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For a long time criticality has been considered in epidemiological mod-
els. We review the body of theory developed over the last twenty five
years for the simplest models. It is at first glance difficult to imagine
that an epidemiological system operates at a very fine tuned critical
state as opposed to any other parameter region. However, the advent of
self-organized criticality has given hints in how to interpret large fluc-
tuations observed in many natural systems including epidemiological
systems. We show some scenarios where criticality has been observed
(e.g., measles under vaccination) and where evolution towards a critical
state can explain fluctuations (e.g., meningococcal disease.)

7.1. Introduction

The simplest classical models in epidemiology describe the transition of

susceptible hosts, S, to infected hosts, I, with a pathogen and the subse-

quent transition either to become a susceptible host again or recover from

the infection to a permanently immune host R. In the first case we speak

about an SIS-model, in the second about an SIR-model.1 Often further

transitions are described, e.g. from a non-permanent recovered back to a
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susceptible host (sometimes called SIRS-model to distinguish from the SIR

without exit from R), or when including an exposed class (E), describing

an already infected but not yet infective host, and transitions into and out

of E (SEIR-model). The SEIR-model has been studied extensively to de-

scribe measles epidemics before the introduction of vaccination.2–6 Also the

consideration of a non-constant population size leads to additional transi-

tions for birth into the susceptible class, and death from every class. We

will initially consider the simplest models SIS and SIR, since they already

show rich dynamic behavior, which is only marginally altered by most of

the above described extensions.

The founding papers on criticality in simple epidemiological models are

written by Grassberger and de la Torre7 in 1979 for a simplified SIS-model,

a time discrete stochastic automaton in 1 dimension, and by Grassberger8

in 1983 on the SIR-model, again a time discrete stochastic automaton, this

time in 2 dimensions. Some historic remarks on the context in which the

articles appear might be in place here. Criticality in statistical physics of

equilibrium thermodynamic systems has been studied for a long time,9 how-

ever, the theoretical understanding of scaling and universality of exponents

appearing in the power laws of many quantities near and at criticality only

came with the application of renormalization theory originated in quan-

tum field theory. Rapidly, applications to time dependent quantities of the

equilibrium systems appeared, as well as applications to other phenomena,

for example autocatalytic processes. Grassberger and de la Torre looked at

such an autocatalytic process, the so-called Schlögel’s first model, with the

aim of comparing the critical behavior with results from a field theory for

Reggeon particles. The model they looked at in detail is also that of an SIS

epidemic, and they explicitly make the connection to epidemiology, as well

as pointing out the analogy to simple birth-death processes. The univer-

sality class is called Directed Percolation (DP). Quickly after Grassberger

investigated the general epidemic process, a version of the SIR system, and

found that it belongs to the universality class of bond percolation, now

also called Dynamic Percolation (DyP) to emphasize the dynamical aspect

of the underlying processes. The fascination among physicists about these

two quite general universality classes is ongoing.

Criticality occurs at the boundary between two regions in which the

dynamics behavior of a system differs qualitatively. Only the finding of

self-organized criticality10,11 (SOC) could explain why fingerprints of crit-

icality often appear in nature without fine tuning of a parameter. The

parameter leading to criticality becomes a dynamic variable, for example
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the slope of a sandpile, and evolves until the system becomes critical, in the

sandpile paradigm the avalanches show a wide distribution of sizes having

the shape of a power law.12 An essential ingredient to a self-organized

critical system, like a sand pile, is the slow excitation of the system, the

toppling of sand onto the pile, which increases tension in the sandpile,

until one more excitation causes a small, medium sized or eventually catas-

trophic event. Long after the physicists fascination for the topic there are

the first attempts to investigate data showing criticality in epidemiology.

Island host populations subject to rare events of importation of disease13

results in a scenario which is reminiscent to forest fires, which in turn show

self-organized criticality.12 For a detailed analysis see Rhodes, Jensen, An-

derson.14

An even simpler scenario of a critical state and the consequent appear-

ance of huge fluctuations could be the following: a system parameter which

shows at some value a critical transition could be externally slowly chang-

ing, hence driving the system into and through the critical region. Such a

scenario is exactly happening in a near-completely vaccinated population,

hence the system is subcritical, but vaccination for some reason decreases

slowly, eventually reaching and passing the so-called vaccination threshold,

below which huge epidemics can appear in the now less vaccinated popu-

lation. This scenario is actually present in measles in the UK where the

population has been vaccinated well since the end of the nineteen sixties.

But because of unfounded fears that the vaccines have side effects the vacci-

nation level has decreased in recent years, such that the system approaches

the vaccination threshold.15 The distribution of outbreaks following an

imported first case, the so-called index case, shows an approach to a power

law behavior during the last years, whereas before during the well vacci-

nated phase it was far away from such power law behavior. See Jansen,

Stollenwerk.16

Another scenario in epidemiology is that of accidental pathogens. Child-

hood diseases which are highly contagious but also show symptoms quickly

after infection have been the epidemiological examples where modeling has

been most fruitful. The infection results in disease cases, I, which are also

the infectious hosts. As opposed to such paradigmatic childhood diseases

some pathogens result mostly in asymptomatic infection and only rarely

cause disease. Most known micro-organisms live in their hosts as a com-

mensal, and do not cause any harm. An interesting case is the meningococ-

cus (Neisseria meningitidis) causing meningitis and septicaemia, which is

carried by large fraction of the human population, but rarely causes disease.
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However, if it causes disease, the consequences for the host are dramatic,

and if not treated can lead to the death of the host within a few days after

infection. This is not in the interest of the bacteria, since the killing of

the host reduces transmission. The pathogenicity is an accident for the

bacterium causing it.

