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Abstract

We define rationality and equilibrium when states specify agents’ actions and agents have arbitrary par-
titions over these states. Although some suggest that this natural modeling step leads to paradox, we show
that Bayesian equilibrium is well defined and puzzles can be circumvented. The main problem arises when
player j’s partition informs j of i’s move and i knows j’s strategy. Then i’s inference about j’s move will vary
with i’s own move, and i may consequently play a dominated action. Plausible conditions on partitions rule
out these scenarios. Equilibria exist under the same conditions, and more generally � equilibria usually exist.
© 2006 Published by Elsevier Inc.
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1. Introduction

Agents in decision theory take as given a set of states that specify every feature of the world
that affects them and the probabilities of those states. When placed in a game, therefore, an agent
i should take as given the probabilities of the actions that any other agent j plays. But although
the probabilities of j’s actions are given from i’s perspective, they cannot be given from j’s own
perspective. To deal with this complexity, one can let states specify profiles of the agents’ actions.
Every agent then faces the same state space and all can simultaneously maximize utility, with
a move for an agent i leading i to update probabilities accordingly. But a difficulty arises: if j’s
partition informs j of i’s move and i knows j’s strategy (i.e., j’s move as a function of the state), then
i’s own move can reveal to i what move j is taking. Agents can thus gather substantive information
from their own moves and the customary independence between actions and knowledge breaks
down. Even worse, in this scenario agent i can rationally play a dominated action. Some [5,16]

E-mail address: m.mandler@rhul.ac.uk.

0022-0531/$ - see front matter © 2006 Published by Elsevier Inc.
doi:10.1016/j.jet.2005.10.007

http://www.elsevier.com/locate/jet
mailto:m.mandler@rhul.ac.uk


106 M. Mandler / Journal of Economic Theory 135 (2007) 105–130

have recognized these possibilities and suggested that allowing agents to draw Bayesian inferences
from their own actions leads too far astray from orthodox game theory. We will show that these
concerns are exaggerated; with the right conditions on knowledge in place, Bayesian rationality
can be applied to states that specify actions and yet remain consistent with traditional thinking
about games.

The keys that open the door to the play of dominated actions are first, states that specify
actions, and second, agents who receive partitional information about other players’ moves. The
less distinctive equilibrium assumption that agents know other players’ strategies is also important.
While Aumann [3] and the literature in its wake give agents partitions over states that specify
actions, we will argue that the Aumann model evades the consequences of these assumptions.1

Curiously, it is the traditional dictates of Bayesian rationality—states that specify every relevant
contingency, and partitions—that can lead to anomaly.

The classic illustration of the feedback from action to knowledge when states specify actions,
and the resulting potential for the play of dominated actions, is the famous Newcomb problem.
An agent c (for chooser) is presented with two boxes, one of which is opaque and may or may not
contain a million dollars and one of which is transparent and visibly contains a thousand dollars:
c may either follow the one-box action c1, and take only the opaque box or the two-box action
c2, and take both boxes. At an earlier point in time, the other agent d (for demon) either places a
million dollars in the opaque box, action d2, in which case both boxes contain money, or leaves
the opaque box empty, d1, in which case only the transparent box has money. Agent c’s utility
is given by his money payoff, while d wants justice to prevail: d prefers the outcomes where c
modestly chooses only the opaque box and it has money or c greedily chooses both boxes but the
opaque box is empty over the outcomes where c chooses the single opaque box but finds it empty
or c chooses both boxes and discovers the opaque box is full. The payoffs are given below, where
x > y.

c1

c2

d1 d2

0, y 106, x

1000, x 106 + 1000, y

In standard game theory, c will play c2, which dominates c1, and d will therefore select d1.
The supposed paradox lies in the long history of past plays of the game. Some c’s have chosen
c1—perhaps they have different payoffs or think that sometimes it can be rational to play a
dominated action. And it turns out that whenever c selects c1, d had earlier chosen d2. Agent d is
somehow able to predict with perfect accuracy if he is dealing with a c who chooses c1 or a c who
chooses c2. Some conclude that there is then a logic to choosing c1. If d can indeed predict with
perfect accuracy the sort of c he faces, then c will benefit from deciding to be the sort of c who
chooses c1. The following story sometimes bolsters this argument: if d has extensive knowledge
of the physiology of c’s decision making and sufficient prior information, then he or she should
be able to predict c’s actions flawlessly. This story is implausible, but it underscores the need for
a minimal and plausible formal condition that will rule it out.

1 Much of the remainder of the literature on Bayesian games employs a base state space that does not specify actions
(as in the Harsanyi model) or, when actions states do list actions, assumes that agents do not have partitions over the state
space. For a sampling of the literature, see Armbruster and Böge [1], Aumann and Brandenburger [4], Böge and Eisele
[7], Brandenburger and Dekel [8], Dekel and Gul [9], Mertens and Zamir [14] and Tan and Werlang [18]. Brandenburger
and Dekel [8] also consider Newcomb’s paradox, which we discuss below.
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The above case for playing c1 is noticeably vague about the nature of d’s knowledge of c’s
actions. If we let the state space specify agents’ actions and model d’s knowledge by a partition,
we can put the argument for choosing c1 in Bayesian terms. Suppose the state space � specifies
just c’s and d’s actions: � = {(c1, d1), (c1, d2), (c2, d1), (c2, d2)}. Agent d’s flawless knowledge
of c’s move may then be represented by the following partition of �:

{{(c1, d1), (c1, d2)}, {(c2, d1), (c2, d2)}}.
Assuming c has no comparable partitional knowledge of d’s move, c’s partition is just {�}. When
a player i moves after having originally been informed of the cell Pi , the player updates using
the additional information implied by his move: the original cell Pi is replaced by the subset of
Pi that consists of those states that report the move that itakes. For example, if d is originally
informed of {(c1, d1), (c1, d2)} and moves d1 then d knows that {(c1, d1)} obtains, while if c, who
is always informed of just �, moves c1 then c knows that {(c1, d1), (c1, d2)} obtains. By itself, d’s
information about c’s move will not lead c to play the dominated action c1: if the probabilities that
d plays d1 or d2 are fixed, c will prefer to take the move c2. What leads to trouble is if d’s action
depends on d’s information and c knows this. So suppose that each player knows the equilibrium
strategy of the other player and that d plays the utility-maximizing strategy of choosing d2 when
facing {(c1, d1), (c1, d2)} and d1 when facing {(c2, d1), (c2, d2)}. Then c knows that only the
states (c1, d2) and (c2, d1) are possible and so c, by playing c1, can lead the more preferred of the
two, (c1, d2), to obtain. If c plays c1, c’s Bayesian inference is that d must have had information
that led to the play of d2, while if c plays c2 then c would infer that d had information that led to
the play of d1.

Notice that c’s partition is completely uninformative; it is d’s information combined with the
equilibrium assumption that players know each other’s strategy that leads c to play c1. More
generally, the fact that an agent i receives partitional information about another player j’s move
will not lead i to play a dominated action—it just helps i play a better response. For i to rationally
play a dominated action, it is i’s opponents’ information that matters. It is also important that the
other players’ partitions carry information about i’s move, not just about i’s type (payoffs).

The present example of playing a dominated action is the simplest of the cases we will consider.
Here d’s partition gives d perfect knowledge of c’s move, but all that is necessary is that d has
some partitional information. In fact, a player i can still play a dominated action even when some
other agent j has partitional knowledge of i’s move that is so weak that j always judges each of
i’s possible actions to have positive probability.

It is the converse to these examples that is most important: if no agent has any partitional
information about other agents’ moves then no agent will play a dominated action. Indeed in the
absence of partitional information about others’ moves (and with a plausible restriction on how
to update on 0 probability events), we will arrive at the same predictions as Aumann’s model of
correlated equilibrium. An absence of partitional knowledge of others’ moves is a natural and
plausible way to get rid of the paradoxes that can accompany states that specify actions. Regarding
Newcomb’s paradox, these results allow us to identify the conditions under which c1 is rational.
Agent d must have some partitional knowledge of c’s move, it is not enough for d merely to be
an accurate predictor of c (see Sections 5(ii) and 8).

Our model weakens Savage’s independence between knowledge and actions but not so dras-
tically that we end up on the Jeffrey [12] side of the divide in decision theory, where agents’
actions can change the probabilities of states in arbitrary ways. Instead the updating that takes
place as an agent moves occurs only via the refinement of the agent’s prespecified partition. As
a consequence, an agent i’s act of moving does not directly inform i of another player j’s move;
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it is the impact of i’s move on j’s information and hence on j’s equilibrium action that gives i
information and leads i to play a dominated action.

Traditional game and decision theory block the rational play of dominated actions either by
eliminating actions from the description of states or by not letting agents update as they move.
Agents then cannot infer anything about the state space from their own moves. But these crude
steps both go too far and fail to pin down where the problem lies. Agents should be able to draw at
least some conclusions about the world from their moves—they are subject to physical laws, after
all, and therefore ought to be able to deduce some physical facts from their moves. If we abide
by the Savage dictum that states should omit no relevant detail about the world, such inferences
become unavoidable. But with appropriate and plausible auxiliary assumptions in place, they do
not lead to trouble.

In addition to analyzing dominated move pathologies, we also aim to show that games and
information updating can be analyzed coherently when states specify actions. Rational play and
equilibrium are readily definable even when agents do receive partitional information about others’
moves. The existence of equilibrium involves some complications not present in ordinary game
theory, but equilibria or � equilibria exist in the important cases.

