equilibrium point. This equilibrium is the unique positive equilibrium of |
(Murdoch et al., 1992). From the invariance of the diagonal it follows thas the
positive equilibrium has two purely imaginary eigenvalues, as the equilibrium
the Lotka-Volterra model has. The other two eigenvalues always have negas:
real part (Nisbet et al., 1992; see also Appendix).

We will next concentrate on the stability of the synchronous periodic
that lie on the diagonal. The stability properties of the periodic orbits is
mined by their Floquet multipliers (Hartman, 1964), much like the stability
equilibria of discrete time dynamical systems is determined by the multi
A periodic orbit is unstable when the modulus of at least one multiplier
one and stable otherwise. Each orbit of the two patch Lotka-Volterra mode! i
four Floquet multipliers. To determine the value of the Floquet multiplicss =
linearise (6.2) in the neighbourhood of the diagonal (see Appendix). The
earised system consists of two decoupled sets of equations. One set describes
linearised dynamics within the diagonal, the other set the linearised dy
near the diagonal. Within the diagonal the dynamics are given by (6.1).
the two equations of (6.1) two multipliers are associated. One of these
multiplier is one since we consider a closed orbit and from the existence
constant of motion for the (single patch) Lotka-Volterra model it follows
the second Floquet multiplier also has value one. The value of the remas
two Floquet multipliers can be derived from the linearisation near the :

ant diagonal, which for the two patch Lotka-Volterra model takes the form §s
Appendix):

as(t) ( r— P(t) - 2d, —N(1) )5(”
T P(1) N(t) — p - 2d, ’

dt
where N(t) and P(t) are given by (6.1). Since N(t) and P(t) are periodac
(6.3) is a Floquet problem.
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The sum of the Floquet exponents is the time averaged trace of the Floquet
matrix (Hartman, 1964). The time averages over a period of the prey and preda-
tor densities in the Lotka-Volterra model are, respectively, u and r. The sum
of the exponents of any orbit of the two patch Lotka-Volterra model is therefore
—2(d, + dp). The product of the multipliers thus equals exp(—2(dn + dp)T),
with 7 the period of N(t) and P(%). Useful in this context is also the follow-
ing observation: when the migration parameters both are increased by «, all
Floquet exponents decrease by a. Therefore, a necessary condition for orbits to
be unstable with positive migration rates is a positive Floquet exponent when
one migration rate equals zero. Once the multipliers are known when one of
the migration rates is equal to zero, the multipliers of (6.2) with both migration
rates positive can be computed directly. This motivates the choice below of one
migration rate equal to zero.

Direct calculation of the Floquet multipliers from (6.3) requires an expression
for at least one eigenfunction, which, despite considerable effort, we could only
find in two specific and, unfortunately, not very interesting cases. We therefore
numerically computed the Floquet multipliers. All computations were done with
the software package ”LOCBIF” (Khibnik et al., 1993).

6.4 Main results

Since our results were mainly derived from numerical studies we will present
them in a series of figures. Figure 6.1 gives the modulus of the multipliers
as a function of the period. The phase portrait of the Lotka-Volterra system
consists of a family of closed orbits. The period of the closed orbits is monotonic
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Figure 6.1: The moduli of the multipliers of (6.3) as a function of the period  of
a solution of (6.1). Lines indicated with ”c” correspond to complex multipliers, lines
indicated with ”-” to negative real multipliers. Close to the equilibrium the period is
approximately 2#(‘/;7?)_1. (a) Parameters: p =1, 7 =1, dn = 0.3, dp = 0. (b) With
parameters: d, =0, dp = 1.
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Figure 6.2: The moduli of the multipliers of (6.3) as a function of the predator ms
gration rate d, for various values of r with parameters: p =1, r = 1 and d, = &
Lines indicated with ”c” correspond to complex multipliers, lines indicated with "=
to positive multipliers and lines indicated with ”-” to negative multipliers.

6n unstable
synchronous
orbits

stable
synchronous
orbits

0 0.01 0.02 0.03 0.04
dn
Figure 6.3: The period of the critical cycle (the synchronous periodic orbit
multiplier -1) as function of the prey migration rate d,,. Parameters: p=1,r =1
dp = 0.75.
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(Rothe, 1985; Waldvogel, 1986) and thus forms a convenient index for the syn-
chronous orbits. In Figure 6.1a the predator migration rate is set to zero. The
moduli of the synchronous orbits attract. In Figure 6.1b the prey migration rate
is zero. Now the modulus of one of the multipliers crosses 1 (in all studied cases
this happened when a multiplier had value -1). At the point of crossing a critical
cycle exists that neither attracts nor repels. The cycles with smaller period are
stable whereas the ones outside are unstable. Since the period of the synchronous
orbits increases with amplitude the stable synchronous orbits lie within a disc
bordered by the critical cycle and the unstable ones outside.