A stochastic model with competing strains17,19 shows that strains which

do not cause disease dominate the infection in the host population, while

highly pathogenic strains die out quickly. However, a nearly harmless strain

causing disease rarely will persist for a long time in the population alongside

the completely harmless strain, showing critical fluctuations in the limit of

vanishing pathogenicity.17 Considering a model with a large variety of

pathogenicities, resulting from mutations in strains trying to escape the

host’s immune system, shows that the system evolves to a state where

only these nearly harmless pathogens remain in the system for long times

to cause disease cases in significant numbers.18 Hence, the system evolves

towards critical behavior. The case study of meningitis where the difference

between harmless infection and disease is large is a very good system to

study the effects of accidental pathogens.20 It is to be expected that the

mechanism is much wider spread but then more difficult even to analyse

with real world data. The critical fluctuations on their own make the

example of meningitis difficult to analyse.

7.2. Simple epidemic models showing criticality

As the simplest epidemic model with interesting behavior we present the

SIS epidemic. In this model the susceptible hosts become infected when

meeting already infected with rate β, and recover with rate α back into the

susceptible class.

7.2.1. The SIS epidemic

The SIS epidemic characterized by the reaction scheme

S + I
β−→ I + I

I
α−→ S
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is a stochastic process with non-linear transition rates in the master equa-

tion

d

dt
p(I, t) =

β

N
(I − 1)(N − (I − 1))p(I − 1, t) + α(I + 1)p(I + 1, t)

−
(

β

N
I(N − I) + αI

)

p(I, t) . (7.1)

Since we assume constant population size N , we have S = N − I. For

the dynamics of the mean value 〈I〉 :=
∑N

I=0 Ip(I) we obtain by inserting

the master equation Eq. (7.1)

d

dt
〈I〉 = (β − α)〈I〉 − β

N
〈I2〉 (7.2)

where now the second moment 〈I2〉 :=
∑N

I=1 I2 · p(I, t) enters the right

hand side of the equation. So we do not obtain a closed system for the

mean 〈I〉. However, as will be described in more detail in the following

sections, an approximation, called mean field approximation, can help to

close the system. Here it consists of

〈I2〉 ≈ 〈I〉2 (7.3)

meaning that the variance is neglected, var := 〈I2〉 − 〈I〉2 ≈ 0. So now we

obtain a closed ordinary differential equation (ODE)

d

dt
〈I〉 =

β

N
〈I〉(N − 〈I〉) − α〈I〉 . (7.4)

Considering the density x := 〈I〉/N instead of the absolute numbers 〈I〉 we

find the simple quadratic ODE

dx

dt
= βx(1 − x) − αx . (7.5)

In this form it will appear again later as a result in Section 7.2.3.

7.2.2. Solution of the SIS system shows criticality

Now we examine Eq. (7.5) and its solution more closely, particularly its

dependence on the parameter values and initial conditions. The stationary

point x∗ ist given by the condition that the rate of change becomes zero

0 = βx∗(1 − x∗) − αx∗ (7.6)

obtaining for the quadratic form in general two stationary states

x∗
1 = 0 , x∗

2 = 1 − α

β
. (7.7)
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The time solution of the ODE Eq. (7.5) can be obtained by separation of

variables and integration which gives as result

x(t) =

(

1 − α
β

)

(
1 − e−(β−α)t

)
+ 1

x0

(

1 − α
β

)

e−(β−α)t
(7.8)

with initial condition x0 at starting time t0 = 0. The stable fixed points x∗

(given by x∗
1 if β < α and x∗

2 if β > α) are approached exponentially fast

in time

x(t) − x∗ ∼ e−|β−α|t. (7.9)

However, for β → α we have a problem with the time solution. First,

we see that for β → α the second stationary point falls together with the

first

x∗
2 = 1 − α

β
→ x∗

2 = 0 = x∗
1 (7.10)

and for β smaller than α it would become negative. A stability analysis

reveals that at β = α the two solutions change stability. Below the threshold

x∗
1 is stable, above it x∗

2 becomes stable. In that sense the point β = α marks

a critical point, or β takes the critical value βc, where in this model βc = α.

(This will not be true any more in spatial models, where βc is in general

larger than α.) Also for β → α = βc, the critical value of β, the time

solution shows remarkable behavior

x(t) =

(

1 − α
β

)

1 − e−(β−α)t
→ 0

0
(7.11)

which we can however analyse in this model directly by solving the ODE

at the critical point β = βc, obtaining the ODE at criticality

dx

dt
= βx(1 − x) − αx = αx(1 − x) − αx = −αx2 (7.12)

Now this ODE dx/dt = −αx2 can be solved directly and gives the following

result

x(t) =
1

1
x0

+ α · t
(7.13)

∼ t−1

which has a power law behavior in its time dependence, as opposed to the

exponential behavior in other parameter regions. The exponent −1 will
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turn out to be a mean field critical exponent of a whole class of stochas-

tic systems, the directed percolation universality class. Such power law

behavior is a general sign of systems at and around critical states.

7.2.3. The spatial SIS epidemic

Also the spatial version of the SIS system has been investigated extensively.

A site i can either have an infected individual Ii := 1 or be a susceptible

Si := 1, hence Ii = 0 (in general Si := 1 − Ii). The transition rate cor-

responding to a change in the state of site i from Ii to 1 − Ii is given by

w1−Ii,Ii
.

The master equation for the spatial SIS-system for N lattice points

describes the change in the probability p(I1, ..., IN , t) that the system is in

state (I1, ..., IN ) at time t:

d

dt
p(I1, ..., IN , t) =

N∑

i=1

wIi,1−Ii
p(I1, ..., 1 − Ii, ..., IN , t)

(7.14)

−
N∑

i=1

w1−Ii,Ii
p(I1, ..., Ii, ..., IN , t)

for Ii ∈ {0, 1} and transition rate

wIi,1−Ii
= b





N∑

j=1

JijIj



 · Ii + a · (1 − Ii) , (7.15)

and

w1−Ii,Ii
= b





N∑

j=1

JijIj



 · (1 − Ii) + a · Ii , (7.16)

with b infection rate and a recovery rate. Here J = (Jij) is the adjacency

matrix containing 0 for no connection and 1 for a connection between sites

i and j. Hence Jij = Jji ∈ {0, 1} for i 6= j and Jii = 0. So a state is now

defined by I1, ..., IN , and the probability of each state has to be considered

to describe the spatial system accurately.

