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Statistics of infections with diversity in the pathogenicity
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Abstract

The statistics of outbreaks in a model for the propagation of meningococcal disease is analyzed, taking into account the possibility

that the population is fragmented into weakly connected patches. It is shown that, depending on the size of the sample studied, the

ration between the variance and the average of infected cases can vary from unity (Poisson statistics) to e�1, where e is the normalized

infection rate.
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1. Introduction

The meningococcus is a major cause of meningitis and

septicaemia. Despite this, infection with the meningococcus

is mostly harmless and only rarely leads to disease.

Transmission of the disease is almost exclusively through

asymptomatic carriers of the disease. A predominant feature

of the epidemiology of meningococcal disease is outbreaks

of variable scale and duration. The meningococcal popula-

tion is genetically highly diverse. We have shown, using a

mathematical model, that heritable diversity with respect to

pathogenic potential can lead to disease outbreaks [1–3].

Meningococcal disease is a notifiable disease in many

countries. Therefore, there exist extensive data sets on the

incidence of meningococcal disease. The analysis of

meningococcal disease data is problematic because the

number of asymptomatic carriers at any time, the variable

that is probably of most interest, is normally not known

because transmission of the pathogen takes place almost

exclusively through asymptomatic carriers. Therefore, key

epidemiological parameters are difficult to estimate and
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methods that are standard in epidemiology, such as outbreak

reconstruction through contact tracing, cannot easily be

applied. For this reason, outbreaks of meningococcal

disease are difficult to reconstruct and to detect.

In this paper, we will investigate the statistical structure

of an epidemiological model to infer the underlying disease

process from data on the number of cases of disease. Such

insights have been applied in the analysis of meningococcal

disease data [3]. Here, we will investigate the validity of the

assumptions made for these inferences and study how the

variance in the number of cases of disease depends on the

structure of the population.
2. The SIRYX model

We study the SIRYX model, considered in [1–3]. The

model is an extension of the SIR model [4]. There are two

types of infected individuals, I and Y. The Y’s are generated

by mutation from the I’s at rate lb. For simplicity, we

assume that the back mutation rate YYI is nil. The Y

population can develop disease at rate eb. The parameter e

is the pathogenicity: the probability to develop disease upon

infection. We define the number of individuals which suffer

the disease X. We further simplify the model by assuming
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Fig. 1. Sketch of the model used in the text. The probability for contagion

within the same patch is b, while the probability of contagion to any

neighboring patch is bV.
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that these individuals are removed from the population. The

mean field equations are:

dS

dt
¼ aR� b

S

Np

I þ Yð Þ

dI

dt
¼ b 1� lð Þ S

Np

I � cI

dR

dt
¼ c I þ Yð Þ � aR

dY

dt
¼ b 1� eð Þ S

Np

Y � cY þ bl
S

Np

I

dX

dt
¼ be

S

Np

Y � bdX ð1Þ

The only difference with respect to the model studied in

[1,3] is the introduction of a the rate d at which the X

individuals are removed from the population (see below).

This rate implies that, in the long run, the only stationary

situation is the conversion of all individuals into the X type

and their eventual disappearance. We will study here

quasistationary situations, which arise when d, ebb1.
Following [1], we consider that the system is near its

stable point when l=0 and Y=0. The remaining parameters

at the fixed point are:

S

Np

¼ S4

Np

¼ c
b

I

Np

¼ I4

Np

¼ a
b

b � c
a þ c

ð2Þ

Assuming that the fixed point values for S and I do not

change much for small l, we can define a simple birth-death

model for the variables Y and X. We define p Y ; tð Þ ¼Pl
X¼0 p Y ;X ; tð Þ, as the probability of finding the value Y at

time t. This function satisfies:

d

dt
p Y ; tð Þ ¼ b Y � 1ð Þ þ c½ � p Y � 1; tð Þ

þ a Y þ 1ð Þp Y þ 1; tð Þ

� bY þ aY þ cð Þp Y ; tð Þ ð3Þ

where we have defined the death rate, a=c, birth rate,

b=b(1�e)S*/Np and rate of creation of a new individuals by

mutation, c=bl(S*/Np)I*.

We generalize this equation to the case of a system

divided into M patches. The main difference is that the birth

probability has to be divided into the probability that the

contagion is to another individual within the same patch,

which we still define as b, and the probability that the

contagion leads to a new individual of type Y in another
patch, bV. The total infection rate remains b+(M�1)

bV=b(1�e)S*/Np. The generalization of Eq. (3) is:

d

dt
p Yif g; tð Þ ¼

X
i

b Yi � 1ð Þp Yi � 1; Yj
� �

; t
� �

þ
X
jp i

X
i

bVYjp Yi � 1; Yif g; tð Þ

þ
X
i

a Yi þ 1ð Þp Yi þ 1; Yj
� �

; t
� �

þ
X
i

cp Yi � 1; Yj
� �

; t
� �

�
X
i

bYip Yif g; tð Þ

�
X
jp i

X
i

bVYjp Yif g; tð Þ

�
X
i

aYip Yif g; tð Þ � cp Yif g; tð Þ ð4Þ

Note that in this equation c is the mutation rate within one patch.