2. Strategies as states: the problem

Aumann’s [3] theory of Bayesian decision makers playing a game was the first to endow agents
with partitions over states that specify actions, and it illustrates the characteristic problem: in
order to preserve the independence of actions and knowledge, utility maximization is defined so
as to ignore the effect of an agent’s action on the state.

Let I = {1, . . . , n} be the set of players with each player i having a set of actions or moves Si

and define S = S1 × · · ·× Sn. Each i has the utility function ui : S → R. Uncertainty is described
by a set of states �, where each � ∈ � specifies (among other things) the players’ actions. The
agents share a common prior � on � while each i’s private information is modeled by a partition
Pi of � such that each cell Pi ∈ Pi has �(Pi) > 0. Let Pi(�) denote the cell of Pi that contains �.
Agent i chooses a strategy, �i : � → Si , that specifies i’s preferred action in Si as a function of the
state. The function �i is required to be measurable with respect to Pi . That is, for all �, �′ ∈ �,

Pi(�) = Pi(�
′) ⇒ �i (�) = �i (�

′).

It is not clear if the Aumann model pertains to a point in time before or after actions are taken.
If before, then measurability means that i cannot vary his or her move as a function of states in
the same cell. If after, and if we assume informally that i knows �i , then measurability means that
i knows his or her own move.

Let the strategy functions (�i )i∈I be Aumann rational if and only if, for all � ∈ �, i ∈ I, and
all �′

i that are measurable with respect to Pi ,

E(ui(�i , �−i )|Pi(�))�E(ui(�
′
i , �−i )|Pi(�)),

where �−i = (�1, . . . , �i−1, �i+1, . . . , �n) and E(ui(�i , �−i )|A) is the expectation of ui(�i , �−i )

conditional on the event A.
Aumann rationality has several drawbacks (see [5,6,16]). The left-hand side of the above

inequality gives i’s expected utility in the event Pi(�). By measurability, i takes the same action,
say si = �i (�), at each �̂ ∈ Pi(�); any �̂ ∈ Pi(�) should therefore describe a state at which si
occurs. But if i were instead to play the strategy �′

i where �′
i (�) = s′

i �= si for all � ∈ Pi , the
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right-hand side of the inequality says that i’s payoff would be E(ui(�′
i , �−i )|Pi(�)), the expected

utility of playing s′
i given that the event Pi(�) obtains. But Pi(�) contains only states at which

i plays si , not s′
i . Agent i would thus have to consider his payoff in a state that i deems to be

impossible—a state not in the cell Pi(�).
Second, how should we interpret the �i? The function reports the action si chosen as a function

of the state �. But if a state specifies what actions are taken, then �i evaluated at � could report
only the action for i that is given by � (�i would simply project � onto the coordinate that gives
i’s action). Hence, � normally cannot include every possible profile of actions s ∈ S if Aumann
rationality is to obtain. When, for example, � ∈ � specifies a strictly dominated action si ∈ Si ,
and therefore �i (�) = si , then i cannot be Aumann rational at this �.

If � has states that specify every possible profile of actions, then an agent i’s action must reveal
information to i, and thus i should condition on different events as i considers different possible
moves. The rest of this paper considers the consequences of this conditioning, in particular that
as the events on which i conditions change, i may be able to infer the moves of other players. If,
for instance, i were to deviate to the action s′

i from the action �i (�), then some j �= i might be
informed that a different cell of Pj obtains and thus i might be able to infer, from knowledge of
�j , that j will play a distinct distribution of actions.

3. Partitional rationality

Again the set of players is I = {1, . . . , n} where each i ∈ I has the set of actions Si with typical
element si , and S again denotes S1 ×· · ·×Sn. To make players’ actions explicit in the description
of a state, the state space � will now be a subset of S ×�, with typical element � = (s, �), where
� indicates all relevant features of the world besides players’ moves. We assume throughout
that each Si is a compact Euclidean space, e.g., all mixtures of a finite set of pure actions.
But no structure is imposed on �, and so � could, for example, specify an infinite hierarchy
of each player i’s beliefs, beliefs about j’s beliefs, etc. Since we sometimes need to consider
convex action sets, we allow � to be uncountable and endow � with a �-algebra of measurable
subsets.

Notation. Let Si(A), where A ⊂ �, denote the projection of A onto Si , S(A) denote the projection
of A onto S, etc. We use si(�), i ∈ I, and �(�) to denote the coordinates of �. When Si(A) is a sin-
gleton, we also use si(A) to denote si ∈ Si(A). As usual, s−i = (s1, . . . , si−1, si+1, . . . , sn), S−i =
S1 × · · · × Si−1 × Si+1 × · · · × Sn, etc.

We assume throughout that S(�) = S. In every important example, � in fact equals the product
S × � (one exception arises in this section and two others in Section 5).

Each agent i is described by a utility ui : � → R and a premove partition Pi of � consist-
ing of measurable cells that indicate i’s information prior to moving. We assume for simplicity
that i cannot exclude ex ante the possibility of any of his or her moves: for each agent i, each
si ∈ Si , and each Pi ∈ Pi , there exists an � ∈ Pi such that si(�) = si . Let P−i denote a
(P1, . . . , Pi−1, Pi+1, . . . , Pn) ∈ P1 × · · · × Pi−1 × Pi+1 × · · · × Pn.

The act of moving refines agent i’s partition, leading to a postmove partition P∗
i of measurable

cells of �, where P∗
i refines Pi . We interpret P ∗

i ∈ P∗
i both as what i knows after having taken

the move si(P
∗
i ) and as what i anticipates knowing if i were to take the action si(P

∗
i ). The latter

vantage point is the relevant one when we consider what moves are rational for i. The coincidence
of the two interpretations amounts to an assumption of rational expectations.
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We impose the following requirements on the P∗
i . Given any Pi , P ∗

i ⊂ Pi, P
∗′
i ⊂ Pi, � ∈ P ∗

i ,
and �′ ∈ P ∗′

i , then

KYOM (know your own move): P ∗
i = P ∗′

i ⇒ si(�) = si(�
′),

NEI (no extra information): P ∗
i = P ∗′

i ⇐ si(�) = si(�
′).

KYOM says that if two actions are in the same cell of the postmove partition, then they are the
same action: after moving, i knows his or her own action. This has the same meaning as the ‘after
the action’ interpretation of measurability in the previous section: an agent knows and remembers
his move. Notice that when Si consists of an infinite number of actions, then KYOM implies that
the postmove partition P∗

i contains an infinite number of cells.
NEI says that if two cells of i’s postmove partition report the same move for i (and they originate

from the same cell of i’s premove partition) then they are the same cells: when i cannot distinguish
ex ante between two states at which i makes the same move, the act of moving does not by itself
distinguish the states. Assuming that nothing else besides i’s move occurs when i chooses a P ∗

i ,
we view NEI as a rationality requirement. To see this, suppose P∗

i refines Pi and satisfies KYOM
but violates NEI: then there exist distinct P̃ ∗

i and P ∗′
i in some Pi and an ŝi such that si(�) = ŝi

for all � ∈ P̃ ∗
i ∪P ∗′

i . If taking the move ŝi necessarily leads to one of the postmove cells, say P ∗′
i ,

then i ought to be able to deduce premove that the states in P ∗
i cannot obtain. Moreover, some

P ∗
i ∈ P∗

i should necessarily obtain when i selects ŝi since we think of i as choosing a P ∗
i in Pi .

If both P̃ ∗
i and P ∗′

i could obtain, and again assuming that nothing else occurs when i moves, then
how does i select, say, P̃ ∗

i rather than P ∗′
i ?

It is readily confirmed that given a partition Pi , there is a unique partition P∗
i that both

refines Pi and satisfies KYOM and NEI, namely the coarsest refinement of Pi that satisfies
KYOM. 2 Henceforth all postmove partitions will be generated from premove partitions by
KYOM and NEI.

KYOM and NEI do not imply that agents learn nothing from the act of moving above and
beyond their own move. For instance, if Pi consists of a single cell {(si, s−i , �), (s′

i , s−i , �′)} then
P∗

i is {{(si, s−i , �)}, {(s′
i , s−i , �′)}}. So if i moves si then i may infer that � obtains, while if i

moves s′
i then i knows that �′ obtains. The variables � and �′ might denote different arrays of

information about the physical world at an earlier date, and so i might know that the move si is
perfectly correlated with � and that s′

i is perfectly correlated with �′. The following assumption
excludes this possibility.

NI (no information): for any Pi, � ∈ Pi, and si, there exists P ∗
i ⊂ Pi such that

(si, s−i (�), �(�)) ∈ P ∗
i .

NI says that every (s−i , �) that arises in some cell of i’s postmove partition arises in every other
postmove cell that originates from the same premove cell: each Pi is the product of Si and some
QPi

⊂ S−i ×�. (And so, given KYOM and NEI, each P ∗
i ⊂ Pi has the form {si}×QPi

for some
si ∈ Si .)