The way the model is formulated allows an economic calculation, but

the formulation may at first site seem somewhat cryptic. Looking at one

site i, the transition rate b gives the probability per time to get infected by

a neighboring site j. The number of infected sites being neighbors to site i
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a) b)

Fig. 7.1. One dimensional SIS epidemic with N = 100 individuals. Parameters: b = 1
fixed, and a varied, a) a = 0.3, low death rate gives a high incidence, b) a = 0.62. Space
goes horizontally, time from top to bottom.

is given by
∑N

j=1 JijIj , so that the force of infection to site i is given by b ·
(
∑N

j=1 JijIj

)

. For a site to become infected it needs to be susceptible first.

Hence, the transition rate w1,0 = b ·
(
∑N

j=1 JijIj

)

describes the transition

into the infected state. Once infected, the site can lose the infection through

recovery, hence w0,1 = a describes the transition away from the infected

state. We can, likewise, formulate the transition rates as leading to and

from the susceptible state (w0,1 and w1,0, respectively). This formulation

follows the master equation approach for a spatial system as for example

used by Glauber21 for a spin system.

We first show some simulations of the spatial birth and death process

in Fig 7.1. For low death rates or high birth rates we see that the system

approaches the stationary state quickly and then shows noisy fluctuations

around that state.

However, for an increasing recovery rate (or, respectively, a decreasing

infection rate), the stationary state is lower, but also is approached more

slowly. Especially, for a low stationary state we observe huge fluctuations

around that stationary state, also with much longer autocorrelation, (Fig.

7.2). For even higher recovery rates, we observe a further increase in fluc-

tuations with longer autocorrelation, eventually leading to the extinction

of the process. For very high recovery rates (or respectively low infection

rates), the process tends to die out quickly, after some initial fluctuations.

We now want to describe the stochastic system by easily accessible

global quantities, such as the dynamics of the total number of infected,
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Fig. 7.2. One dimensional SIS epidemic with N = 100 individuals. Parameters: b = 1
fixed, and a varied, a) a = 0.3, low death rate gives a high incidence, b) a = 0.4, c)
a = 0.5, d) a = 0.6. High death rate gives not only smaller mean incidence, but also
larger variance.

or the number of clusters of certain shapes.

7.2.4. Dynamics for the spatial mean

Since the dynamics of the total number of infected depends on the number

of neighboring pairs due to the non-linearity in the transition rates, e.g.

w1−Ii,Ii
∼ Ii · Ij , we need to examine clusters of sites. The methods we

use here are in analogy with the methods used for the non-spatial master

equations.

We consider statistics for the number of clusters with certain shapes,

starting with the number of single sites that are infected. For the to-

tal number of infected sites we have [I] :=
∑N

i=1 Ii and respectively

[S] :=
∑N

i=1 (1 − Ii). For pairs we have [II] :=
∑N

i=1

∑N

j=1 Jij Ii · Ij

and triples [III] :=
∑N

i=1

∑N

j=1

∑N

k=1 JijJjk · IiIjIk or triangles [∆] :=
∑N

i=1

∑N

j=1

∑N

k=1 JijJjkJki · IiIjIk and so on. These spatial averages, e.g

[I] :=
∑N

i=1 Ii, depend on the ensemble (I1, ..., IN ) which changes with
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time. Hence we define the ensemble average, e.g.

〈I〉(t) :=

1∑

I1=0

...

1∑

IN=0

[I] p(I1, ..., IN , t)

or more generally for any function f = f(I1, ..., IN ) of the state variables

we define the ensemble average as

〈f〉(t) :=

1∑

I1=0

...

1∑

IN =0

f(I1, ..., IN ) p(I1, ..., IN , t) . (7.17)

The ensemble average 〈f〉(t) describes the expected value of f(t) over re-

peated realizations of the stochastic process. Then the time evolution of

the ensemble average is determined by

d

dt
〈f〉(t) :=

1∑

I1=0

...

1∑

IN =0

f(I1, ..., IN )
d

dt
p(I1, ..., IN , t) (7.18)

where the master equation is to be inserted again giving terms of the form

〈f〉 and other expressions 〈g(I1, ..., IN )〉. Hence, for the total number of

pairs we have

〈II〉(t) =

N∑

i=1

N∑

j=1

Jij〈IiIj〉 (7.19)

and with 〈SiIj〉 = 〈(1 − Ii)Ij〉

〈SI〉(t) =

N∑

i=1

N∑

j=1

Jij〈SiIj〉 =

N∑

i=1

〈Ii〉





N∑

j=1

Jij



 −
N∑

i=1

N∑

j=1

Jij〈IiIj〉

(7.20)

with

N∑

i=1

〈Ii〉





N∑

j=1

Jij



 = Q ·
N∑

i=1

〈Ii〉 = Q · 〈I〉 (7.21)

for Qi :=
∑N

j=1 Jij the number of neighbors to site i or degree. Here

we assume the Qi to be constant Qi = Q for all lattice sites i, since we

are mainly interested in regular lattices (and have to assume even periodic

boundary conditions). For irregular or random lattices the index i has to be

kept for Qi, which introduces a considerable amount of hidden complexity

in the analysis. Generally, terms of the form

〈II〉ν :=

N∑

i=1

N∑

j=1

Jν
ij · IiIj (7.22)
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will appear with any νth power of the adjacency matrix, e.g. J2
ij =

∑N

k=1 JikJkj , and respectively

〈III〉µ,ν :=

N∑

i=1

N∑

j=1

N∑

k=1

Jµ
ijJ

ν
jk · IiIjIk (7.23)

and so on.

