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Some insect populations exhibit cycles in which successive population peaks may correspond to 
effectively discrete generations. Motivated by this observation, we investigate the structure of 
matriarchal generations in five simple, continuous-time, stage structure models in order to 
determine the proportion of individuals in one population peak who are the offspring of 
individuals in the pervious peak. We conclude that in certain models (including a model of 
Nicholson's blowflies) successive population peaks do not correspond to discrete generations, 
whereas in others (including some models of uniform larval competition) successive peaks may 
well approximate discrete generations. In all models, however, there is eventually significant 
overlap of generations. 

1. Introduction. It is widely believed that insect populations often show well 
separated generations, even in the absence of strong external cues. In the 
literature (e.g. Ebenman, 1988; Godfray and Hassell, 1989 and the references 
therein) there are examples of both laboratory and natural populations 
exhibiting generation cycles without any obvious exogenous excitation. There 
are several possible mechanisms for such cycles: uniform larval competition 
(Gurney et al., 1983, Gurney and Nisbet, 1985), asymmetric larval competition 
(Bellows, 1982; Lawton and Hassell, 1981; Bellows and Hassell, 1988), egg 
cannibalism (Diekmann et al., 1986; Hastings, 1987; Hastings and Constan- 
tino, 1987) and several forms of adult competition (Gurney et al., 1980; Nisbet 
and Bence, 1989). 

Some of Nicholson's (1954, 1957) experiments on the Australian sheep 
blowfly Lucilia cuprina (Wied.) provide classic examples of cycles with a period 
comparable in magnitude to the generation time. The limiting factor in these 
experiments was the availability of protein food (needed for production of eggs) 
for the adult flies. The mechanism which causes the cycles is believed to be the 
delay between the change in fecundity and the subsequent change in the rate of 
recruitment to the adult population. A number of models have been developed, 

~/Author to whom correspondence should be addressed. 

375 



376 V.A.A.  JANSEN et al. 

all showing cycling behaviour as a result of this mechanism (Varley et al., 1973; 
May, 1974; Maynard Smith, 1974; Oster, 1976; Gurney et al., 1980; Readshaw 
and Cuff, 1980; Gurney et al., 1983). Generation cycles also occur in 
populations regulated by larval competition (Takahashi, 1973; White and 
Huffaker, 1969; Gurney et al., 1983). To model the effect of uniform larval 
competition for food, Gurney and Nisbet (1985) [see also Jones et al. (1988) for 
a more rigorous mathematical treatment of one model] studied several 
continuous-time, stage-structure models which under certain conditions can 
exhibit cyclic fluctuations. The period of the cycles may range from one to 
several times the development time, depending on whether the feedback on 
larval recruitment or loss rates is immediate or delayed. Immediate expression 
causes cycles with a period between one and two times the development time, 
delayed expression results in periods between two and four development times. 

In the literature cited above, terms like "generation cycles" or "discrete 
generations" are used to describe cycling behaviour, but are not always defined 
precisely. In the present paper, we use the term "generation cycles" as a catch- 
all phrase covering any cycles or quasi-cycles with a period comparable in 
magnitude to the generation time. However, the word generation itself has (at 
least) two different meanings which are not always distinguished: it can either 
refer to a group of individuals born in the same time interval or may be defined 
(iteratively) as a group whose parents formed the previous generation. 
Rubinow and Oppenheim Berger (1979) use the words "temporal" and 
"matriarchal" generations to express this difference. In this paper, we 
concentrate on matriarchal generations and ask whether the generation cycles 
in several of the models cited above reflect the generation structure; for example 
we explore the extent to which the individuals in one population peak are the 
offspring of individuals in a previous peak. We also try to relate the generations 
of continuous models to the predictions of discrete generation models, because 
of the existence of a wide body of literature on population regulatory 
mechanisms and population genetics that assume non-overlapping gener- 
ations. 

We answer these questions for the "blowfly" model of Gurney et al. (1980) 
and for four models of larval competition, formulated in Gurney and Nisbet 
(1985). The use of existing models, enables us to take advantage of known 
results concerning equilibria and stability. Furthermore these models turn out 
to offer examples of single generation cycles and also of much more complex 
generation structures because of the different regulatory mechanisms involved. 
However, our basic formalism, which generalizes some preliminary work by 
Nisbet at al. (1988), is applicable to a wide class of models. 