NI, although implausibly strong, is implicit in most models, such as Aumann’s, of interacting
Bayesian agents: agents know nothing after moving that they do not know before moving. NI
nevertheless does not eliminate the rational play of dominated actions: the simple Newcomb

2 Let P∗
i

and P∗′
i

denote partitions that refine Pi and satisfy KYOM and NEI. For any P ∗
i

∈ P∗
i

, there exists P ∗′
i

∈ P∗′
i

such that P ∗
i

∩ P ∗′
i

�= � and hence a �̂ ∈ P ∗
i

∩ P ∗′
i

. Then, for any �, �′ ∈ P ∗
i

∪ P ∗′
i

, KYOM implies si (�̂) = si (�)

and si (�̂) = si (�
′). Hence, si (�) = si (�

′) and so, by NEI, P ∗
i

= P ∗′
i

.
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example in the Introduction satisfies NI as will virtually every other example we consider where
agents rationally play dominated actions (there is one minor exception in Section 5). We will see
in Section 6 that NI also need not obtain when it is not rational to play dominated actions. Despite
its strength, NI is neither necessary nor sufficient for the traditional view of rational play.

In addition to the state space � and the partition profile (Pi )i∈I, the final primitives of the model
are the agent utilities ui : � → R, i ∈ I. We assume that each ui is integrable with respect to any
probability measure on �. Each ui may be constant as a function of �, in which case ui has the
specification of the previous section. To avoid distraction, we use the same probability measure
� on � to calculate expected utilities for each ui . Although agents’ choice of actions affects the
probabilities of states and hence one cannot view � as wholly exogenous, we could allow the
elements of the meet (finest common coarsening) of the partitions Pi , i ∈ I, to have exogenously
given probability.

The rationality of agents turns on how they select elements of the postmove partition P∗
i . The

strategy of agent i is a function hi : Pi → P∗
i such that, for each Pi, hi(Pi) ⊂ Pi . A profile of

strategies is denoted by h = (h1, . . . , hn).
We assume that an agent i who uses the strategy hi against opponents playing h−i = (h1, . . . ,

hi−1, hi+1, . . . , hn) knows that the event hi(Pi) obtains when informed initially of the cell Pi .
But if i knows the functions h−i , as one usually assumes in equilibrium analysis, i can infer more:
since each j �= i selects only states that lie in some hj (Pj ), any state that obtains should be in
some hj (Pj ) for j �= i as well as in hi(Pi), assuming such states exists. To state the restriction
that only these states have positive probability, let Range hi (in a slight abuse of notation) denote
{� ∈ �: � ∈ hi(Pi) for some Pi ∈ Pi}, and define RangeI h = ⋂

j∈I

Range hj and Range¬i h =
⋂

j∈I\{i}
Range hj .

Definition 1. The probability � is accurate with respect to the strategies h if and only if
� (RangeI h) = 1.

In order to optimize, an agent i must take into account that as i varies the P ∗
i in Pi that he

selects, the hj (Pj ), j �= i, that intersect P ∗
i may change. Each agent i thus anticipates what he

would know if he were to undertake the various P ∗
i in Pi . Agent i therefore may be able to infer

information about the moves of j �= i move from his own move, and this information can influence
which move is optimal for i. If i is optimizing, i should choose an action whose expected utility,
conditioning on what i knows given that i takes that action, is at least as great as the expected
utility of any alternative action, conditioning on what i would know if i were indeed to take that
alternative. So i when facing the premove cell Pi should choose a hi(Pi) such that

E(ui |hi(Pi) ∩ Range¬i h)�E(ui |P ∗
i ∩ Range¬i h)

for each P ∗
i ⊂ Pi . 3 Unfortunately, the conditioning events above can be empty, in which case

expectations are not well defined. The empty event can arise, for instance, if Pi informs i of some
j’s move since then some Pi can imply moves for j that j does not take with hj . This possibility
is important. For example, in the Newcomb example in the Introduction where c’s premove
partition consists of the entire state space �, let hc specify the move c2 (formally hc(�) =
{(c2, d1), (c2, d2)}). And suppose again that d faces the premove cells {(c1, d1), (c1, d2)} and

3 Shin [16], cited in Binmore and Brandenburger [6], appears to propose a similar definition of rationality.
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{(c2, d1), (c2, d2)}. In order to specify rational play for d in all eventualities, we must define d’s
expected utility when c plays c1 and d therefore faces {(c1, d1), (c1, d2)}. Whatever move d plays
at this cell, P ∗

d ∩ Range hc will equal the empty set since hc specifies c2 but P ∗
d specifies c1,

and so d’s expected utility is not well defined. Moreover, we cannot leave d’s expected utility
undefined in the event that c plays c1, since, for c to optimize, c must know how d would act if c
hypothetically were to play c1.

To deal with the empty conditioning event, we assume that when i contemplates a cell P ∗
i that

does not intersect Range¬i h, then i takes P ∗
i itself to be the set of possible states. Let K(P ∗

i )

denote P ∗
i ∩ Range¬i h if P ∗

i ∩ Range¬i h �= � and P ∗
i otherwise. So our assumption is that i

knows K(P ∗
i ) when taking the move P ∗

i . Also, � will denote both a probability measure �(·) on �
and, for any measurable P ⊂ �, a conditional probability measure �(·|P) on �. Given �(·|P) and
an integrable u, E(u|P) (the conditional expectation of u given P) will denote

∫
u(�) d�(�|P)

rather than some arbitrary version of the conditional expected value.

Definition 2. The strategies and probability (h, �) form a partitionally rational equilibrium if
and only if � is accurate with respect to h and for all i ∈ I, Pi , and P ∗

i ⊂ Pi ,

E(ui |K(hi(Pi)))�E(ui |K(P ∗
i )).

To see how Definition 2 is applied when agents face the empty event, see the matching pennies
example in Section 4 or see Section 5. Even when the empty event does not arise, many ac-
tion profiles are not taken when the agents play a given h. Consequently, zero-probability events
appear routinely as each i considers various P ∗

i and conditional probabilities are not uniquely
determined. Definition 2 requires only that the hi are optimal for some set of conditional
probabilities.

4. Existence and nonexistence of partitionally rational equilibria

We begin by using matching pennies to illustrate partitionally rational equilibria and clarify
the role played by accuracy, and then turn to an example that satisfies standard convexity and
continuity conditions but that has no partitionally rational equilibria. Nonexistence stems from
the fact that a player i can convey a signal to another player j by keeping his move in a noncompact
set (a cell of j’s partition). But we show that models with the more important types of partition
profiles always possess equilibria and that � equilibria exist in two-player models if nonmove
uncertainty (information about �) is symmetric. This section is self-contained except for our later
use of Definition 4; the reader may wish just to peruse some of the examples.

Keep in mind that, unlike the Aumann [2] model of correlated equilibrium, the state space
and agent partitions are among the primitives (�, (Pi , ui)i∈I) rather than part of the definition
of equilibrium. So, for example, a statement that ‘no equilibrium exists’ does not mean that no
equilibrium exists for a different specification of partitions.

Matching pennies: There are two players a and b. Let � = {(H, T ), (H, H), (T , T ), (T , H)},
where the first coordinate of each � is a’s move and the second is b’s. There is no nonmove
uncertainty: � is constant across states and suppressed in the notation. Utilities are given by

ua(H, T ) = ua(T , H) = ub(H, H) = ub(T , T ) = 1,

ua(H, H) = ua(T , T ) = ub(H, T ) = ub(T , H) = 0.
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Assume first that before moving each player knows the other’s move:

Pa = {{(H, T ), (T , T )}, {(H, H), (T , H)}},
Pb = {{(H, T ), (H, H)}, {(T , T ), (T , H)}}.

Then, given KYOM and NEI,

P∗
a = P∗

b = {{(H, T )}, {(H, H)}, {(T , H)}, {(T , T )}}.
One might think that partitional rationality would be possible since a, for example, will reason
that if he were to move H, b will know that and move T, and if he were to move T, b would know
that too and move H. So a should be indifferent between his two moves. The difficulty is that both
players know the other’s move. When, for instance, a knows that b plays H and therefore plays
T—so ha({(H, H), (T , H)}) = {(T , H)}—the state must be (T , H). But since hb must assign
{(T , T )} to {(T , T ), (T , H)} the state (T , H) is not in Range hb. And similarly if a knows b plays
T, we have ha({(H, T ), (T , T )}) = {(H, T )} and hb({(H, T ), (H, H)}) = {(H, H)}, and again
ha and hb do not intersect. Hence there cannot be an accurate �.

If instead just one player, say b, knows the other’s move, then a partitionally rational equilibrium
does exist. Suppose b knows a’s move but not vice versa:

Pa = {�}, Pb = {{(H, T ), (H, H)}, {(T , T ), (T , H)}}.
If a were to play H, then b will play H, and if a were to play T, then b will play T. Two pairs
of strategies are therefore possible in partitionally rational equilibrium. In one, a plays H (i.e.,
ha(�) = {(H, H), (H, T )}) and in the other, a plays T, while in both,

hb({(H, T ), (H, H)}) = {(H, H)} and hb({(T , T ), (T , H)}) = {(T , T )}.
Accuracy is achieved in the first case if

�((H, H)) = 1, �((H, T )) = �((T , H)) = �((T , T )) = 0,

and in the second if

�((T , T )) = 1, �((H, T )) = �((T , H)) = �((H, H)) = 0.

Notice that although a partitionally rational equilibrium now exists, one of the agents, b, must
specify play in the face of the empty event. For example, in the equilibrium where a plays H, b
must still specify a move when informed of the cell {(T , T ), (T , H)}. The dictates of partitional
rationality are entirely noncontroversial, however: b plays (T , T ) when {(T , T ), (T , H)} occurs.