7.2.5. Moment Equations

For the ensemble mean total number of infected sites 〈I〉 :=
∑N

i=1 〈Ii〉 we

obtain the dynamics

d

dt
〈I〉 =

N∑

i=1

d

dt
〈Ii〉 (7.24)

=

N∑

i=1



−a〈Ii〉 + b

N∑

j=1

Jij(〈Ij〉 − 〈IiIj〉)





as a result of straightforward but tedious calculations have entered up to

here.24 Then in detail

d

dt
〈I〉 = −a

N∑

i=1

〈Ii〉
︸ ︷︷ ︸

=〈I〉

+b

N∑

j=1

〈Ij〉
N∑

i=1

Jij

︸ ︷︷ ︸

=Qj=Q
︸ ︷︷ ︸

=Q〈I〉

−b

N∑

i=1

N∑

j=1

Jij〈IiIj〉
︸ ︷︷ ︸

=〈II〉1

= −a〈I〉 + bQ〈I〉 − b〈II〉1

such that

d

dt
〈I〉 = b

(

Q〈I〉 − 〈II〉1
)

− a〈I〉
= b〈SI〉1 − a〈I〉 (7.25)

with 〈SI〉1 :=
∑N

i=1

∑N
j=1 Jij〈SiIj〉 = Q〈I〉−〈II〉1. To obtain the dynam-

ics for the total number of pairs

d

dt
〈II〉1 =

N∑

i=1

N∑

j=1

Jij

d

dt
〈IiIj〉 (7.26)
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we first have to calculate d
dt
〈IiIj〉 from the rules given above and substitute

the master equation. A detailed calculation yields

d

dt
〈II〉1 = 2b

(

〈II〉2 − 〈III〉1,1

)

− 2a〈II〉1
= 2b〈ISI〉1,1 − 2a〈II〉1 (7.27)

with 〈ISI〉1,1 :=
∑N

i=1

∑N
j=1

∑N
k=1 JijJjk〈Ii(1 − Ij)Ik〉. Again the ODE

for the nearest neighbors pair 〈II〉1 involves higher moment terms like 〈II〉2
and 〈III〉1,1.

We now try to approximate the higher moments in terms of lower ones

in order to close the ODE system. The quality of the approximation will

depend on the actual parameters of the birth-death process, i.e. a and b. We

investigate the mean field approximation, expressing 〈II〉1 in terms of 〈I〉.
Other schemes to approximate higher moments, like the pair approximation

can be found in the literature.22,23

7.2.6. Mean field behavior

In mean field approximation, the interaction term which gives the exact

number of inhabited neighbors is replaced by the average number of in-

fected individuals in the full system, acting like a mean field on the actually

considered site. Hence we set

N∑

j=1

JkjIj ≈
N∑

j=1

Jkj

〈I〉
N

=
Q

N
· 〈I〉 (7.28)

where the last line of Eq. (7.28) only holds again for regular lattices. We

get for 〈II〉1 in Eq. (7.24)

〈II〉1 = 〈
N∑

i=1

N∑

j=1

JijIiIj〉 = 〈
N∑

i=1

Ii

N∑

j=1

JijIj〉

≈ 〈
N∑

i=1

Ii

Q

N
· 〈I〉〉 =

Q

N
· 〈I〉 · 〈

N∑

i=1

Ii 〉 (7.29)

=
Q

N
· 〈I〉2 .
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Hence, we obtain the dynamics for the total mean of individuals in the

mean field approximation:

d

dt
〈I〉 = b

(

Q〈I〉 − Q

N
〈I〉2

)

− a〈I〉

= b
Q

N
(N − 〈I〉)〈I〉 − a〈I〉 . (7.30)

For homogeneous mixing, i.e. the number of neighbors equals roughly the

total population size Q ≈ N , we obtain the logistic equation for the total

number of infected sites

d

dt
〈I〉 = b 〈I〉(N − 〈I〉) − a〈I〉 (7.31)

or for the proportion 〈I〉
N

=: x ∈ [0, 1]

d

dt

〈I〉
N

= Nb
〈I〉
N

(

1 − 〈I〉
N

)

− a
〈I〉
N

(7.32)

hence

dx

dt
= Nb x · (1 − x) − a · x . (7.33)

This is the logistic equation (see section 7.2) with a = α and Nb = β. See

Fig. 7.3 for the time solution for 〈I〉 for a population size of N = 100 on

a double logarithmic plot. In this plot the straight line is clearly visible

for the critical value βc, indicating the power law with exponent −1. The

spatial system has been investigated in respect to criticality by Grassberger

and de la Torre.7

We have seen criticality in a simple epidemic model where a parame-

ter has to be adjusted to or near to its critical value. In applications we

have such a situation for example when the epidemic system crosses slowly

through the critical region, as in the example of measles under vaccina-

tion.15,16 However, in self-organized criticality (SOC) the system evolves

on its own to a critical state showing power law behavior. As a paradig-

matic system for SOC in epidemiology, in the next section we will describe

a theory of accidental pathogens and applied it to meningococcal disease.

7.3. Accidental pathogens: the meningococcus

7.3.1. Accidental Pathogens

A classical example of different scientific disciplines working together fruit-

fully from the beginning of 20th century is the explanation of chemical
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Fig. 7.3. a) Starting with I(t0) = 80 infected individuals, we plot 31 trajectories varying
β between β = 0 and β = 2.5 of the SIS epidemic ODE up to tmax = 10. The parameter
α is fixed to α := 1. b) We now change tmax up to tmax = 500 and plot I(t) for various
parameter values β on a double-logarithmic scale. For small β-values the solutions I(t)
decreases fast, exponentially fast. For large β-values the solutions converge quickly onto
the final stationary value, observed as constant here. Only for β = α the curve becomes
a straight line in the double-logarithmic plot, indication the power law at criticality.

reactions by physical atomic models. More recently, evolutionary biology

and epidemiology, accompanied by statistical physics of critical phenomena,

present a new picture to explain unpredicted outbreaks of a severe disease

as we will show in a case study on meningococcal infection. This case study

will also provide a new mechanism to understand the epidemiology of this

particular example, meningococcal disease. It will also serve as a test bed

for general principles discussed in evolutionary biology, namely that minor

effects at the individual level can cause more harm at population level than

a major individual effect which is subject to strong negative selection.

Meningococcal disease is caused by the bacterium Neisseria meningitidis

(also known as the meningococcus.) The epidemiology of the disease in the

developed world is characterized by outbreaks of variable size and duration.