In all the models we study, the life history of the insects is divided into four 
developmental stages of which only two occupy a significant time span: the 
larval and adult stage. The egg and pupal stage are both assumed to be 
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infinitesimally short. This 
difference equations describing the dynamics of the adults and larvae: 

s = B( t ) -  M( t ) -  A(t)L(t), 

A(t) = ~t(t)M(t)- ~A(t), 

where: 

results in the following pair of coupled delay- 

(la) 
(lb) 

M(t) = B ( t -  z(t))P(t) { 1 - i(t)}, (lc) 

B(t)=f(t)A(t), (ld) 

r l  1 P(t) = exp - A(x) dx . (le) 
L :t-~(t) 

W(t) = G(x) dx, (If) 
- ~ ( t )  

with: A(t) the number of adults at time t; B(t) the number of eggs laid per unit 
time at time t; G(t) the larval growth rate at time t; L(t) the number of larvae at 
time t; M(t) rate of entry into the pupal stage at time t; z(t) development time 
from egg to adult for an individual maturing at time t; P(t) proportion of larvae 
hatched at t -  T(t) who survive to t; W(t) weight of pupating larvae at time t; ~(t) 
proportion of successful pupations at time t; ~ adult per capita death rate, 
assumed constant in all models; A(t) larval per capita death rate at time t;f(t) 
the number of eggs laid per adult per unit time at time t. 

Equations (la) and (Ib) simply state that changes in the number of 
individuals in a particular stage can only arise through recruitment to the stage, 
maturation from the stage, or death. The remaining equations give receipes for 
calculating these quantities. 

To specify one particular solution for this system, an initial history for the 
number of adults and larvae between time -T(0) and 0 needs to be given. 
Beyond positivity, there is no restriction on the form of this initial history, and 
we shall restrict our attention to specific models where, as far as we can tell from 
numerical studies, the long term fate of the population (equilibrium, stable 
limit cycle or possibly chaos) does not depend on the selection of initial history. 
For convenience we therefore always assume no animals to be present before 
time zero and start the calculation with an initial number of adults at time zero. 
This mimics the inoculation of a laboratory experiment or the immigration of a 
group of adults into an unoccupied territory. 

Our models make different assumptions concerning functional relations 
between ~(t), A(t), O(t) or f(t) and the stage populations, with each model 
including only a single regulatory factor. The five models are as follows. 

The NB (Nicholson blowfly) model, in which the adult fecundityf(t) depends on the 
number of adults. 
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The LD model, in which the larval death rate A(t) depends on the number of larvae. 

The MT model, in which the maturation time z(t) depends on the history of the growth of 
the larvae. 

The PS model, in which pupation success ct(t) depends on the weight of the larvae. 

The AF model, in which the adultfecundityf(t) depends on the weight of the larvae at 
pupation. [Note that equation (ld) requires modification for this model.] 

The functional forms used in each model are listed in Table 1. 

Table 1. The five "stage structure" models used in this paper. A full account of the NB 
model is in Chapter 8 of Nisbet and Gurney (1982). Details of the other four models arein 

Gurney and Nisbet (1985). All models follow equations (la-f); the table gives the (only) 
density dependent function for each model 

Model  Density dependence Functional form 

NB f ( t )  
LD A(t) 
MT G(t) 
PS G(t), a(t) 

AF a(t) , f ( t )  

f ( t )  = q exp[- N(t)/No] 
A( t )=X[1/(I+L(t) /Lo)_ y-j-i (L<Lo( 1_ y)/y) 
G(t) = [gm/(1 + L(t)/L o ) -  F)+, Maturation at W= W r 
G(t) as in MT 
a(t) = [( W(t ) -  Wm)/(W u + W ( t ) -  Wm)] + 
G(t) as in MT 
[l(t) = qM(t) W( t ) -  fiB (instead of 1 d) 

The equations (1a-c) which characterize all the models are special cases of a 
general linear form for the adult dynamics, namely: 

f l ( t )  = r ( t ) A ( t - z ( t ) ) - ~ A ( t ) ,  (2) 

with: 

r(t)  = o~(t) f( t -  T( t ) )P( t )  [1 - r (3) 

Consequently, we can generalize our methods of analysis to any stage structure 
models reduceable to this form. We shall show that if r(t)  and z(t) are known, 
the generation structure of a model population can be calculated without 
having to compute the actual number of adults and larvae. 