The nonexistence that occurs above when both players know the other’s move disappears if
mixed actions are allowed. If the action sets contain all mixtures of H and T—so Si = [0, 1] rather
than Si = {H, T }—and payoffs are extended accordingly, then equilibrium for matching pennies
will always exist regardless of the partition profile. But this repair works only because matching
pennies is zero-sum: if both agents play their secure actions, any deviation for i to give j different
information and thereby induce a change in j’s move cannot raise i’s payoff. In nonzero-sum
games, such deviations can be profitable and can lead to nonexistence of equilibrium even when
all mixed actions are available, as the following example shows.
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Nonexistence with mixed actions: The payoffs to pure actions are given by the following matrix.

Let p denote the probability that a plays T and q denote the probability that b plays L. Payoffs
to mixed actions are given by the expectations of pure payoffs. There is no nonmove uncertainty,
and so � = [0, 1] × [0, 1], with typical state (p, q) ∈ �. Premove partitions are given by
Pa = {[0, 1]× [0, 1]}, and Pb = {[0, .4)×[0, 1], [.4, 1]× [0, 1]}. Thus, a receives no partitional
information about b’s move, whereas b knows that a is either playing p ∈ [0, .4) or p ∈ [.4, 1].

The sole equilibrium of the standard model (that is, where Pa = Pb = {[0, 1]× [0, 1]}) occurs
at p = q = .5. We can use this fact to exclude several equilibrium possibilities. If ha selects
any p ∈ [.4, .5), b will play R (q = 0) when informed that p ∈ [.4, 1]; but if hb selects R at the
cell where p ∈ [.4, 1], ha must select T (p = 1). Similarly, if ha selects any p ∈ (.5, 1], b will
play L when informed that p ∈ [.4, 1]; but if hb selects L at the cell where p ∈ [.4, 1], ha must
select B. Equilibrium also cannot occur at p = q = .5. Although q = .5 is optimal for b when
informed that p ∈ [.4, 1] and ha selects p = .5, p = .5 is not optimal for a. To see this, note
that hb must select R at the cell where p ∈ [0, .4). So, by choosing p less than but near to .4, a
can achieve expected utility arbitrarily near to .4 × 6 + .6 × 4 = 4.8, while, by choosing p = .5,
a receives expected utility equal to 3 if hb selects q = .5 at the cell where p ∈ [.4, 1]. We may
(again invoking standard reasoning) also exclude the possibility of an equilibrium in which ha

selects p = .5 and hb selects q < .5 or q > .5 at the cell where p ∈ [.4, 1]. Summing up, we
conclude there can be no equilibrium in which ha selects p� .4. But an ha that selects p < .4 is
also impossible since p + � for small � > 0 gives a a higher expected utility (nearer to 4.8) than
p does.

The example is robust in that for a sufficiently small open set of payoffs for the pure actions
and boundaries for the partition cells, nonexistence can persist. Equilibria will exist however if
we ‘perturb’ Pb by changing the cell [0, .4) × [0, 1] to [0, .4] × [0, 1] (and hence changing b’s
other cell from [.4, 1] × [0, 1] to (.4, 1] × [0, 1]).

The key to the example is that one player has a cell containing a noncompact set of another
player’s moves. This possibility moreover arises readily when states specify actions. If one of
two agents, say b, has a set of actions formed from at least two pure actions and their probability
mixtures, if � = S, and if the number of cells in Pa is finite and greater than 1, then at least one
cell of Pa cannot be closed. And so it becomes possible for b to have a sequence of actions each
of which lies in one Pa and along which b’s expected utility is increasing but whose limit action
switches a to another cell P ′

a ; if a’s action changes as a result and discretely lowers b’s utility,
equilibrium may not exist.

There are two types of remedies for the nonexistence problem. First, we can impose restrictions
on information that imply that convergent sequences of actions cannot lead in the limit to a discrete
fall in utility. The second remedy, perhaps the more promising path, is to consider � equilibria.

Several prominent classes of partition profiles qualify under the first cure. Suppose in a two-
agent model that one agent a knows ex ante as much as b, which we define to mean that Pa

refines P∗
b . Agent a would then know b’s action ex ante but b would not know a’s action
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even ex post (unless b can infer it from Range ha). The Newcomb example in the Introduction (or
see Section 5(i)) provides an example, letting a = d . When a knows ex ante as much as b, then
any change in b’s action will always shift a to a new cell of Pa . But with appropriate continuity
assumptions on ua , a’s best response will move continuously as a function of b’s action, thus
eliminating the discrete changes in utility that can lead to existence trouble. The existence result
in this case is given as Theorem 1 and is proved by backward induction. Even though a and b
move simultaneously, if a knows as much ex ante as b, then it is ‘as if’ b moves first: b in effect
acts as a Stackelberg leader and a as a Stackelberg follower. The appearance of an ‘as if’ temporal
order of play is characteristic when some agents have partitional knowledge of other agents’
moves.

Definition 3. Partitional continuity is satisfied if and only if, for any i ∈ I and P ′
i ⊂ Pi , there ex-

ists a function �P ′
i
: Si×S−i (

⋃
Pi∈P ′

i

Pi) → � such that (1) for each s ∈ Si×S−i (
⋃

Pi∈P ′
i

Pi), (s, �P ′
i
(s))

∈ ⋃
Pi∈P ′

i

Pi , and (2) for all j ∈ I, vj : Si × S−i (
⋃

Pi∈P ′
i

Pi) → R defined by vj (s) = uj (s, �P ′
i
(s))

is continuous.

One simple way to satisfy partitional continuity is for � to be payoff-irrelevant (see below) and
for each agent’s utility to be a continuous function of actions.

Theorem 1. If for (�, (Pi , ui)i=a,b) agent a knows ex ante as much as b, and partitional conti-
nuity is satisfied, then a partitionally rational equilibrium exists.

Proofs are in the Appendix. Existence of equilibrium also obtains in the n-agent case where,
for i ∈ {1, . . . , n − 1}, i knows ex ante as much as i + 1.

Next, suppose each i’s partition informs i of the moves of j �= i. Subject to standard tech-
nical caveats, each i can then best respond to the actions of j �= i reported by Pi and the
existence of a standard Nash equilibrium will ensure that RangeI h is nonempty. A sequence
of actions for i now cannot in the limit lead to a discrete change in i’s utility since the pre-
move cells of j �= i already inform j of si ; so s−i is fixed along any sequence of postmove
cells.

Definition 4. Agent i partitionally knows j’s move if and only if, for each Pi ,

�, �′ ∈ Pi ⇒ sj (�) = sj (�
′).

Definition 5. The variable � is payoff-irrelevant if and only if, for all i ∈ I and �, �′ ∈ �,

sj (�) = sj (�
′) for j ∈ I ⇒ ui(�) = ui(�

′).

We say that convexity and simple continuity are satisfied if and only if (1) for all i ∈ I, Si is
convex, and (2) for all i ∈ I and for all functions �̂: S → � with (s, �̂(s)) ∈ � for s ∈ S: (i) for any
s−i ∈ S−i , si 
→ ui(si, s−i , �̂(si, s−i )) is quasiconcave, and (ii) s 
→ ui(s, �̂(s)) is continuous.
For later reference, convexity and �-simple continuity are satisfied if and only if (1) holds and (2)
is imposed only on functions �̂ such that there is a �̄ ∈ � with �̂(s) = �̄ for all s ∈ S (as well as
(s, �̂(s)) ∈ � for s ∈ S).
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Theorem 2. If for (�, (Pi , ui)i∈I) each i partitionally knows the move of each j �= i, � is payoff-
irrelevant, and convexity and simple continuity are satisfied, then a partitionally rational equilib-
rium exists.

We omit the proof, which recapitulates the standard Nash argument in the current nota-
tion (the only extra step is to set a state where a standard Nash equilibrium occurs to have
probability 1).

As we make clear in Section 7, existence is also assured if we replace each i partitionally
knowing the move of each j �= i in Theorem 2 with the ‘opposite’ assumption, namely that
as some i changes his move the other agents remain partitionally uninformed of this fact (see
Definition 10). Assuming � is payoff-irrelevant, we then return to the Aumann [2,3] model of
correlated equilibrium. Existence problems do not arise since a sequence of actions for i transmit
no information to j �= i and hence cannot in the limit lead to a discrete change in i’s utility.

We turn to � equilibria, where for any � > 0 there exist strategies such that each agent achieves
utility within � of the supremum of the utility levels attainable given the other agent’s strategy.
We do not settle the existence question; given strategies hj for j �= i, an agent i’s best responses
when facing the cell Pi need not form a convex set, and so standard existence proofs do not apply.
But with two agents, and when agents’ uncertainty about the nonmove variable � is symmetric,
then �-equilibria do always exist.

Definition 6. Nonmove uncertainty is symmetric if and only if there exists a partition P� of �
such that for i ∈ I: P� ∈ P� ⇔ (Si × S−i (Pi) × P�) ∈ Pi .

In words, each agent faces the same partition of � and each cell of this partition can arise
whatever i’s information about the other agents’ moves. While symmetric nonmove uncertainty
is restrictive, it permits a wide range of possibilities, including the Newcomb example in the
Introduction, all of the matching pennies examples, and the nonexistence example.

Definition 7. An � partitionally rational equilibrium exists if and only if for all � > 0 there exists
(h, �) such that � is accurate with respect to h and, for all i ∈ I, Pi , and P ∗

i ⊂ Pi ,

E(ui |K(hi(Pi))) + ��E(ui |K(P ∗
i )).

Theorem 3. If for (�, (Pi , ui)i=a,b) nonmove uncertainty is symmetric, convexity and �-simple
continuity are satisfied, and S−i (Pi) is convex for each i and Pi , then an � partitionally rational
equilibrium exists.