The total mutation rate is Mc. When b=bV, we recover the limit
of a well-mixed population, while for bV=0 the patches are

decoupled. A sketch of the model is shown in Fig. 1.
3. Results

From Eq. (4), we can calculate the ensemble means of

different quantities. The details of the calculations are given

in Appendix A. The results are:

hYii ¼
c

a� b� M � 1ð ÞbV

hY 2
i i � hYii2 ¼

ac a� b� M � 2ð ÞbV½ �
a� b� M � 1ð ÞbV½ �2 a� bþ bVð Þ

hYiYji�hYiihYji¼
abVc

a� b� M � 1ð ÞbV½ �2 a� bþ bVð Þ
ð5Þ

All these quantities vanish when the mutation rate is zero,

c=0.
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The net growth rate is ae=a�b�(M�1)bV. The number

of infected cases appear with rate XiV=aeYi.
We now calculate the number of infected individuals, Xi.

We study first the case of a single population and a single

variable X. The infected individuals are generated from the

YVs at rate a�b�(M�1)bV. In order to calculate X in a single

population, we use as unit of time a�1 and assume that the

death rate of the X’s is d. We write the mutation rate c=a;

then, we can write:

dP X ; Y ; tð Þ
dt

¼ e Y þ 1ð ÞP Y þ 1;X � 1; tð Þ � YP X ; Y ; tð Þ½ �

þ d X þ 1ð ÞP X þ 1; Y ; tð Þ � XP X ; Y ; tð Þ½ �

� cP X ; Y ; tð Þ ð6Þ
where we have used as the unit of time a�1, e is now the

rate of conversion from Y into X, d is the death rate of the

XVs and c=c/a is the mutation rate from I into Y. Using the

techniques described in Appendix A, we can write:

dhX i
dt

¼ ehY i � dhX i

dhX 2i
dt

¼ 2ehXY i þ hY i � 2dhX 2i þ dhX i

dhXY i
dt

¼ � ehXY i þ ehY 2i � ehY i � dhXY i þ chX i

ð7Þ

In a stationary state, the right hand side of these equations is

equal to zero and we find:

hX i ¼ e

d
hY i

hX 2i ¼ hX i
2

þ e

d
hXY i þ hY i

2

� �

hXY i ¼ ehY 2i � ehY i þ chX i
eþ d

ð8Þ

We substitute the first and third of these equations into the

second, so that:

hX 2i � hX i2 ¼ e

eþ d
hY i þ e2

d eþ dð Þ hY 2i � hY 2i
� �

� e3

d2 eþ dð Þ
hY 2i þ hX i

2

þ ec
d eþ cð Þ hX i ð9Þ

From Eq. (6), we also obtain hYi=c/e. Inserting this result

into Eq. (9), we have:

hX 2i � hX i2

hX i ¼ 1

2
þ d

eþ d
þ e

eþ d
hY 2i � hY i2

hY i ð10Þ
This equation relates the variance and the average of X.

When the mortality rate is very high, dNNe, we have:

hX 2
i i � hXii2

hXii

					
de

c1 ð11Þ

The ratio approaches a constant of order unity and the

process seems to have Poisson statistics. This is reasonable,

because there is an approximately constant reservoir of Y

individuals which can lead to an X individual, which

disappears quickly, and the distribution of X cases is not

influenced by the fluctuations of Y.

A more interesting regime arises if dbbe and ebb1. Then,

the r.h.s. in Eq. (10) is dominated by the third term, because

(hY2i�hYi2)=hYie�1. We find in this case:

hX 2
i i � hXii2

Xi

					
dbb ebb1

c
hY 2

i i � hYii2

hYii
ð12Þ

This result is the basis of the following section. Note that

when d=0 the value of hXii increases linearly with time.
4. Size effects

Using the results in Appendix A and Eq. (12), we find

(for Mz2):

VarXi

hXii
¼ a½a� b� M � 2ð ÞbV�

a� b� M � 1ð ÞbV½ � a� bþ bVÞð ð13Þ

On the other hand, for the entire system, we obtain:

VarX

hX i ¼ a

a� b� M � 1ð ÞbV ð14Þ

The linear relationship between the variance and the mean is

discussed in detail in [3]. For isolated patches, bV=0 and b/

a=1�e. As expected, the local and global values, Eqs. (13)

and (14), coincide, giving a ratio equal to 1/e.

In a well-mixed population, we have bV=b, the total birth
rate is btot=Mb, and (Mb)/a=1�e. Then, we find:

VarXi

hXii
¼ 1þ 1� e

Me
ð15Þ

VarX

hX i ¼ 1

e
ð16Þ

For a small subsystem of a well-mixed population

(MNN1/e), we have VarXi/hXiic1. This ratio would imply

that the process is due to random mutations with Poisson

statistics. An analysis of the total variance, however, gives a

rather different result. For large (but artificial) subdivisions

of the well-mixed system, Mebb1, and VarXi/hXiic1=(Me).