2. Modelling the Generation Structure 
2.1. General  formal i sm.  We now write down equations, valid for all our 

models except AF and easily adapted for that model, describing the 
matriarchal generations, which are defined recursively as groups of individuals 
whose mothers belonged to the previous generation. Because of the recursive 
nature of this definition an initial generation needs to be given and we 
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arbitrarily assign I adults out of those present at t = 0 to the initial gneration. 
From this we find the equations describing the k th adult generation, Ak(t ) to be: 

Ak(t) = ~(t)M~(t)- 6Ak(t), 

Mk(t ) = Bk(t-- ~(t))P(t) { 1 -- 4(t)}, 

Bk(t)--f(t)Ak- 1(0, 

or, in terms of the regulatory function: 

Ak(t) = r(t)A k _, (t - T(t)) - ~Ak(t ). 

(4a) 

(4b) 

(4c) 

(5) 

The initial generation is given by: 

Ao( t )=Ie  -~', t>~O, 

and the system of equations is solved with the assumed initial histories: 

(6a) 

Ak(t ) = 0 (for all k and all t < 0). (6b) 

Equations (4)--(6) do not involve L(t) or A(t) explicitly, and with these 
equations we can calculate any number of generations for a given r(t) and z(t). 
In models where the delay is constant, the total number of adults in the 
generations at any given time (i.e. any survivors from the initial I individuals 
and their descendents) is given by the generation sum: 

A(t)= ~ Ak(t ). (7) 
k = O  

For any finite value of t, there are of course only a finite number of non-zero 
terms in the sum. When the delay z is fixed, the upper summation limit is [t/z] 
(where [x] denotes largest integer less than or equal to x). In models (such as 
MT) with variable delay, the sum must run to [t/Zmi,] where Zmi. is the 
minimum development time permitted by the assumed functional form for the 
development rate G(t) in the model under study. 

Because of the assumption of a constant per capita death rate for adults, the 
present models cannot produce truly discrete generations. Even if over some 
time interval maturation into the adult stage stops totally, the number of adults 
will decrease exponentially but never become zero. When the next generation 
starts, some adults of the former generation must therefore still be alive; 
consequently the generations will always overlap. However, it is of interest to 
know whether there exist conditions under which there is only a small amount 
of overlap. We investigate this later in the paper. 
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2.2. The generation structure o f  a population in equilibrium. All of our 
models can have a steady-state, and it is thus instructive to study the generation 
structure of the models at equilibrium, where, at all times t: 

r(t)=6, z ( t )=cons tant .  (8) 

The equilibrium matriarchal generations are calculated from equations (5) and 
(6), with r(t) set equal to 6: 

Ak(t) = 6Ak - 1 (t -- "C) -- 6Ak(t ), (9a) 

Ao(t ) = I exp( -  &) t ~> 0, (9b) 

which are to be solved with the initial conditions: 

Ak(t)=O t <kz .  (9c) 

This set of equations can be solved analytically, the successive generations 
being given by: 

Ak(t)= I exp{- -~( t - -kz )}6k( t - -kz )k /k !  t >>.kz, (10a) 

Ak(t ) = 0 t < kz, (10b) 

sample plots of which are shown in Fig. 1. This figure also has plots of the 
generation sum which represents the sum of the adults assigned to the initial 
generation and their offspring, and is given by: 

[t/z] 

Ag(t)-- )-" e x p { - - 6 ( t - k z ) } ~ k ( t - k z ) k / k !  (11) 
k=0 

Note that Ao(t) will always be smaller than or at most equal to A*, the 
equilibrium population, because there will normally exist a group of 
individuals (the offspring of individuals who were in the larval stage at t-- 0) not 
assigned to the generations. 

The equilibrium generation structure has two further properties that merit 
attention. Firstly, each generation has a maximum that is lower than that o f  the 

former generation, provided the time between the maxima of the generations is 
unequal to z. This can be proved as follows: let t k be the moment at which 
generation k has its absolute maximum. At this moment: 

Ak(t)=O, (12) 

and thus from equation (9a): 

Ak-  t (tk -- Z) = Ak(tk). (13) 

If the time between the maxima is unequal to z, the maximum value of each 
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Figure 1. The generation structure during equilibrium. Thick dashed line stands for 
Ag, thin drawn lines show subsequent generations. The total density of adults A 

remains contant: (a) 5 = 10; (b) 5 = 3. 

generation will thus be smaller than that of its predecessor. A corollary of this 
result is that no longlasting, non-zero solutions can exist. 