The idea of the proof is that, conditional on �, standard arguments show that, for any pair
(Pa, Pb), the closure of Pa ∩ Pb has a ‘constrained Nash equilibrium’ in which each i is required
to choose an si in the closure of Si(P−i ), and so there is an � constrained Nash equilibrium in
Pa∩Pb itself. We then use these � constrained equilibria to determine which states have conditional
probability 1, ensuring that when i faces Pi and contemplates choosing a P ∗

i that intersects, say,

P̂−i ∈ P−i , he or she anticipates that the � constrained equilibrium of Pi ∩ P̂−i will obtain. Each
i achieves � rationality by selecting a P ∗

i whose corresponding � constrained equilibrium is near
the upper bound of the set of utilities that can be reached by the � constrained equilibria. With a
careful adjustment of the actions in the Pa ∩ Pb that contains the standard (unconstrained) Nash
equilibrium and of the pertinent conditional probabilities, accuracy is assured as well.
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5. The rational play of dominated actions

Definition 8. The strategy hi plays a dominated action if and only if there exist Pi and P ∗′
i ⊂ Pi

such that, for all s−i ∈ S−i , if (si, s−i , �) ∈ hi(Pi) and (s′
i , s−i , �′) ∈ P ∗′

i then

ui((si, s−i , �)) < ui((s
′
i , s−i , �

′)).4

An agent i can play a dominated action in partitionally rational equilibrium either because
switching to a dominated action can lead P ∗

i to intersect different subsets of the range of the
other agents’ strategies or because switching actions can change the conditional probabilities of
the other agents’ moves or some nonmove feature of the world. We illustrate both possibilities
with various Newcomb examples. Until warning to the contrary, the payoffs are those given in
the Introduction.

(i) To save on notation, let an action denote the states where the action is taken, e.g., when d
faces Pd, d1 will indicate the states in Pd that have an sd coordinate equal to d1.

The simplest case where it is rational for c to play the dominated action c1, sketched in the
Introduction, occurs where d partitionally knows c’s move, that is, where every cell of d’s partition
consists only of states whose sc coordinates agree (see Definition 4 in Section 4):

� = {(c1, d1), (c1, d2), (c2, d1), (c2, d2)},
Pd = {{(c1, d1), (c1, d2)}{(c2, d1), (c2, d2)}}, Pc = {�}.

With these Pi , the only partitionally rational equilibrium occurs where hc(�) = c1, hd({(c1, d1),

(c1, d2)}) = d2, hd({(c2, d1), (c2, d2)}) = d1.
Neither agent i in this example learns anything directly from P ∗

i that he/she did not know before
moving (besides si itself). But indirectly, via P ∗

i ∩ Range h−i , i = c acquires information about
d’s move from c’s own move, and this leads c to play a dominated action. The absence of direct
informational content to the P ∗

i will be retained through Sections 5(i) and (ii). Accordingly, except
for the next paragraph, every example we consider where an agent could play a dominated action
satisfies NI. Since we will also see that NI can be violated when agents do not have any partitional
information about others’ moves, it will be clear that NI and the rational play of dominated actions
are separate issues.

Partitional knowledge does not require d to observe c’s move directly. Instead, d may observe
� at an earlier date, and the different �’s inform d of c’s move. For example, if we set

Pd = {{(c1, d1, 	), (c1, d2, 	)}, {(c2, d1, 
), (c2, d2, 
)}}, Pc = {�},
then d’s partitional knowledge of c’s move can be ascribed to d’s observation of 	 or 
. Think of 	
as infallible physical evidence that c will play c1 and 
 as infallible evidence that c will play c2.

When d partitionally knows c’s move, every cell of Pd informs d of c’s action. But c can still
always play c1 even if d partitionally knows c’s move only at some of d’s premove cells.

Definition 9. Agent j occasionally partitionally knows i’s move if and only if, for some Pj ,

�, �′ ∈ Pj ⇒ si(�) = si(�
′).

4We use this ‘ex post’ definition of domination, rather than a less demanding ‘interim’ definition (where hi only has
to take actions whose expected utility conditional on hi(Pi) is less than the expected utility of some P ∗

i
⊂ Pi , conditional

on P ∗
i

) since we wish dominated actions to be as plainly suboptimal as possible.
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For an example where d only occasionally partitionally knows c’s move but where c nevertheless
always chooses c1, suppose c does not know when d is informed about c’s action. Let 	ci

denote
{(ci, d1, 	), (ci, d2, 	)}, i = 1, 2. Also, when convenient let a nonmove coordinate represent
the four states that have that coordinate, e.g., 
 will denote {(c1, d1, 
), (c1, d2, 
), (c2, d1, 
),

(c2, d2, 
)}. With this notation, set Pc = {�}, Pd = {	c1 , 	c2 , 
}. Then the strategies

hc(�) = c1, hd(	c1) = d2, hd(	c2) = d1, hd(
) = d2

are utility maximizing if �((c1, d2, 	)) is sufficiently large and the probabilities of the 
 states,
conditional on c2, are sufficiently small. For accuracy to obtain, set �((c1, d2, 	)) = 1 − � and
�((c1, d2, 
)) = � for nonnegative � sufficiently near 0.

Not surprisingly, if we let c distinguish between the 
 states and the 	 states, c will still play c1
at the 	 states. Replace Pc = {�} with Pc = {	, 
}. Then the strategies

hc(	) = c1, hc(
) = c2, hd(	c1) = d2, hd(	c2) = d1, hd(
) = d1

form a partitionally rational equilibrium when �((c1, d2, 	)) = 1 − � and �((c2, d1, 
)) = �, � ∈
[0, 1].

(ii) It may seem that if an agent a is to play a dominated action, then b must at least in some
cells of Pb be certain of a’s move (i.e., there must be a Pb that contains only states that specify just
one move for a). This is not the case. To build a Newcomb example where no agent partitionally
knows the other’s move even occasionally, we employ states with four values for the nonmove
coordinate, 	, 
, �, and 
. Suppose, when either � = 
 or � = �, that mini=1,2 uc(c2, di, �) >

maxi=1,2 uc(c1, di, �), thus ensuring that c always chooses c2 at the 
 or � states. Similarly,
suppose that the 	 states payoffs are such that c always chooses c1. At the 
 states, c has the
Newcomb game payoffs as does d in all states. Set � = Sc × Sd × {	, 
, �, 
} and as before
let each of 	, 
, �, and 
 denote the four states with the corresponding value of �. For exam-
ple, 	 denotes {(c1, d1, 	), (c1, d2, 	), (c2, d1, 	), (c2, d2, 	)}. Finally, for i = 1, 2, let 
i denote
{(ci, d1, 
), (ci, d2, 
)}. Now set

Pc = {	, 
 ∪ �, 
},

Pd = {	 ∪ � ∪ 
2, 
 ∪ 
1},

hc(	) = c1, hc(
 ∪ �) = c2, hc(
) = c1, hd(	 ∪ � ∪ 
2) = d1, hd(
 ∪ 
1) = d2,

�((c1, d2, 
))=1−2�−�, �((c1, d1, 	))=�, �((c2, d2, 
))=�, �((c2, d1, �))=�.

View d’s first cell as a noisy signal that c has moved c2 when facing the 
 cell and d’s second cell as
a noisy signal that c has moved c1 at the 
 cell. We specify conditional probabilities momentarily.

Agent c’s preferences ensure that hc(	) = c1 and hc(
∪ �) = c2 are partitionally rational (i.e.,
best responses in the sense of Definition 2). As for hc(
), if c plays c1 then (given the specified
hd) the state (c1, d2, 
) must obtain and c’s payoff is 106, whereas if c plays c2 then (c2, d1, 
)
must obtain and c’s payoff is 1000. Hence hc(
) = c1 is partitionally rational.

Turning to hd , as �
� → ∞, the payoff to d of playing d1 when facing 	 ∪ � ∪ 
2 converges to

x. The payoff to d of playing d2 when facing 	 ∪ � ∪ 
2 depends on the probabilities conditional
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on 0-probability events. Let �(si |s−i , A), where A ⊂ �, serve as shorthand for

�({�: si(�) = si}|{� ∈ A: s−i (�) = s−i} ∩ Range hi).

Assuming � + � > 0, we have

�(c1|d1, {	, �, 
2}) = �

� + �
, �(c2|d1, {	, �, 
2}) = �

� + �
.

And we set

�(c1|d2, {	, �, 
2}) = �

� + �
, �(c2|d2, {	, �, 
2}) = �

� + �
.

So, as �
� → ∞, �(c2|d2, {	, �, 
2}) → 1. Thus the payoff to d of playing d2 converges to y

and the payoff of playing d1 converges to x. Hence hd(	 ∪ � ∪ 
2) = d1 is partitionally rational
for large �

� . Finally, consider d’s payoffs when facing 
 ∪ 
1. If � < 1 and � becomes small,
then �(c1|d2, {
, 
1}) approaches 1; hence the payoff to playing d2 converges to x. If we set
�(c1|d1, {
, 
1}) = �(c1|d2, {
, 
1}), the payoff to playing d1 approaches y.

Thus, if we set � > 0 small and �
� large, the specified strategies and probabilities are partitionally

rational and the specified probabilities are accurate. We conclude that c rationally plays the
dominated action c1 when facing the cell 
.

Agent d’s lack of information about c’s move in this example goes beyond not having occasional
partitional knowledge of c’s move: both c1 and c2 are played with positive probability in each of
d’s premove cells. But despite d never being sure of c’s move, c still rationally chooses c1 at some
cells. We could tweak the example so that in addition both d1 and d2 are played with positive
probability in each of c’s premove cells.