The occurrence of these outbreaks has long puzzled epidemiologists. The

meningococcus differs from most other pathogens in that transmits almost

exclusively through hosts which carry the bacterium, but do not show any

symptoms and do not fall ill. Transmission is mainly through close social

contact (e.g sharing accommodation). Disease caused by the bacterium

is a rare occurrence, however, if it happens the resulting septicaemia, or

meningitis meningitis can be life threatening. Because illness is very severe,

ill people rarely transmit the bacterium, and causing disease harms not only

the human host, but also the bacterium. Therefore causing disease can be

seen as accidental for the pathogen.

The epidemiology of accidental pathogens is difficult to study: for nor-
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mal diseases it suffices to keep track of the number of individuals that fall

ill, to monitor the size of the pathogen population. Carriers of accidental

pathogens, such as the meningococcus, are asymptomatic and therefore not

easy to identify. This does not the pathogen population is not present: it

has been estimated that 5-10% of the human population normally carries

the meningococcus, and that in same age classes in certain environments

(e.g adolescents such as army recruits or students who often share accom-

modation) this can go up to 40%. The number of cases of meningococcal

disease, in contrast, is small, in the order of 1-10 per 100,000 per year; the

pathogenicity of the meningococcus is actually very small.26

The small pathogenicity can cause huge critical fluctuations at the pop-

ulation level, a mechanism most clearly visible in meningococcal disease,

but possibly underlying many other epidemiological systems, not only of

bacterial infections but also viral infections. Whereas bacteria have their

own metabolism and are able to reproduce with little effect on their host,

viruses have to hijack host cells in order to do so. For example in polio

infection most of the time the viruses live in the host’s gut undetected and

only when entering nerve cells they cause severe disease. As epidemiology is

one of the best data sources of biological interactions, especially notifiable

diseases, and micro-organisms in a hostile environment like the pathogen-

host interaction are the fastest mutating biological systems, this is the ideal

set-up for evolutionary biology to be tested quantitatively.

On the technical side, the critical fluctuations that are so crucial in un-

derstanding major epidemic outbreaks were originally investigated in phys-

ical systems much larger than the human population. Though finger prints

of a critical state can be obtained near criticality, it becomes increasingly

difficult to investigate critical quantities the closer to criticality the system

is. So we can only hope to find these finger prints, but not really attempt to

measure accurately for example critical exponents. It has to be mentioned

that we are in a so-called non-equilibrium critical system, a birth-death pro-

cess effectively, whereas the most powerful characterization of criticality is

obtained in equilibrium systems, like the famous Ising model for magnetic

phase transitions. However, as the system under investigation evolves on its

own towards a critical state, we can expect that the system is most of the

time reasonably close to criticality in order to detect the large fluctuations

reliably in empirical data.
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7.3.2. Modeling Infection with Accidental Pathogens

Classically, epidemics are modelled dividing the host population into sus-

ceptible S, infected I and sometimes recovered R, where the infected are

asymptomatic.

Meningoccocci mostly live as commensals in the nasopharynx of the

hosts as an unnoticed, completely harmless infection. We will denote the

harmlessly infected hosts by I. Rarely, meningococci cross the nasal wall

into the blood stream and cause septicaemia or meningitis. In the model ill

hosts are labeled X and ill hosts are removed from normal social interac-

tion such hosts do not transmit. The resulting SIRX-model would allow a

transition from harmlessly infected to diseased hosts with a small rate ε. It

is only the number of diseased cases X which is recorded in empirical data

of meningococcal disease. We will investigate the quantitative outcome of

this SIRX-model with respect to the statistics of the disease cases, X , be-

low, but can already say here that the Poisson process-like behavior of the

SIRX-model does not account for the basic epidemiological findings that

meningococcal disease often appears in clusters with pronounced phases of

silence between outbreaks.

Only when we include another finding of the biology of the meningo-

coccus in the modeling of its epidemiology can such clustered outbreaks be

obtained. Namely, it is necessary to take into account that the bacteria

are are highly mutating easily mutate and evade the hosts’ immune sys-

tem during harmless carriage.27 The different mutants of the bacterium

have different likelihoods accidentally harming their host by causing severe

disease. Hence in the simplest modeling set-up where we found clustered

outbreaks17 we distinguished between harmless infection never causing dis-

ease, the I class, and potentially harmful infection with a different mutant

strain of the bacteria, the Y class, from which with a small rate ε, the

pathogenicity, disease cases X are created. For pathogenicity close to its

critical value of zero we found huge fluctuations, to be expected from the

theory of critical phenomena in physics of condensed matter9,28 and in

biology of critical birth and death processes7,8 (for a general audience in-

troduction see Warden29). These fluctuations are giving rise to clustered

outbreaks in disease cases X in our SIRYX-model.17

7.3.3. The meningococcal disease model: SIRYX

We include demographic stochasticity in the description of the epidemic.

As such, for the basic SIRYX-model we consider the dynamics of the proba-
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bility p(S, I, R, Y, X, t) of the system to have S susceptible, I asymptomat-

ically infected with harmless strain, R recovered, Y asymptomatically in-

fected with potentially harmful strain and X with symptomatic infected,

all at time t, which is governed by a master equation30,31 (see also in a re-

cent application to a plant epidemic model32,33). For state vectors n, here

for the SIRYX-model n = (S, I, R, Y, X), the master equation reads

dp(n)

dt
=

∑

ñ6=n

wn,ñ p(ñ) −
∑

ñ6=n

wñ,n p(n) (7.34)

a more complicated master equation than used for the SIS-system in Eq.