To illustrate the dependence of the stability of synchronous orbits on preda-
tor migration, Figure 6.2 gives the moduli of the multipliers as function of the
predator migration rate for a number of periodic solutions. There is a minimal
period for synchronous orbits to lose stability. Figure 6.3 gives the period of the
critical cycle, which separates the stable and unstable limit cycles, as a function
of d,,. For cycles with a large enough period there exists a window in d, for which
instability can occur. When there is either too much or too little predator migra-
tion the periodic orbits are stable. The critical cycle increases rapidly with d.
For large values of the period the numerical results are unclear, the results from
the continuation procedure used to produce Figure 6.3 suggest that the stability
boundary curves back slightly for high values of the period. Direct numerical
integration gives contradictory results; unstable synchronous solutions seem to
exist for large periods on the right side of the boundary depicted in Figure 6.3.

Apparently the synchronous orbits are always stable when the prey migration
rate exceeds a certain value. To get a more complete view of the regions where
unstable synchronous orbits are possible we continued the critical cycle in the
dy,d, parameter space (Figure 6.4). Unstable orbits are possible for small prey
migration rates and intermediate predator migration rates. Figures 6.3 and 6.4
lead us to propose a possible mechanism for this diffusive instability. First we ob-
serve that large Lotka-Volterra cycles consist of a part where the predator density
is low and the prey density grows almost exponentially, followed by a phase in
which the predator density increases rapidly on expense of the prey density, to be
followed by an almost exponential decay of the predator density, while the prey
density is low. During the phase in which the prey density increases rapidly, a
small difference in the prey densities between patches increases almost exponen-
tially if prey migrates little or not. The conversion of prey into predator is fast
and will convert differences in prey density into differences in predator density.
During the almost exponential decay of the predator density the differences in
predator density will decrease. For large predator migration rates the differences
will decrease fast and any initial differences will disappear.

The patch that in the beginning had more prey now has more predators,
who eat prey. Hence at the beginning of the next period of nearly exponential
prey growth this patch will start with less prey (which explains for a negative
multiplier). For very small predator migration there is not enough coupling
between the patches to bring about instabilities. Hence, only for intermediate
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Figure 6.4: Stable and unstable domains of various synchronized orbits of (6.2°
(parametrized by 7, see Figure 6.1). (a) In the dp, d, parameter space. A synchronizes
orbit with period 7 is unstable for dp, d, under the graph and stable for combinatioms
above the graph. Parameters: p=r = 1.

predator migration rates diffusive instability is possible.

As can be seen from (6.3), 2d,, < r is a necessary condition for prey differences
to build up. Although we never observed unstable cycles when this condition was
not fulfilled, it seems that only for predator migration rates far below %r diffusive
instabilities are possible. When the explanation given above truly describes the
mechanism by which differences can increase, unstable synchronous orbits shouls
occur more readily for a shorter average predator lifetime. This shortens the time
in which the differences can fade out due to predator migration. Figure 6.5 shows
that this is indeed the case. The window in the predator migration rate for whach
unstable synchronous orbits are possible, widens with increasing predator deass
rate.

For the continuous space Lotka-Volterra model with zero flux boundary cos-
ditions and positive migration rates it is well known that in the end all spatal
differences will disappear; all solutions converge to a spatially constant solutios
that still can vary in time (Murray, 1975). A similar result holds for the tws
patch Lotka-Volterra model:

Theorem 1 All solutions of (6.2) with positive initial conditions and at least
one positive migration rate become synchronized.

Proof: The functional:

Vi(Ni, ;)= N; —pIn N; ,+P; —rIn P; > 0,
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Figure 6.5: (b) In the d,, y parameter space. A synchronized orbit with period r is
unstable for d,, p combinations above the graph and stable for combinations below.
Parameters: r = 1.0, d, = 0.

which is defined for N;, P; > 0, is a constant of motion for an isolated Lotka-
Volterra patch. Consider
V=W4+VW

Along orbits of the two patch Lotka-Volterra model V changes according to:

— No)? P2
vV _ L N=Na)? L (P—Py)

v _ / <0
a ~ H"TTNN, PP, -

and hence it serves as a Lyapunov function for the two patch Lotka-Volterra
model.