Secondly, the generations remain constant in size, but tend to spread out as 
time increases. To prove this, first note that all generations subsequent to the 
zero'th start to grow at successive times which equal integer values of z. Each 
generation has only one maximum, at time k(z+ 1/5). The value of each 
maximum is Iexp(-k)kk /k! .  As k---,oo the maximum of a generation thus 
approaches zero. However, although the maxima of the generations becomes 
smaller, the total size of the successive generations will remain equal (easily 
proved by integrating equation 10a). Furthermore, as time goes to infinity the 
total number of adults summed over all the generations will become a constant 
number, i.e. the limit: 

limAo(t)=A*, (14) 
t "*  oO 
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will converge. In fact the limit can be shown to have the value: 

A*g = I/(1 + 6T). (15) 

We have thus shown that in a population at equilibrium, a generation 
structure exists in which the generations remain constant in size, but tend to 
spread out as time increases. In proving these properties we made considerable 
use of the assumption of a constant per capita adult death rate; however the 
results appear to be quite robust against relaxation of this assumption. For 
example, if we assume afixed lifetime for each adult and assume no mortality 
other than through reaching that fixed age, then a broadly similar pattern of 
generations results (see Appendix A). 

2.3. The generation structure of a cycling population. In the special case of a 
population at equilibrium an analytical solution could be found. The general 
solutions of the equations with a fixed delay (all models except MT) are 
integrals of the following form: 

f?I? Ak(t)=e-~('-k~) x . . .  

~r(xk ) r (x  ~ --~)r(x k - -2~) . . .  r(x 1 -  ( k -  1)~) dx 1 dx k. (16) 1 2 �9 Q @ 

and for models with a variable development time a similar, but even more 
complicated integral can be derived. Unfortunately, this integral is of little 
practical utility and is numerically less tractable than the original system of 
delay-differential equations. We therefore use the delay differential equations 
(la-c) in studying the generation structure of a cycling population. 

Suppose then that the total number of adults is executing a stable limit cycle. 
It follows from the argument in Section 2.1, that successive population peaks 
cannot correspond to truly discrete generation. Indeed, we expect some 
properties qualitatively similar to those already studied in equilibrium: the 
generations will spread out and their maxima will decrease. However, the 
cycling regulatory function may cause humps on both sides of the maximum. If, 
as is normally the case (Jones et al., 1988), the period of the cycles in number of 
adults (and hence the period of the regulatory function) exceeds the 
development time, the time between the start of a generation and its principal 
maximum will increase with increasing generation number. The generation size 
may thus eventually be influenced by the periodicity in the regulatory function 
during the "rise" phase and new local maxima may appear. Similarly, new local 
maxima may appear in the tail depending on the magnitude of the parameter 
group 6z. The bigger 5, the faster a generation will go to zero. For small 5 and 
the decay will be so slow that one cycle after the largest peak, the generation size 
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is still considerable. Beyond these general observations, we expect the pattern 
to be model specific, and hence now turn our attention to numerical results for 
our five models. 

3. Generation Structure Related to the Mechanism of Population Regula- 
tion. The general theory in the preceding section establishes that the 
generation structure at equilibrium is independent of any specific regulatory 
mechanism. However we know from the work of Gurney and Nisbet (1985) 
that the period of population cycles is affected by the mechanism of intra- 
specific competition, so it is natural to investigate how the generation structure 
of populations executing large amplitude cycles reflects the mechanisms that 
produce the cycles. We therefore now present sample numerical calculations of 
the generation structure for each of our five models, using where possible the 
same parameters as in previous published work on these models (Gurney and 
Nisbet, 1985; Gurney et al., 1980; Nisbet et al., 1989). 