The source of trouble in the above cases is that there are Pc and Pd such that Pc ∩ Pd �= �
but where, for some P ∗

c ⊂ Pc, P ∗
c ∩ Pd = �. Thus, d sometimes gets a (possibly noisy) signal

of c’s move, namely that c has not moved sc(P
∗
c ), not just a signal about c’s type. The following

requirement bars an agent j from receiving such a signal, not just at each of j’s premove cells but
given any move j might take.

Definition 10. Agent j is partitionally ignorant of i’s move if and only if, for all P ∗
j , Pi, P

∗
i ⊂

Pi, P
∗′
i ⊂ Pi ,

P ∗
i ∩ P ∗

j �= � ⇒ P ∗′
i ∩ P ∗

j �= �.

In words, j is partitionally ignorant of i’s move if whenever j believes it possible that i could
take some action si when facing Pi then j also believes it possible that i could take any other
action s′

i when facing Pi . The set of conceivable P ∗
i therefore do not change as P ∗

j varies with a
single Pj . So, for instance, if j is partitionally ignorant of i’s move then j does not occasionally
know i’s move. But more strongly, partitional ignorance implies that j never has better information
about i’s move than i has ex ante. Partitional ignorance nevertheless allows j to have considerable
knowledge of i, e.g., Pj could refine Pi .

Notice that even if each agent is partitionally ignorant of the other’s move the NI axiom of
Section 3 need not be satisfied. For instance let

Pc = Pd = {{(c1, d1, 	), (c1, d2, 	), (c2, d1, 
), (c2, d2, 
)}},
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P∗
c = {{(c1, d1, 	), (c1, d2, 	)}, {(c2, d1, 
), (c2, d2, 
)}},

P∗
d = {{(c1, d1, 	), (c2, d1, 
)}, {(c1, d2, 	), (c2, d2, 
)}}.

Evidently NI is violated but each agent is partitionally ignorant of the other’s move. As in Section
5(i), think of 	 (resp. 
) as unerring physical evidence that c will move c1 (resp. c2) except that
here d does not receive this evidence in advance. After moving c1, say, c will know that 	 must
obtain. And this possibility indicates again why NI is so implausible: agents’ own moves can and
do inform them of things other than the moves themselves.

(iii) But partitional ignorance is not enough. With no restrictions on how agents form conditional
probabilities, agents may still select dominated actions. To that end, we construct an example
where c has the original Newcomb preferences throughout some cell and takes the dominated
action c1 in that cell, but where each agent is partitionally ignorant of the other’s move. We use
states with the four nonmove coordinates 	, 
, �, and 
. Assume as in Section 5(ii) that at the 

and � states, each possible payoff for c when playing c2 is strictly larger than each possible payoff
when playing c1. In all other states, let c have the Newcomb game preferences as will d in all
states. Using the notational conventions of Sections 5(i) and (ii), set

Pc = {
 ∪ �, 	 ∪ 
}, Pd = {	 ∪ 
, 
 ∪ �},
hc(
 ∪ �) = c2, hc(	 ∪ 
) = c1, hd(	 ∪ 
) = d1, hd(
 ∪ �) = d2,

�((c1, d2, 
)) = �((c2, d1, 
)) = .5.

The partitional rationality of hc(
 ∪ �) = c2 is assured, given c’s payoffs in the 
 and � states.
If d when facing the cell 	 ∪ 
, plays d1, the state (c2, d1, 
) obtains with probability 1 and d
receives the payoff x, while if d plays d2, either (c1, d2, 	) or (c2, d2, 
) obtains and hence d
receives a weighted average of x and y: hence hd(	 ∪ 
) = d1 is partitionally rational. When d
faces 
 ∪ � and plays d1, either (c1, d1, 
) or (c2, d1, �) obtains, and so d’s payoff is a weighted
average of x and y, while if d plays d2, (c1, d2, 
) obtains with probability 1 and so d’s payoff
is x. So hd(
 ∪ �) = d2 is also consistent with partitional rationality. It remains to check the
most important case, c’s move when facing the cell {	, 
}. If c plays c1, (c1, d2, 
) obtains with
probability 1 and so c’s payoff is 106, while if c plays c2, either (c2, d1, 	) or (c2, d2, 
) obtains and
so c’s payoff is a weighted average of 1000 and 106 + 1000. Both (c2, d1, 	) and (c2, d2, 
) have
probability 0. But if the conditional probability �(d1|c2, 	) is sufficiently large, then the move c1
will be partitionally rational.

The twist in this case is that c’s move directly (i.e., not because of d’s partition and hd ) leads
c to assign new likelihoods to d’s moves. Agent d is partitionally ignorant of c’s move and the
updating on 0-probability events that occurs when d moves does not have to occur in a skewed or
suspicious way.

6. Eliminating the play of dominated actions

One step to guaranteeing that a partitionally rational agent i will not play a dominated ac-
tion is that the remaining agents are partitionally ignorant of i’s move. The second is to pro-
hibit the suspicious updating of probabilities that occurred in Section 5(iii). The NI axiom
plays no role. When there are n agents, the first step requires an appropriate extension of
Definition 10.
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Definition 11. Agents j �= i are mutually partitionally ignorant of i’s move if and only if, for all
Pi, P

∗
i ⊂ Pi , P ∗′

i ⊂ Pi , and P ∗−i ,

P ∗
i ∩

⎛
⎝⋂

j �=i

P ∗
j

⎞
⎠ �= � ⇒ P ∗′

i ∩
⎛
⎝⋂

j �=i

P ∗
j

⎞
⎠ �= �.

Definition 12. Agent i is update independent at (h, �) if and only if for all Pi , P ∗
i ⊂ Pi , and

P ∗′
i ⊂ Pi,

[(
⋂
j �=i

P ∗
j ) ∩ K(P ∗

i ) �= � ⇔ (
⋂
j �=i

P ∗
j ) ∩ K(P ∗′

i ) �= �] for all P ∗−i

⇒ �(
⋂
j �=i

P ∗
j |K(P ∗

i )) = �(
⋂
j �=i

P ∗
j |K(P ∗′

i )) for all P ∗−i .

Behind the notation, Definition 12 says something simple: if i contemplates two different
moves, P ∗

i and P ∗′
i , at Pi and the set of conceivable profiles of moves for the other players does

not change, then i regards each profile of moves for the other players to have the same posterior
probability whether i moves P ∗

i or P ∗′
i . Since update independence applies only when the act of

moving conveys no information about others’ moves, it is akin to and as plausible as NEI.
If � is accurate, then for any Pi at most one of the family of conditioning events {K(P ∗

i )}P ∗
i ⊂Pi

can have positive probability and therefore conditional probabilities may always be set so as
to satisfy update independence. Up until Section 5(iii), every example we considered satisfied
update independence—or, when some conditional probabilities went unspecified, they could be set
consistently with update independence. And the equilibria in the proofs of the existence theorems
in Section 4 could be supplemented to satisfy update independence.

Theorem 4. If j �= i are mutually partitionally ignorant of i’s move and i is update independent
at the partitionally rational equilibrium (h, �), then hi does not play a dominated action.

7. Aumann redux

We make our model compatible with Aumann [2,3] by assuming that � is payoff-irrelevant
(Definition 5).

Definition 13. A partitionally rational equilibrium (h, �) leads to a correlated distribution of
actions if and only if there exist a probability space (�,F, �) and, for i ∈ I, a partition
Qi of � and a strategy function gi : � → Si measurable with respect to Qi such that (1)
Eui (gi, g−i )�Eui (fi, g−i ) for any fi : � → Si measurable with respect to Qi , and (2) for
all A ⊂ S, �A = {� ∈ �: s(�) ∈ A}) is measurable ⇔ �A = �({� ∈ �: g(�) ∈ A}) is
measurable, and �(�A) = �(�A).

Theorem 5. If (h, �) is a partitionally rational equilibrium, � is payoff-irrelevant, and, for each
i ∈ I, j �= i are mutually partitionally ignorant of i’s move and i is update independent, then
(h, �) leads to a correlated distribution of actions.

If we did not assume a partitionally rational equilibrium, then the remaining assumptions in
Theorem 5 would imply that a partitionally rational equilibrium exists as long as a standard
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Nash equilibrium exists for the game given by (ui)i∈I: simply let each i play his or her Nash
action at every Pi and assign probability 1 to one of the Nash equilibria. In terms of a converse to
Theorem 5, it is not hard to adapt the proof of Theorem 5 to show that if (1) (�,F, �, (Qi , gi)i∈I)

is a correlated equilibrium, (2) � is isomorphic to the join (coursest common refinement) of
Pi , i ∈ I, with bijection �, and (3) Qi ∈ Qi ⇔ there exists Pi ∈ Pi with

⋃
�∈Qi

�(�) = Pi ,

then a partitionally rational equilibrium exists that leads to the same distribution of actions as
(�,F, �, (Qi , gi)i∈I).

8. Discussion

(i) The possibility that an agent a can rationally take a dominated action hinges on the nature
of some other agent b’s knowledge of a’s actions. There is a world of difference between a b
who can make accurate or even flawless predictions of a’s actions and a b who would know if a
were to make a move that a will not in fact make. As we have seen, the second partitional type
of knowledge can be of various strengths. An agent b might partitionally know another agent a’s
moves, or might occasionally partitionally know a’s moves, or might simply not be partitionally
ignorant of a’s moves. In all cases, it becomes possible for a rational agent a to take a dominated
action.