For both migration rates positive dV/dt = 0 if and only if N; = Ny, P, = P,
and hence the w-limit set of any orbits with positive initial conditions consists of
synchronous solutions. When d,, = 0,d, > 0 the w-limit sets of all orbits with
positive initial conditions are contained in the invariant sets of {(Ny, P1, N3, Py) €
]Rj_lPl = P»}. When P, = P, also dP;/dt = dP,/dt from which follows directly
that {(Ny, Py, Ny, P») € IR:,INI = N3, P, = Py} is the only invariant set in
{(Ny, P1, N2, Py) € ]Rf',_ |P; = Py} and hence all orbits with positive initial condi-
tions asymptotically become synchronized. For d, > 0,d, = 0 it can by proven
that all solutions become synchronized by a similar argument. O

As a side remark we note that the cases where initially a species is absent
in one or both of the patches are not covered by Theorem 1. It can be easily
seen, however, that when prey is initially absent in both patches, solutions will
converge to a state with all patches empty. When predators are initially absent
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the prey will grow exponentially. The difference between the prey densities will
then increase iff 2d,, < r. It is also obvious that when one of the species is
Initially missing in one of the patches all solutions synchronize when the migration
rates are positive. When one of the migration rates is positive and the other
zero, a patch can remain unoccupied by one of the species. Simulations show
exponential prey growth when no side equilibrium is possible, and convergence
to an equilibrium when it exists. Since we are mainly concerned with the existence
of unstable synchronous solutions these cases are of minor interest here.

At first sight the existence of unstable synchronous closed orbits might seem
to contradict the fact that all orbits converge to synchronous closed orbits. That
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Figure 6.6: A solution of (6.2) with parameters: g =r =1, d, =0, d, = 1 and initial
conditions: N1(0) = 12, Py(0) = 1, N2(0) = 12.5, P»(0) = 1. The first figure gives
predator and prey densities in patch 1 versus time, the second figure the densities i=
patch 2. Drawn lines represent prey densities, dashed lines predator densities.
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this contradiction is only apparent is shown in Figure 6.6. A solution of the two
patch Lotka-Volterra model that starts close to an unstable synchronous orbit
iitially shows increasing differences in densities between the patches. Later these
differences disappear and the orbit converges to a synchronous cycle. Note that
the amplitude of the oscillations of the synchronous orbit reached in the end are
much smaller than those in the beginning.

6.5 Discussion

It is well known that spatial differences disappear in spatial Lotka-Volterra mod-
els. Stability analysis of the synchronous cycles in the two patch Lotka-Volterra
model with identical patches reveals that, as Steele (1974) conjectured correctly,
this does not imply that every synchronous or spatially constant solution, is
stable. For suitably chosen migration rates the differences in densities between
patches can first increase, and only disappear after the oscillations in the total
densities have damped sufficiently.

For a spatially continuous spatial Lotka-Volterra model we expect the same
to hold, since a two patch system is nothing more than a discretisation of space
in two parts. One can then ask whether this behaviour is robust against changes
in the predator-prey interactions. The Lotka-Volterra model is structurally un-
stable. When the patches still are identical, small changes in the predator-prey
interaction terms will therefore qualitatively change the behaviour of synchronous
solutions. However, under a small change in the equations the connections from
synchronous solutions with a high amplitude to synchronous solutions with a
smaller amplitude persist, giving rise to complex dynamics. We will demonstrate
this in a forthcoming paper. The complex dynamics can be expected to persist
under small differences between the patches.

The highly idealized conditions of the Lotka-Volterra model will never be met
in real populations. In nature there will always be small fluctuations in the envi-
ronment, demographic stochasticity or some density dependence. Environmental
fluctuations, for instance, can cause the dynamics to ”drift” through phase space,
causing an irregular sequence of highs and lows in the densities (Fig. 6.7a). In
the two patch Lotka-Volterra model eventually all spatial differences will vanish
and all orbits converge to a bounded set of synchronous periodic orbits. When
drift is imposed on this system it will sooner or later exhibit oscillations with
high amplitudes. As shown, periodic orbits with high amplitudes can be diffu-
sively unstable. Spatial differences then amplify and cause a reduction of the
fluctuations of the metapopulation. Through the interplay of spatial interac-
tions and local unstable dynamics spatial differences and the asynchrony of local
dynamics can be maintained. Local populations, which oscillate when isolated,
thus possess a mechanism that can asynchronize local dynamics and that keeps
the fluctuations bounded (Fig. 6.7b). This supports one of the assumptions of
metapopulation theory and illustrates how the oscillations of a metapopulation
can be reduced compared to those of an isolated population.
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Figure 6.7: (a) The logarithm of the prey densities of the Lotka-Volterra model (6.1)
versus time with random noise on the predator death rate g. The model shows un-
bounded drift and attains very low densities. Parameters: r = 1, p = 1 4 0.1. (b)
The logarithm of the average prey densities N = 1/2(N; + N2) of the two patch Lotka-
Volterra model (6.2) versus time with identical noise imposed on the predator death
rate g as in (a). Although the densities still drift they are bounded away from zero.
Parameters as in (a), d = 0.7.