3.1. The N B  model. It is well known from previous work on this model that 
limit cycles, if they occur, have a period greater than twice the developmental 
delay. Figure 2 contains an example of such cycles obtained with parameters 
appropriate to Nicholson's blowflies. Also illustrated on that figure are two 
additional curves which help tease out the demography of the cycles: total egg 
production rate B(t) and the average age of the adult population (computed by 
a method outlined in Appendix B). Starting at a peak in the adult population, 
the cycle has a decline phase during which the population drops (through 
mortality) to a level at which significant egg production is possible, a period of 
egg production which continues until sufficient young become adults and 
suppress further reproduction, and finally an interval (roughly equal to the 
development time) in which remaining juveniles mature to become adults. 
Thus the cycles cannot even approximate discrete generations since the 
essential feature of the demography is that the adults in any one population 
peak are a mixture of those with very old and very young mothers. The 
"average adult age" plot confirms this: although the cycle period is over 
38 days, the maximum value of the average age is around 33 days and occurs 
during a burst of egg production. 

Figure 3 illustrates how the generations rapidly spread over the successive 
peaks of the population cycles. We arbitrarily defined as generation zero all 
adults present at t = 50 days (during a decline and before the onset of significant 
egg production). Unsurprisingly virtually all the members of generation one 
appear in the next population peak, but that peak also contains a significant 
contribution from members of generation two, in agreement with our 
understanding of the demography. Successive generations spread over an 
increasing number of population peaks. 
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Figure 2. Demography of cycles in the "Nicholson blowfly" (NB) model. The 
continuous curve is the adult population, the broken curve the egg production rate, 
and the dotted curve the average adult age (i.e. time since recruitment to the adult 
stage; add 15 days to get time since egg hatch). Parameters: q=6 day-1; No = 1, 

m=0.2 day-l; T=15 days. 

3.2 The LD and M T  models. Figures 4a and b show the total number of 
adults and the regulatory function for the selected parameter sets. As expected, 
the cycles for both models have a period between ~ and 2z, and the same period 
is recognizable in the regulatory function. 

Figures 5a and b show the first six generations of these models, with the same 
parameters as in Fig. 4. The MT model clearly shows spreading generations 
and gives multiple humped generations. The LD model (with our choice of 
parameters) seems to have single humped generations; to graphical accuracy, 
each peak seems to be merely one generation and the figure does not give the 
impression that the generations are rapidly spreading. However, in the 
previous section we demonstrated that no stable single generation cycle can 
exist and that ultimately significant overlap will occur. Figure 6 confirms this, 
though significant spreading only occurs after fifty generations. It turns out 
that the rate of spreading is largely determined by the dimensionless parameter 
group 6z; plots of the MT model with 6 = 10 are very similar to Fig. 5. 

With our choice of parameters, humps appear faster in the MT than in the 
LD model, but in both models, the overlap of generations is much slower than 
with NB. To understand why, we have to consider the time between the start 
and the maximum of a generation. Each generation starts at t = kz. The 
generations during steady-state have their maxima at t = k(z + 1/6), and this is a 
good approximation to the period of population cycles for the models LD and 
MT (Gurney and Nisbet, 1985; Jones et al., 1988). The difference between the 
start and maximum depends on the generation number and approaches k/6 for 
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Figure 3. Generation structure corresponding to the cycles in Fig. 2 (from Nisbet et  

al., 1988). (a) Adult population; (b)-(f) generations 1-5. 

LD and MT. For higher generation numbers this will exceed z and the 
generations will be exposed to at least one other cycle of the regulatory function 
and this will cause a small hump in front of the maximum. For later generations 
this interval will get larger and they will have more humps. Something similar 
happens at the tails where the rate of decrease (relative to the cycle period) 
depends on ~ .  A small 6z will cause a slow decay, so that one period after the 
start of the decline phase, a considerable population will still be influenced by 
the cycling regulatory function. 

3.3. The PS and AFmodels. The total number of adults and the regulatory 
function for these two models (with one set of parameters) are shown in Figs 4c 
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Figure 4. Population trajectories for the four different larval competition models 
with the selected parameter sets. The density of adults is shown by the continuous 
line while the dashed line shows the regulatory function: (a) the LD model with 
f =  200, z = 1, t5 = 10, X =  0.01, L o = 1, Y= 0.01; (b) the MT model with f =  180, ~ = 3, 
#m = 1, L o = 1, F = 0 . 1 ,  Wp= 0.15 (weight at population), A =4.09; (c) the PS model 
with f = 2 0 0 ,  z =  1, t5 = 5, gin= 1, L 0 = 1, F =0.05, W,=0.05 ,  Wh= 1; (d) the AF 

model with q=300 ,  ~=1 ,  ~ = 5 ,  g in=l ,  L 0 = I ,  F=0 .1 .  

and d. Again we see that the population oscillates with the same period as the 
regulatory function. However with these models, the period to delay ratio is 
always greater than 2 (Gurney and Nisbet, 1985) and prima facie we might 
expect behaviour similar to NB. The first six generations are shown in Figs 5c 
and d from which we see that each of the humps of the double humped cycles is 
largely formed by a generation. Thus the double humped structure is much 
more tightly related to the generation structure than in the NB model. 