(7.1). For the SIRYX-system the transition probabilities wñ,n are then

given (omitting unchanged indices in ñ, with respect to n) by

w(R−1,S+1),(R,S) = α · R , R
α−→ S

w(S−1,I+1),(S,I) = (β − µ) · I
N

S , S + I
β−µ−→ I + I

w(S−1,Y +1),(S,Y ) = µ · I
N

S ,
µ−→ Y + I

w(I−1,R+1),(I,R) = γ · I , I
γ−→ R

w(S−1,Y +1),(S,Y ) = (β − ν − ε) · Y
N

S , S + Y
β−ν−ε−→ Y + Y

w(S−1,I+1),(S,I) = ν · Y
N

S ,
ν−→ I + Y

w(S−1,X+1),(S,X) = ε · Y
N

S ,
ε−→ X + Y

w(Y −1,R+1),(Y,R) = γ · Y , Y
γ−→ R

w(X−1,S+1),(X,S) = ϕ · X , X
ϕ−→ S

(7.35)

along with the respective reaction schemes. From wñ,n the rates wn,ñ follow

immediately. This defines the master equation for the full SIRYX-system.

For the accidental pathogen specific system, the following considerations

are needed: In order to describe the behavior of pathogenic strains added

to the basic SIR-system we include a new class Y of individuals infected

with a potentially pathogenic strain. We will assume that such strains arise

by e.g. point mutations or recombination through a mutation process with

a rate µ in the scheme S + I
µ−→ Y + I. For symmetry we also allow the

mutants to back-mutate with rate ν, hence S + Y
ν−→ I + Y .

The major point here in introducing the mutant is that the mutant

has the same basic epidemiological parameters α, β and γ as the original

strain and only differs in its additional transition to pathogenicity with

rate ε. These mutants cause disease with rate ε, which will turn out to be

small later on, hence the reaction scheme is S + Y
ε−→ X + Y . This sends

susceptible hosts into an X class, which contains all hosts who develop

disease. These are the cases which are detectable as opposed to hosts in
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classes Y and I that are asymptomatic carriers who cannot be detected

easily. The mutation transition S + I
µ−→ Y + I fixes the master equation

transition rate w(S−1,I,R,Y +1,X),(S,I,R,Y,X) = µ · (I/N) · S. In order to

denote the total contact rate with the parameter β, we keep the balancing

relation

w(S−1,I+1,R,Y,X),(S,I,R,Y,X)+w(S−1,I,R,Y +1,X),(S,I,R,Y,X) = β · I

N
·S (7.36)

and obtain for the ordinary infection of normal carriage the transition rate

w(S−1,I+1,R,Y,X),(S,I,R,Y,X) = (β − µ) · (I/N) · S. The total rate of trans-

mission for a susceptible host through either normal carriage I or mutant

carriage Y , by β obeys the balancing equation

∑

m̃ 6=m

w(S−1,m̃),(S,m) = β
I + Y

N
· S (7.37)

for m = (I, R, Y, X). With the above mentioned transitions this fixes the

master equation rate w(S−1,I,R,Y +1,X),(S,I,R,Y,X) = (β − ν − ε) · (Y/N) · S.

The system shows qualitatively the behavior demonstrated in Fig. 7.4 with

the stochastic simulations performed with the Gillespie algorithm.34–36

7.3.4. Divergent fluctuations for vanishing pathogenicity:

Power law

For pathogenicity ε larger than the mutation rate µ a potentially harmful

lineage normally does not attain high densities compared to the total pop-

ulation size. Therefore, we can consider the full system as being composed

of a dominating SIR-system which is not really affected by the rare Y and

X cases, calling it the SIR-heat bath, and our system of interest, namely

the Y cases and their resulting pathogenic cases X , is considered to live

in the SIR-heat bath. The SIR-heat bath is independent of X and Y and

controls the number of susceptible individuals available for infection, S.

Taking into account Eq. (7.38) for the stationary values of the SIR-

system

S∗ = N
γ

β
, I∗ = N

(

1 − γ

β

) (
α

α + γ

)

, R∗ = N − S∗ − I∗ (7.38)

we obtain for the transition rates (compare Eq. (7.35)) of the remaining
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Fig. 7.4. For the SIRYX-model we show simulations of 10 runs for two different values
of pathogenicity ε. In a) and c) ε is ten times smaller than in b) and d). The cumulative
number of diseased cases X is shown in a) and b). Paradoxically, the cumulative number
of diseased cases does not also decrease by a factor of ten, but fluctuates more wildly,
sometimes leading to even higher numbers of diseased. The paradox is explained by
inspecting the numbers of hosts carrying the potentially harmful bacteria (Y (t)) in c)
and d) where it can be seen that the number of carriers differs by a factor ten, due to
their smaller disadvantage compared to harmless carriage.

YX-system

w(S∗,Y +1),(S∗,Y ) = µ · S∗

N
I∗ =: c

w(S∗,Y +1),(S∗,Y ) = (β − ν − ε) · S∗

N
Y =: b · Y

w(S∗,X+1),(S∗,X) = ε · S∗

N
Y =: g · Y

w(Y −1,R∗),(Y,R∗) = γ · Y =: a · Y
w(X−1,S∗),(X,S∗) = ϕ · X .

(7.39)

All terms not involving Y or X vanish from the master equation, since

the gain and loss terms cancel each other out for such transitions. If we

neglect the recovery of the disease cases to susceptibility, as is reasonable

for meningitis, hence ϕ = 0, we are only left with Y -dependent transition

rates.
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In a simplified model, where the SIR-subsystem is assumed to be sta-

tionary (due to its fast dynamics), we can show analytically the divergence

of the variance and a power law behavior for the size of the epidemics

p(X) as soon as the pathogenicity approaches zero. Hence the counter-

intuitively large number of disease cases in some realizations of the process

can be understood as large scale fluctuations in a critical system with order

parameter ε towards zero.

The master equation for YX in stationary SIR results in a birth-death

process

d

dt
p(Y, X, t) = (b · (Y − 1) + c) p(Y − 1, X, t) (7.40)

+a · (Y + 1) p(Y + 1, X, t) + g · Y p(Y, X − 1, t)

−(bY + aY + gY + c) p(Y, X, t) .