It is interesting to analyze the situation in which

populations of size N below some size N* are part of a

well-mixed population of size N*, while larger populations

can be considered as isolated, made up of smaller,

decoupled populations of size N*. Then, for populations
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Fig. 2. Dependence of the variance of infected individuals on the average

for small populations which are part of a larger, well-mixed population,

hXibhX*i, or form an isolated population, hXizhX*i (see Eq. (17)). The

infection rate is e=0.01.
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NVN*, we can use Eq. (15) with M=N*/N=hXi/hX*i (hX*i
is the value of the mean of a population of size N*), while

when NzN* we can use Eq. (16). The variance can be

written as:

VarX ¼ hX i þ hX i2 1�eð Þ
hX4ie NbN4

hX i
e

NzN4

(
ð17Þ

Eq. (17) interpolates between a Poisson like regime for

NbbN* to a 1/e ratio between the variance and the mean for

NzN*. A sketch of the results is shown in Fig. 2. The

approximations used here imply that the coupling between

different parts of the system are either strongly coupled or

totally decoupled. A more realistic approximation where the

inter-population contagion rate depends on the patch size is

discussed in Appendix B. The calculation gives a smooth

interpolation between the Poisson regime and the saturation

of the ratio between the variance and the mean for high

populations.
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Fig. 3. Dependence of the variance of infected individuals on the average

for populations when the inter-population contagion rate is size dependent

(see Eq. (B3)). The infection rate is e=0.01.
Appendix A. Calculation of averages

From Eq. (4), one finds the equations:

dhYii
dt

¼ b� að ÞhYii þ bV
X
jp i

hYji þ c
dhY 2
i i � hYii2

dt
¼ 2 b� að Þ hY 2

i i � hYii2
� �

þ aþ bð ÞhYii

þ cþ 2bV
X
jp i

hYji þ bV
X

i

hYii

dhYiYji � hYiihYji
dt

¼ 2 b� að Þ hYiYji � hYiihYji
� �

þ bV
X
i; jpk

hYiYki � hYiihYki

þ hYjYki � hYjihYki

þ bV
X
jp i

hY 2
i i � hYii2 þ hY 2

j i

� hYji2 ðA1Þ

so that:

hYii ¼ Ke� a�b� M�1ð ÞbV½ �t þ c

a� b� M � 1ð ÞbV ðA2Þ

where K is a constant determined by the initial conditions.

We define:

Cii ¼ hY 2
i i � hYii2

Cij ¼ hYiYji � hYiihYji ðA3Þ

These quantities do not depend on the indexes i and j. We

can write the two last equations in Eq. (A1) as:

d

dt

Cii
Cij

� �
¼ 2 b� að Þ 2 M � 1ð ÞbV

2bV 2 b� að Þ þ M � 2ð ÞbV

� �
Cii
Cij

� �

þ aþ bð ÞhYii þ bV
P

jp i hYji þ c

0

� �
ðA4Þ

We calculate the value of the limiting value of the

quantities Cii and Cij at long times. Then, we can make
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the l.h.s. in Eq. (A4) equal to zero. In the r.h.s., we can

use:

lim
tYl

aþ bð ÞhYii tð Þ þ bV
X
jp i

hYji tð Þ þ c

" #

¼ 2ac

a� b� M � 1ð ÞbV ðA5Þ

This leads to:

lim
tYl

Cii

Cij

� �
¼ �

2 b� að Þ 2 M � 1ð ÞbV
2bV 2 b� að Þ þ M � 2ð ÞbV

� ��1

� 2ac

a� b� M � 1ð ÞbV
0

0
BBB@

1
CCCA ðA6Þ

This expression leads to the results in Eq. (5).
Appendix B. Size-dependent inter-population contagion

rate

We generalize the analysis leading to Eq. (17) to a

situation where the contagion rate between patches, bV(M),

depends on the size of the patch, M. We keep constant the

total contagion rate, btot=b+(M�1)b(M). We assume that,

for sufficiently large patches MbbM*, the mutual contagion

rate goes to zero. Here, M* can be used to define a typical

size by N*=Np/M*, where Np is the size the entire
population. For very small sizes, MNNM*, we have

bV(M)=b. Hence, the function f(M/M*)=bV(M)/b should

satisfy:

f xð Þc 0 xNN1

1 xbb1

�
ðB1Þ

Hence,

b Mð Þ
a

¼ 1� e

1þ M � 1ð Þf M=M4ð Þ ðB2Þ

and, for a patch of size M, we obtain:

VarXM

hXM i
¼ 1

e
� M � 1ð Þ 1� eð Þf M=M4ð Þ

e Mf M=M4ð Þ þ e 1� f M=M4ð Þ½ �½ ðB3Þ

An example of this behavior, for f(x)=1�e�1/(2x2) is shown

in Fig. 3.
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