The first generation of the PS model in Fig. 3c is double humped. We can 
find an explanation for this in the regulatory mechanism of the PS model, 
which involves two thresholds: one where growth stops, the other where 
pupation success drops to zero. Whether these thresholds are crossed depends 
on the initial numbers of the zeroth generation. A large zeroth generation will 
produce so many offspring that the number of larvae rapidly grows so large 
that maturation stops altogether. If this happens before z, i.e. before the first 
larvae of the first generation pupate, there will be no maturation at z and it will 
only start when the number of larvae has gone down sufficiently to allow 
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Figure 6. Generations 51, 52 and 53 for the LD model. Parameters the same as in 
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growth or pupation again. This delays the start of the first generation. A 
condition for the lowest initial number of adults which will cause no 
maturation at T can be derived. If the initial number of adults is somewhat 
lower, some maturation will happen at time z and for some short time interval 
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thereafter; these adults will then produce offspring causing the number of 
larvae to rise beyond the threshold at which growth (and hence maturation) 
will stop. From then on both the number of adults and larvae will decrease till 
pupation becomes successful again, thus causing double humped generations. 
For low initial numbers the thresholds are never reached and the first 
generation is single humped. These double humped first generations do not 
propagate successfully into the next generations. An analogous argument can 
be developed for the AF model. 

4. From Continuous to Discrete Models. Discrete generation models of a 
single species take the general form: 

Gk +1 = h(Gk), (17) 

with G k the size of generation number k and h(Gk) describing some function 
over G k. The size of a generation is assumed to depend only on the size of its 
predecessor and on nothing else. In the continuous models, such a relationship 
between the magnitude of successive generations is impossible since it woud 
require an effect to precede its cause (in view of the exponential tail to all 
generations); however where overlap between generations is small, it might still 
be valid to approximate a continuous model with a discrete model. In this 
section we therefore consider discrete models in which population regulation 
involves similar mechanisms to those already studied, and assess the 
robustness of the new models as approximations to their continuous 
counterparts. 

If we define the generation size as the total number of adults that once 
belonged to that generation, then there are two (equivalent) ways to compute 
the generation size: either you count the emerging pupae or you count the dead 
adults. This gives: 

Gk= lim f~ ~(X)Mk(x) dx= lim f i  6Ak(x) ~-~oo (18) 

For three of our models (LD, MT and PS), we studied the relationship between 
successive generations by computing the above integrals. In the Figs 7a-c the 
generation size is plotted against the size of the previous generation. The 
continuous line connects the points which map the initial value (which equals 
the size of the zeroth generation) to the size of the first generation (G 1 vs Go). 
The other points result from calculations up to the fifth generation. In all 
models the relationship is not strictly functional; the points exhibit some scatter 
and there is no perfect fitting discrete model. 

It is nevertheless possible, with additional assumptions, to derive approxi- 
mate discrete models; to illustrate this we now formulate a discrete model 
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Figure 7. Size of generation against size of the previous generation. Drawn line 
connects points resulting of zeroth against first generation, dots result from 
generation sizes up to the fifth generation: (a) the LD model, parameters as in 
Fig. 4a; (b) the MT mode l , f=  180, 6 = 10, g ,  = 1, L o = 1, Fo= 0.25, Wp = 0.25, A = 3; 

(c) the PS model, parameters as in Fig. 4c. 

comparable to MT. We choose the MT model because the empirical 
relationship (Fig. 7b) was not too discouraging, it being much more 
complicated to derive a discrete model for the PS model because of the form of 
the graph in Fig. 7c which can be regarded as the superposition of two other 
curves: the size of the generations in the first hump and the size of the 
generation in the second hump which can develop for different initial values as 
we explained in the previous section. The LD and AF models are algebraically 
not very tractable. 