For the size distribution of the epidemic we obtain power law behavior

pε(X) := lim
t→∞

p(Y = 0, X, t) ∼ X− 3

2 . (7.41)

for ε → 0 and large X (see Stollenwerk, Jansen17). The exponent −3/2

is the mean field critical exponent of the branching process.12,37,38 The

result Eq. (7.41) was obtained by approximations to a solution with the

hypergeometric function

pε(X) =
√

ε · 2−(X+1)

√
β

· 2F1

(
3 − X

2
,
2 − X

2
; 2; 1 − ε

β

)

. (7.42)

Such behavior near criticality is also observed in the full SIRYX-system

in simulations where the pathogenicity ε is small, i.e. in the range of the

mutation rate µ. In spatial versions of this model it is expected that the

critical exponents are those of directed percolation (private communication,

H.K. Jansen, Düsseldorf, see also Janssen39). Further information can be

found in Guinea, Stollenwerk, Jansen40 and in Stollenwerk, Jansen.24

7.3.5. Evolution towards Criticality

The epidemiological system with accidental pathogens is driven by evolu-

tion towards the critical threshold of small pathogenicity and, hence, to

large critical fluctuations.18 The mechanism is simply the disadvantage

of the more harmful strains against their less harmful opponents as they

remove their hosts from the system, preventing them from spreading the re-

spective harmful mutants further. Only strains with a small pathogenicity

can survive for a possible very long long period of time. So one arrives at the
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Fig. 7.5. Yearly cases of menigoccocal disease for Norway, notification data, as obtained
from the web page of the World Health Organization (WHO), http://www.who.int/emc,
document WHO/EMC/BAC/98.3. Decade long outbreaks are visible.

seemingly paradoxical situation that, by reducing the pathogenicity by a

factor of ten, one can actually often observe higher numbers of disease cases

X (see Fig. 7.4, a)). The paradox is resolved by inspecting the number

of mutant infected hosts, Y , which increases by reducing the pathogenicity

(see Fig. 7.4, b). This qualitative explanation of why the mildly harmful

mutants are dominating the epidemiology of accidental pathogens has been

proved quantitatively in Stollenwerk, Jansen.18

7.4. Empiric Data Show Fast Epidemic Response and Long

Lasting Fluctuations

A first inspection of empirical data on outbreak patterns of meningococcal

disease is puzzling. On the one hand, in long time series for a country like

Norway one observes decade long outbreaks (see Fig. 7.5), suggesting that

basic epidemiological parameters like inverse infection and recovery rate are

of the order of several months to one year.

On the other hand, in weekly data from England and Wales a strong

seasonal pattern in meningococcal disease notifications is clearly visible,

with in addition very strong outbreaks around Christmas and the change

of year (see Fig. 7.6). A similar pattern is visible for the 9 regions in which

England and Wales are divided. A strong seasonality is present, some-

times accompanied by high Christmas peaks, the regions being of similar
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Fig. 7.6. England and Wales weekly data of notified cases of meningococcal disease. A
strong seasonality is visible. Time is given in weeks, starting at 1st of January, 1995.

population size as Norway, around 5 million inhabitants.

Assuming a seasonal forcing of the contact rate, possibly based on sea-

sonality in climate, in the underlying population this leaves only a time

scale of quick adjustment of the infection process for parameters like in-

verse infection and recovery rate etc. in the range of a few weeks. On top

of that, the Christmas peak, a strong increase of cases in the 52nd week

of the calendar year and higher incidents rates also in the two following

weeks, the first and second week in January, even suggests a shorter time

scale of days to a few weeks.

A possible explanation for the one hand fast response of the epidemic

system to seasonality and on the other hand decade long outbreaks could

simply be different strains acting on different time scales, and in differ-

ent countries. Microbiological studies revealed a diversity of lineages to be

present, some of which could cause disease.27,41 On the basis of these data

we cannot rule out this explanation but, surprisingly, a very simple model,

such as the SIRYX-model described above, can capture both the quick re-

sponse to seasonal forcing. Due to its closeness to a critical threshold can

this model can produce huge long term fluctuations on the time scale of

decades when compared to the given time scale of a year given by season-

ality. On the contrary, the simpler SIRX-model, being forced seasonally,

only can give rise to fluctuations predicted by a Poisson process, with a

variance in the range of the mean, but not showing the much larger and

time-correlated critical fluctuations of the SIRYX-model.
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Fig. 7.7. Comparison between a) data from England and Wales and simulations with
b) the SIRX-model and c) the SIRYX-model. In a) the weighted mean over 9 regions
of England and Wales is shown for the 7 years of weekly data. b) shows a simulation
of the simple SIRX, parameters adjusted to qualitatively match the data in a), for a
comparable amount of time. c) shows a simulation of the multi-mutant SIRYX-model,
taking the same basic parameters of the SIRX-model and further adjustments of the
additional parameters into account to match the data. Population size is N = 5 million,
roughly the size of a typical region in England and Wales. Both models resemble the data
farely well in its seasonality and noise level, not attempting to also model the Christmas
peak. Little difference is visible between the models.

Interestingly, whereas any distinction between the SIRX and the

SIRYX-model would be very difficult on the basis of the short term weekly

data from England and Wales, the distinction is quite easy for long term

simulations exploiting the critical fluctuations.

7.4.1. Modeling fast epidemic response finds long lasting

fluctuations

To model the seasonal data from England and Wales, we first observe data

from the 9 regions, in which England and Wales is divided. By taking

the mean, weighted with the total number of cases in each region over the

observation period, we can reduce the effect of the pronounced Christmas

peak, which we will not further consider.

In a second step we adjust the parameters of the simple SIRX-model,

respectively the multi-mutant SIRYX-model, to the seasonality and the
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noise level of the weighted mean data set. Starting from the stationary

state solution for the SIRYX-model with constant time independent contact

rate we obtained good visual agreement between model and data using a

parameter set with fixed ratio of susceptible, infected and recovered. This

fixes the ratio of the basic epidemic parameters α, β and γ of the SIR-

subsystem and fixes the mutation rate µ and the pathogenicity ε to roughly

obtain the noise level of the observed data. Finally, we fixed the absolute

value of γ to the time scale given by the data’s seasonality, especially the

slight shift, i.e. fast response, to seasonal forcing in the contact rate. This

left us with an upper limit of inverse recovery γ−1 = 4 weeks, giving a

minimum of disease cases X about 7 weeks after midsummer, as observed

in the data. Uncertainty about the value of the contact rate could change

this picture in the range of plus or minus two weeks, but would not result

in a response in the range of months or years, needed to smooth out the

seasonality.