We can characterize flawless prediction, say on b’s part, by assuming that for each Pb only
those states in Pb with the same sa coordinate have nonzero probability. So let us say that b knows
a’s move with probability 1 if and only if, for all Pb, there exists A ⊂ Pb and sa ∈ Sa such that
Sa(A) = {sa} and �(A|Pb) = 1. We interpret � as indicating objective rather than subjective
probability.

Evidently, b can know a’s move with probability 1 even when partitionally ignorant of a’s
move. For example, if Pa = Pb = {�} (neither agent receives any partitional information) and
agents play in partitionally rational equilibrium, then by accuracy �(ha(�)) = �(hb(�)) = 1.
Hence, each agent knows the other agent’s move with probability 1. Moreover, it is only a failure
of partitional ignorance that can allow a to make the counterfactual inferences that can justify the
play of a dominated action, where, e.g., a can reason ‘if I were to play the 0-probability action sa
then I can infer that b must be selecting the 0-probability action sb’. Knowledge with probability
1 in contrast does not entail this type of reasoning. Theorem 4 accordingly reports that if agents
are partitionally ignorant of others’ moves and update independence holds, dominated actions
cannot be rational.

Other players’ knowledge with probability 1 of an agent a’s move is not sufficient for a to play
a dominated action, no matter what payoffs agents have. It is not necessary either. In Section 5(ii),
we saw a Newcomb example where d does not know c’s action with probability 1 (at each of d’s
cells, both of c’s actions have positive probability). But due to the failure of partitional ignorance,
it is rational for c to play c1.

A violation of partitional ignorance means that some agent b at some cell partitionally knows
more about another agent a’s move than a does prior to moving. One way to eliminate the
rational play of dominated actions is therefore to impose the following rule (on top of update
independence): if a state space � specifies some agent a’s moves, then another agent b cannot
have a partition over � that violates partitional ignorance until the point in time at which a actually
moves. Leaving aside stories like Newcomb that are designed to scrutinize the foundations of
decision theory, it is hard to think of a decision problem where violating this rule would be
justified.
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(ii) The distinction between premove and postmove knowledge clarifies what it means for a
profile of agent actions to be specified by a state. Different choices of actions for an agent i refine
i’s premove partition in different ways, and so each i evidently has the leeway or ‘freedom’ to
choose whatever action he likes. Agents thus would not see their choices as somehow fixed in
advance (Aumann [3] and Aumann and Brandenburger [4] assert the same conclusion, but as
argued in Section 2, their models belie their point). Notice that i’s leeway to choose continues to
hold even when some other agent partitionally knows i’s action.

The premove–postmove distinction supplies a formalism by which agents can regard their
moves as knowable events. With the right supplementary conditions, such as partitional ignorance,
in place no paradoxes need result (see, e.g., [11] for the view that there is a paradox). An agent
can regard each of his possible moves in turn as a separate event that through updating leads to
distinct consequences.

(iii) Although the Newcomb paradox has served primarily to illustrate the difficulties that arise
when states specify actions, partitional knowledge also sheds light on the substantial literature
on Newcomb. The literature sometimes argues that different approaches to decision theory back
different conclusions about which actions are rational for c to take. Nozick’s [15] original pre-
sentation of the Newcomb problem argued that the ‘principle of dominance’ supports playing c2,
while the ‘principle of expected utility maximization’ supports playing c1. Gibbard and Harper
[10], although c2 partisans, came to a similar judgment: ‘causal’ utility theory endorses c2 as
rational while a Jeffrey-like utility theory can support playing c1. By distinguishing between
probabilistic and partitional knowledge, we can formalize within the confines of Bayesian de-
cision theory both the view c1 is rational and the view that c2 is rational. As we have seen,
the rationality of c1 vs. c2 then hinges on specific assumptions on information and partitions in
particular. Playing c1 is not ruled out a priori, but depends either on d having a highly refined infor-
mation partition—indeed, so refined as to be implausible—or on c using a skewed rule to update
probabilities.

The Newcomb literature introduces a red herring when it suggests that the rationality of c1 rests
on d being a flawless predictor of c’s move. As we have seen, d knowing c’s move with probability
1 does not imply that c1 is a rational move. And even when d never assigns probability 1 to any
of c’s actions it can be rational for c to play c1. So the rationality of c1 and d’s complete accuracy
as a predictor are separate issues. What matters for the rationality of c1 is the type of knowledge
that d has about c’s move.

(iv) The possibility of Newcomb-style paradoxes have led some to argue for a new species
of decision analysis—causal decision theory—that classifies how an agent i’s action si causes
changes to the world; this classification in turn presupposes a metric that judges which ‘possible
world’ is nearest to one in which si obtains (see [13] and the references therein and [17]). The rule
suggested in (i) above—that an agent remains partitionally ignorant of any other agent’s move
until the latter moves—also draws upon temporal and causal information. But that information
is used only to determine partitions and the timing of their refinement; no broader overhaul of
expected utility theory or metric on states is necessary.
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Appendix A. Proofs of Theorems 1, 3, 4, 5

Proof of Theorem 1. For each P ∗
b , select an arbitrary Pa ∈ Pa such that Pa ⊂ P ∗

b and label it
Pa(P

∗
b ). Define, for each Pb ∈ Pb, Q(Pb) = ⋃

P ∗
b ⊂Pb

Pa(P
∗
b ). By partitional continuity, for any

Pb there is a function �Q(Pb)
: S → � such that (i) (s, �Q(Pb)

(s)) ∈ Q(Pb) for all s ∈ S, and (ii)
for i = a, b, s 
→ ui(s, �Q(Pb)

(s)) is continuous. Hence, for any sb ∈ Sb, arg maxsa∈Sa
ua(sa, sb,

�Q(Pb)
(sa, sb)) �= � and, when seen as a correspondence of sb, has a closed and hence compact

graph. The problem

max
sa,sb

ub(sa, sb, �Q(Pb)
(sa, sb))

s.t. sa ∈ arg max
sa∈Sa

ua(sa, sb, �Q(Pb)
(sa, sb)), sb ∈ Sb (1.1)

therefore has a solution, which we label (sa[Pb], sb[Pb]).
For each Pb, set hb(Pb) ⊂ Pb so that

sb(hb(Pb)) = sb[Pb]. (1.2)

When Pa ∈ {Pa(P
∗
b ): P ∗

b ∈ P∗
b }, set ha(Pa) ⊂ Pa so that

sa(ha(Pa)) ∈ arg max
sa∈Sa

ua((sa, sb(Pa), �Q(Pb)
(sa, sb(Pa)))), (1.3)

where Q(Pb) ⊃ Pa , but if in addition Pa ⊂ hb(Pb) for some Pb, use the particular element of
the argmax, sa[Pb], i.e., set ha(Pa) so that

sa(ha(Pa)) = sa[Pb]. (1.4)

When Pa /∈ {Pa(P
∗
b ): P ∗

b ∈ P∗
b }, let �{Pa} be the function defined on Sa × Sb(Pa) given by

partitional continuity and set ha(Pa) ⊂ Pa so that

sa(ha(Pa)) ∈ arg max
sa∈Sa

ua((sa, sb(Pa), �{Pa}(sa, sb(Pa)))). (1.5)

As for the probabilities, set �((sa[Pb], sb[Pb], �Q(Pb)
(sa[Pb], sb[Pb]))) = 1 for some Pb and

�(�) = 0 for all other � ∈ �. When P ∗
a ⊂ Pa ∈ {Pa(P

∗
b ): P ∗

b ∈ P∗
b }, set

�((sa(P
∗
a ), sb(P

∗
a ), �Q(Pb)

(sa(P
∗
a ), sb(P

∗
a )))|P ∗

a ) = 1, (1.6)

where Pb ⊃ Pa . When P ∗
a ⊂ Pa /∈ {Pa(P

∗
b ): P ∗

b ∈ P∗
b }, set

�((sa(P
∗
a ), sb(P

∗
a ), �{Pa}(sa(P ∗

a ), sb(P
∗
a )))|P ∗

a ) = 1. (1.7)

For all P ∗
b , set

�((sa(ha(Pa(P
∗
b )), sb(P

∗
b ), �Q(Pb)

(sa(ha(Pa(P
∗
b ))), sb(P

∗
b )))|P ∗

b ∩ Range ha) = 1, (1.8)

where Pb ⊃ P ∗
b . All remaining conditional probabilities may be set arbitrarily.

To see that ha is partitionally rational, note first that, since Pa refines P∗
b , if Pa ∩Range hb �= �

then, for all P ∗
a ⊂ Pa , P ∗

a ∩ Range hb = P ∗
a , while if Pa ∩ Range hb = � then, for all P ∗

a ⊂ Pa ,
P ∗

a ∩ Range hb = �. Hence, for all P ∗
a ,

K(P ∗
a ) = P ∗

a . (1.9)
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So, for P ∗
a ⊂ Pa ∈ {Pa(P

∗
b ): P ∗

b ∈ P∗
b }, (1.6) and (1.9) imply

E(ua|K(P ∗
a )) = ua((sa(P

∗
a ), sb(P

∗
a ), �Q(Pb)

(sa(P
∗
a ), sb(P

∗
a )))),

where Pb ⊃ Pa . So (1.3) implies the partitional rationality of ha . For P ∗
a ⊂ Pa /∈ {Pa(P

∗
b ): P ∗

b ∈
P∗

b }, (1.7) and (1.9) imply

E(ua|K(P ∗
a )) = ua((sa(P

∗
a ), sb(P

∗
a ), �{Pa}(sa(P ∗

a ), sb(P
∗
a )))).