The discrete "MT" model is derived by assuming that all larvae of one 
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generation are born at the same time. Because all larvae are then of the same 
age, they all have the same maturation time. Let G k_ ~ be the number of adults 
in the previous generation. The number of larvae in generation k is then given 
by: 

Lk(t) = Gk_ , f 6  - x exp(-At).  (19) 

Since in the MT model all pupating larvae are assumed to survice, the number 
of adults in the next generation is given by: 

Gk = Lk(Z ) = Gk - i f  6 -  1 exp(--Az). (20) 

The problem is to find the maturation time z for this cohort, i.e. the time in 
which the larvae reach their weight at pupation. This is given by the integral 
relationship: 

g,. 
(21) 

which, on substituting from (19) gives: 

g" F]+ dx=  Wp, 
f o f l + G k - l f / ( 6 L o ) e x p ( - A x )  

(22) 

and after evaluating the integral: 

g,., ~Gk- lf/(6zlo) + exp(Az)7 
~ - m [  -Gk---~_ , f / ( 6 L o ) + ~  w.=o .  (23) 

Now z is simply the positive root of equation (23) which can easily be 
computed numerically using Newton's method. Once this is done, the 
relationship between G k and Gk_ 1 follows from equation (20). Figure 8 
contains the result of one such calculation (3 = 10). The dots in the figure come 
from the generation sizes in the continuous model. The correspondence is not 
total but qualitative prediction of the form of the relationship is good. 

5. Discussion. The analysis in this paper has significance beyond the five 
special models; indeed because of the linear form of equation (5), our methods 
are applicable to any stage structure models with an unrestricted adult life time 
and constant adult death rate. Recognizing that the regulatory function and the 
maturation time contain all information needed for computation of the 
generation structure can be a powerful tool in analysis of these models. 

The results for the generation structure during equilibrium apply to an even 
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parameters as in Fig. 7b. 

wider class of models, the steady-states of all models in which the recruitment is 
of the form r(t)A{t-z) and the adult death rate is age--but not necessarily 
density-independent. The analytical form of these solutions make them a useful 
point of reference for interpreting complex generation patterns in cycling 
populations, a property we exploited in our numerical studies of the LD and 
MT models. 

It would be interesting to know if there are any circumstances in which 
sustained, separate generations are possible in stage structure models. In 
models of the sort studied in the present paper, formally separate generations 
are not possible, regardless of the form of r(t). One of the reasons for this is the 
fixed, age independent, per capita death rate, which allows infinite lifetimes and 
causes the long trails of the generations. One might conjecture that models with 
a finite maximum adult lifetime allow separate generations; however as we 
showed in Appendix B the time between the start and maximum of a 
generation will normally increase, potentially causing spreading in the same 
way as in the present models. It is certainly true that a discrete adult lifetime 
commonly sharpens single generation cycles in both single-species and 
host-parasitoid models (Gurney et al., 1983; Godfray and Hassell, 1989), but it 
seems most implausible that perfect synchrony of reproduction which would be 
necessary for formally discrete generations ever occurs. 

The main conclusion we can draw from this work is thus the limited validity 
of discrete time models. Under our assumptions truly discrete generations 
cannot persist; it follows that discrete generation models lack a fundamental 
basis when made under the same assumptions. Furthermore, except when the 
average adult life time is much shorter than the juvenile development time, the 
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generations start overlapping very quickly. We know [for example from 
MacDonald's (1976) study of discrete models with "extended diapause"] that 
the dynamic subtleties of discrete generation models are not robust against the 
introduction of even a small amount of overlap. Thus considerable caution is 
required before assuming non-overlapping generations except in situations 
(such as truly univoltine populations) where the assumption is obviously valid. 

The fragility of discrete time models is particularly relevant to insect 
population dynamics where experiments on fecundity and on larval survival of 
cohurts are frequently used to derive relationships analogous to the continuous 
curves in Figs 7a-c (e.g. Bellows, 1981; Prout and McChesney, 1985). One 
example of such data (reproduced in Fig. 9) illustrates the possibility of both 
the monotonic or near-monotonic relationships that we found with the MT 
and LD models, and the humped relationship obtained for PS. However, the 
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Figure 9. Experimental data producing inter-generation relationships of the type 
considered in this paper: the relationship between number of larvae surviving to 
adulthood and initial egg density for four stored product beetles (from Fig. 1 of 

Bellows, 1981). 

significant deviation of the continuous curves in Fig. 7 from the points derived 
from generations other than the first, and in particular the variations in form 
near the 45 ~ line (intersection with which determines stability in discrete time 
models) demonstrate the need for caution in making inferences on population 
dynamics from the results of such experiments. As a piece of mathematics, this 
result is obvious--we are merely confirming that cohort experiments give too 
little information for us to unambiguously construct a structured population 
model. However almost all practical population models are based on 
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inadequate information on interactions between individuals; the biological 
importance of the present results is that except in certain very special 
circumstances, the discrete generation models may be rather bad (and 
potentially misleading) approximations. 