The SIRX-model uses the same basic epidemic parameters α, β and

γ as the SIRYX-model. No mutation rate is needed here, since we only

have one strain of pathogens in this model, and an adjusted pathogenicity

accounts for the lack of mutants Y in this model. As shown in Fig. 7.7

there are hardly any differences visible between the SIRX-model and the

SIRYX-model on this time scale, both describing the mean regional data

in England and Wales quite well in terms of seasonality and noise level.

We have to look at a different time scale in order to see any profound dif-

ference between the SIRX and the SIRYX model. Therefore, we performed

a comparative study, binning the number of disease cases not into weeks

but years (keeping the weekly time scale to compare the longer time dura-

tion of the simulations) and increasing the simulated time to roughly 1200

weeks (corresponding to 23 years), three times longer than the previous

simulations and the empirical data.

The result is shown in Fig. 7.8. In a) the SIRX-model for a population

size of 5 million people shows some fluctuations from year to year, whereas

the SIRYX-model in b) for the same system size sometimes shows much

larger variability, but sometimes not. For example between week 400 and

800 it would be quite difficult to distinguish the two realizations shown here.

For ten times larger population size, corresponding to the size of England

and Wales, the differences between SIRX-model in c) and SIRYX-model in

d) is even less pronounced over the entire simulation time. So again any

testing between the models would face severe difficulties, the more since our

data sets from England and Wales are much shorter than the simulation
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Fig. 7.8. Simulation of weekly cases, now binned into years for a) the SIRX-model and
b) the SIRYX-model, for population size 5 million, c) and d) simulations of the above
mentioned models now for population size 50 million. See text for further description.

times used here for the models. Hence only longer term data could help in

this situation.

On the other hand, this set of simulations gives us a crucial hint from the

theory of critical phenomena how to proceed further in our analysis in so

far as comparing the Fig. 7.8 b) and d), the close to critical SIRYX-model

shows some time-autocorrelation in its fluctuations which also increases in

length with system size. This is predicted by the theory of critical phenom-

ena.9,28 Namely, at criticality the autocorrelation time diverges and close

to criticality the autocorrelation time increases as a power law. Renormal-

ization theory should guarantee that pictures of the system look similar

when changing system size and running time accordingly. This is the so

called scaling of system size and time.

Under the circumstances of Fig. 7.8 again a rigorous test would be

difficult, since in short time series some autocorrelation in realizations of

completely uncorrelated fluctuations often ocurs. For example in the sim-

ulation of the SIRX-system in Fig. 7.8 a) one easily finds three subsequent

years showing decreasing numbers of diseased cases. The situation is sim-

ilar in Fig. 7.8 c). However, the autocorrelation functions for the data of

Fig. 7.8 point into the same direction. Hence, we performed even longer

time simulations, expecting more pronounced fluctuations as time passes.
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Fig. 7.9. Smaller population size N = 1 000 000, 4× longer time series than in Fig 7.8.

Nearly Poissonian variance over mean ration is observed for SIRX in a), it is 0.95. On
the contrary for SIRYX in b) it is 16.72.

Since such simulations are time consuming for large system sizes already

at short time simulations we perform longer simulations with just 1 million

population size.

The results for four times longer simulations as in the previous Fig. 7.8

are shown in Fig. 7.9, comparing the SIRX-model in a) and the SIRYX-

model in b). Though again for short periods, as between week 1500 and

2000, there would be little difference between the models, the overall picture

is distinguishing very well between the models. Whereas the SIRX-model

in a) just shows minor fluctuations over the whole period of simulation,

comparable essentially to a Poisson process, the SIRYX-model in b) shows

large fluctuations and very surprisingly a huge epidemic between weeks

3000 and 3500 lasting around 12 years. This purely stochastic event could

in real life easily be mistaken for an exogenously forced event, or a drastic

change in parameters, which it is obviously not here.

This pattern is confirmed by data from other countries. Data from the

USA show on the one hand some some seasonality (Fig. 7.10 a), monthly

data for 6 years), which is not as clear as the British weekly data but still

well visible, and on the other hand huge decade long fluctuations correlated

over many years (Fig. 7.10 b), yearly data for 36 years), again not that

pronounced as in the Norwegian data, but still clearly observable.

We have concentrated here on modeling the fast dynamics of meningo-

coccal disease data with strong seasonality, as visible in highly time re-

solved data from England and Wales. In addition, long term fluctuations

were found as seen in the Norwegian long term data, without putting any

new information into our model. In the case of data from the USA both

aspects are much weaker, hence not an ideal starting point for the analysis

performed above, but still visible to a level that looks promising for future
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Fig. 7.10. a) Monthly data from the USA, 1996 to 2001, shows signs of seasonality. b)

Yearly data from the USA, 1966 to 2001 have mean µ = 2519.7 and standard deviation

σ = 581.9, hence the variance over mean ratio is σ
2

µ
= 134.4, indicating strong deviations

from the Poissonian behavior.

analysis along the first inspections shown here.

Eventually, fine tuning of single parameters might be possible along

the lines of earlier parameter estimation techniques with master equation

simulations.32,33 To achieve this, the simulation time of the models has

to be decreased significantly by approximations along the lines sketched in

Stollenwerk, Jansen,17 namely approximating the SIR-part of the system

deterministically.

Our results suggest that decade long fluctuations in incidence are not in-

duced by the seasonality in the contact rate, but the closeness to criticality.

We checked this by simulations without seasonality, keeping the parame-

ters otherwise as before, and still found huge decade long fluctuations in

disease level. We think this has wide implications for public health: critical

fluctuations as observed here can lead to long outbreaks of disease without

any causal change in external factors. Instead they are due to stochastic

fluctuations in hardly detectable levels of asymptomatically carried bacteria

which only rarely cause disease.
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