For the fact that the dynamics can drift away to infinity, the Lotka-Volterra
model has been discarded as a true representation of real populations (e.g. May.
1972 and 1981). The observations in this paper show that this drift can be
bounded when spatial interactions are taken into account (Fig. 6.7). This sheds
a new light on some old ecological questions. The unbounded solutions of the
Lotka-Volterra model with drift have urged ecologists to seek for density depen-
dent mechanisms that regulate natural predator-prey populations at an individ-
ual level. A spatial analogue of the same model shows that population dynamics
can be bounded through spatial interactions without density dependence being
measurable at an individual level.
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6.6 Appendix:
On the determination of the stability of syn-
chronous solutions

Let the dynamics in an isolated ecosystem be determined by:

dX
— = F(X) (6.4)

where X = (2, ...,:r,,)T represents the state of the ecosystem. The ecosystem’s
components z; can, for instance, correspond to species or different life stages of
a species. The function F(X) = (f,(X), ...,fn(X))T is a vector valued function
of X.

When two patches, whose dynamics when isolated are given by (6.4), are
coupled through migration, their dynamics are given by:

dt

K =F(X)+M(Y -X)
{% =F({Y)+M(X-Y) (6.5)

where X and Y denote the states of the respective patches. The matrix M has
the migration rates of the respective ecosystem components m; on its diagonal
and all other elements are zero.

Synchronous solutions are those solutions for which X (t) = Y () for all £. We
will study the stability properties of these synchronous solutions. To facilitate
analysis we introduce the new variables:

e é(X+Y)

where S is an n—dimensional vector representing the average density of the
ecosystem components over the system of two patches, and

A:X—S.—:%(X——Y)

where A is an n—dimensional vector representing the differences between the
density in a patch and the average density of the ecosystem.
Now S changes over time, according to

ds 1

& =3 F(S+2)+ F(5-A)] (6.6)

and A according to:

%:%[F(S+A)—F(5—A)]—2MA (6.7)
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Obviously, the n—dimensional subspace A = 0, which contains all synchronous
solutions, is invariant. To study the stability properties of a synchronous solution
S =5, A =0 we expand (6.6) and (6.7) around {(S,A) e R*|S =3, A = 0}:

fo - % [27(3) + 2DF(3)(S - §) + 0((5 — 512 + A
‘;_? - .;. 2DF($)a +0((S - $)2 + A%)] —2ma,
where p .
e 3&
DFX)=| : -
%wLT . g;';—:

After dropping the higher order terms and substituting 0 = S — S and § = A we
obtain the linearised system:

% = DFS)s (6.8)
‘;_f = (DF($)-2m)e (6.9)

In the linearised system o and § are decoupled. Hence a synchronous solution
1s stable if and only if ¢ = 0 is a stable solution of (6.8) (which implies that
S is stable solution of (6.4)) and & = 0 is a stable solution of (6.9). When S
is a fixed point the synchronous solution is stable iff both the matrices DF(S)
and DF(S) — 2M do not have positive eigenvalues. When § is periodic it is
stable when the moduli of the Floquet multipliers of systems (6.8) and (6.9) do
not exceed unity. In all other cases the stability of S can be assessed from the
dominant Lyapunov exponents of (6.8) and (6.9).

In general there are no methods to determine the stability of (6.9) directly
from (6.8), except when all ecosystem components have identical migration rates.
This is, for instance, the case in coupled chemostats. Then, (6.9) can be trans-
formed in (6.8) by substituting o(t) = exp(mt)é(t), where m is the migration rate
and the stability of (6.8) is a necessary and sufficient condition for the stability of
a synchronous solution. A corollary is that the synchronous solutions of a system
of two patches, in which the dynamics in a single patch is described by a single
continuous variable (so that the two patch system has a single migration rate)
cannot be destabilized by diffusion.