Thus we conclude that while discrete generation models constitute a 
powerful modelling tool for the description of short-term population 
dynamics, they may give misleading predictions over longer (and in particular 
evolutionary) time scales. For  such models to be useful approximations over a 
large number of generations, there must normally be some exogenous factor 
that synchronizes the generations. Simulations by Crowley e t  a l .  (1987), using a 
complex model with both "LD"  and "MT" regulatory mechanisms as well as a 
variety of environmental "cues", suggest that the dynamics of generation 
separation via exogenous forcing may be quite subtle. Two of us (WSCG and 
R M N )  are currently studying this phenomenon in a family of simple models 
which will be the subject of a future publication. 

We thank Ann Jones and Hans Metz for useful comments in the early stages of 
the work, Peter Maas for invaluable computational advice and support,  and 
Steve Blythe for suggestions on an early draft of the paper. The work was 
supported by the U.K. Science and Engineering Research Council (SERC). 

A P P E N D I X  A 

Generation Structure for a Population with Fixed Adult Lifetime. The models considered in the 
text assume a constant, age- and density-independent p e r  c a p i t a  death rate 6. This extreme 
idealization is known in some contexts to influence population dynamics (e.g. Gurney e t  a l . ,  
1983); consequently we now check the robustness of the observations in Section 2.2 against 
relaxation of the assumption. 

The most obvious alternative assumption is that all adults have a fixed lifetime S, with no 
cause of death other than senescence. Equation (2), which describes the adult population 
dynamics is then replaced by: 

f l  ( t )  = r ( t ) A  ( t - -  z ( t ) )  - -  r ( t  - -  S ) A  (t  - S -  v ( t  - -  S)), (A1) 

while equation (5) which describes the generation structure is replaced by: 

.;l~(t ) = r ( t  ) A  k _ t ( t  - z ( t  ) ) - r ( t  - S ) A  k _ 1 ( t  - S -  z (  t - S )  ). (A2) 

With the juvenile developmental delay, z, constant, the equilibrium generations have the 
following properties (illustrated in Fig. 10 for the case ~= 1, S= 1): 

(1) Generation k starts at time k~ and ends at time k(z + S). 
(2) The population in any one generation has its maximum at k(T + S/2) ,  i.e. mid-way between start 

and finish. 
(3) The magnitude of the population maximum for generation k is lower than for k-  1. 

Thus the generation structure "smears" in much the same way as with the model in the text. 
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Figure 10. Generation structure for the "discrete adult life time" model of 
Appendix A. 

Moreover, although the generations formally persist to time k(z + S), for all but the first few 
generations the populations tail off to very low values well in advance of this nominal limit. 

APPENDIX B 

Calculation of Average Adult Age in a Cycling Population. We denote by a the age of an adult 
with the convention that a = 0 on entry to the adult stage. Retaining the notation used in the text 
where M(t) is the instantaneous recruitment rate to the adult stage, and introducing an age 
distributionf(a, t) defined by: 

f(a, t) da = Number of adults aged a ~ a  + da at time t, 

then (cf. Ch. 3, Nisbet and Gurney, 1982): 

~fo(a- t )e  -~' 
f(a, t )= ~M(t_a)e_6 ,  

(B1) 

wherefo(a ) is the initial age distribution. The total adult population A(t) and the average age ( a )  
are then given by: 

fo fo o A(t)= f ( a , t ) d a ,  ( a ) = [ A ( t ) ]  -1 a f (a , t )da .  (B3) 

It can then be shown by substituting from equation (B2) forf(a,  t) in the formula for {a>, and 
then differentiating with respect to time that: 

( a)  = 1 -- M(t) [A(t)] - l (a) .  (B4) 

for t < a, 
(B2) 

for t>a,  
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