So (1.5) implies the partitional rationality of ha .
As for hb, since Pa refines P∗

b , we have K(P ∗
b ) = P ∗

b ∩ Range ha for all P ∗
b . Hence, for all

P ∗
b , (1.8) implies

E(ub|K(P ∗
b )) = ub(sa(ha(Pa(P

∗
b ))), sb(P

∗
b ), �Q(Pb)

(sa(ha(Pa(P
∗
b ))), sb(P

∗
b ))),

where Pb ⊃ P ∗
b , and so (1.1)–(1.4) imply the partitional rationality of ha . �

Proof of Theorem 3. Fix arbitrary P� ∈ P� and � ∈ P�. Until the end of the proof, we suppress
� from most of the notation. For example, (sa, sb) will refer to (sa, sb, �). Also, fix � > 0.

For each Pi ∈ Pi , i = a, b, let P̄i denote the closure of Pi . Let fPa,Pb
: P̄a ∩ P̄b ⇒ P̄a ∩ P̄b

denote the best-response correspondence defined by

fP̄a,P̄b
(�) = {�̂ ∈ P̄a ∩ P̄b: ui((si(�̂), s−i (�)))�ui(�), i = a, b}.

Let kP̄a,P̄b
denote the fixed points of fP̄a,P̄b

: � ∈ kP̄a,P̄b
⇔ � ∈ fP̄a,P̄b

(�). Given convexity
and �-simple continuity, and the convexity of the partition cells, Kakutani’s theorem implies that
kP̄a,P̄b

is nonempty. For any (Pa, Pb) ∈ (Pa, Pb), �-simple continuity implies for i = a, b that
max

si∈Si(P̄−i )

ui((si , s−i )) is a continuous function of s−i . Hence, there exists an �Pa,Pb
∈ Pa ∩ Pb

near enough to some point of kP̄a,P̄b
to satisfy the inequality

max
si∈Si(P̄−i )

ui((si , s−i (�Pa,Pb
))) − ui(�Pa,Pb

) <
�

2
(3.i)

for both i = a and i = b. For at least one (Pa, Pb), say (P N
a , P N

b ), P N
a ∩ P N

b , contains a Nash
equilibrium (sN

a , sN
b ) of the conventionally defined game where each i has the action set Si and

utility ui . In conformity with (3.i), set �P N
a ,P N

b
= (sN

a , sN
b ).

Let P−i (P
∗
i ) denote the unique cell of P−i such that P−i (P

∗
i )∩P ∗

i �= �, and let gi(Pi) denote

some P̂ ∗
i ⊂ Pi such that

sup
P ∗

i ⊂Pi

{ui(�Pi,P−i (P
∗
i ))} − ui(�Pi,P−i (P̂

∗
i )

) <
�

2
and si(P̂

∗
i ) = si(�Pi,P−i (P̂

∗
i )

). (3.ii)

If Range ga ∩ Range gb �= � (call this case I), then for i = a, b set hi(Pi) = gi(Pi) for
all Pi . If Range ga ∩ Range gb = � and for some i there exists some P̃ ∗

i ⊂ P N
i such that

P̃ ∗
i ∩ Range g−i �= � and ui(�P N

i ,P−i (P̃
∗
i )

) > ui(�P N
a ,P N

b
) (case II), then label one such i as î and

set h−î
(P−î

) = g−î
(P−î

) for all P−î
, h

î
(P

î
) = g

î
(P

î
) for all P

î
�= P N

î
, and let h

î
(P N

î
) equal
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some P̂ ∗
î

⊂ P N
î

such that

P̂ ∗
î

∩ Range g−î
�= �,

sup
P ∗

î
⊂P N

î
:P ∗

î
∩ Range g−î

�=�
{u

î
(�P N

î
,P−î

(P ∗
î
))} − ui(�P N

î
,P−î

(P̂ ∗
î
)
) <

�

2
, (3.iii)

s
î
(P̂ ∗

î
) = s

î
(�

P N
î

,P−î
(P̂

î∗ )
).

Finally, in the remaining possibility, case III—where Range ga ∩ Range gb = � and there is no
P̃ ∗

i ⊂ P N
i such that P̃ ∗

i ∩ Range g−i �= � and ui(�P N
î

,P−î
(P̃ ∗

î
)
) > ui(�P N

a ,P N
b
) for either i = a

or i = b—then, for i = a, b, set hi(Pi) = gi(Pi) for all Pi �= P N
i and set hi(P

N
i ) equal to the

P ∗
i ⊂ P N

i such that si(P
∗
i ) = sN

i . Notice that in all cases Range ha ∩ Range hb �= �.

Let us say that P ∗
i for i = a or i = b requires Nash adjustment if case II obtains, i = î,

P ∗
i ⊂ P N

i , and P ∗
i ∩ Range h−i = �; or if case III obtains, P ∗

i ⊂ P N
i , and P ∗

i ∩ Range h−i = �.
Otherwise we say P ∗

i does not require Nash adjustment. When P ∗
i for i = a or i = b requires

Nash adjustment, set

�((si(P
∗
i ), sN−i )|K(P ∗

i )) = 1.

When P ∗
i for i = a or i = b does not require Nash adjustment, set

�((si(P
∗
i ), s−i (�Pi,P−i (P

∗
i )))|K(P ∗

i )) = 1,

where Pi ⊃ P ∗
i . The remaining conditional probabilities can be set arbitrarily. As for the un-

conditional probabilities, set �(�′) = 1 for some �′ ∈ Range ha ∩ Range hb and �(�) = 0 for
� �= �′. Thus accuracy obtains.

To show that the hi satisfy the � rationality condition in Definition 7, conditional on � being
in the fixed P� ∈ P�, we first calculate the expected utility of arbitrary P ∗

i actions. Suppose for
the remainder of this paragraph that P ∗

i does not require Nash adjustment. Our specification of
the conditional probabilities then implies

E(ui |K(P ∗
i )) = ui((si(P

∗
i ), s−i (�Pi,P−i (P

∗
i )))),

where Pi ⊃ P ∗
i . Since furthermore

ui((si(P
∗
i ), s−i (�Pi,P−i (P

∗
i ))))� max

si∈Si(cl P−i (P
∗
i ))

ui((si , s−i (�Pi,P−i (P
∗
i )))),

(3.i) implies

E(ui |K(P ∗
i ))�ui(�Pi,P−i (P

∗
i )) + �

2
.

Consider P ∗
i such that it is not the case that simultaneously (1) case II obtains, (2) i = î, (3) P ∗

i ⊂
P N

i , and (4) P ∗
i ∩ Range h−i �= �. Then the fact that ui(�Pi,P−i (P

∗
i ))� sup

P̃ ∗
i ⊂Pi

{ui(�Pi,P−i (P̃
∗
i )

)},
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where Pi ⊃ P ∗
i , and (3.ii) imply

ui(�Pi,P−i (P
∗
i )) < ui(�Pi,P−i (hi (Pi ))) + �

2
. (3.iv)

(In case III and Pi = P N
i , (3.iv) follows from the fact that (sN

a , sN
b ) is a Nash equilibrium of the

conventionally defined game with action set Si and utility ui .) When (1)–(4) do obtain, the fact
that

ui(�P N
i ,P−i (P

∗
i ))� sup

P̆ ∗
i ⊂P N

i :P̆ ∗
i ∩Range g−i �=�

{ui(�P N
i ,P−i (P̆

∗
i )

)}

and (3.iii) imply that (3.iv) still holds (for Pi = P N
i ). Hence, whenever P ∗

i does not require Nash
adjustment,

E(ui |K(P ∗
i )) < ui(�Pi,P−i (hi (Pi ))) + �. (3.v)

When P ∗
i requires Nash adjustment, then, given our specification of the conditional probabili-

ties,

E(ui |K(P ∗
i )) = ui((si(P

∗
i ), sN−i )),

and, since the Nash action sN
i is utility maximizing against sN−i ,

E(ui |K(P ∗
i ))�ui((s

N
i , sN−i )) = ui(�P N

a ,P N
b
).

Hence,

E(ui |K(P ∗
i )) < ui(�P N

a ,P N
b
) + �. (3.vi)

To conclude the demonstration of � rationality, we calculate the expected utility of the hi(Pi)

actions and compare them to the expected utilities of arbitrary P ∗
i actions. When case I obtains,

or when case II obtains but Pi �= P N
î

, or when case III obtains and Pi �= P N
i for either i = a or

i = b, then

E(ui |K(hi(Pi))) = ui(�Pi,P−i (hi (Pi ))) (3.vii)

and so (3.v) establishes the � rationality of hi . When case II obtains and Pi = P N
î

, we again

have (3.vii), and if additionally P ∗
i ⊂ P N

i does not require Nash adjustment, then (3.v) again
establishes the � rationality of hi . When P ∗

i ⊂ P N
i does require Nash adjustment, (3.vi) and the

fact that ui(�P N
i ,P−i (hi (Pi ))

) > ui(�P N
a ,P N

b
) (see the definition of case II) establish the � rationality

of hi . When finally case III obtains, then, for either i = a or i = b,

E(ui |K(hi(P
N
i ))) = ui(�P N

a ,P N
b
). (3.viii)

Hence, if P ∗
i ⊂ P N

i requires Nash adjustment, (3.vi) and (3.viii) establish the � rationality of
hi . If P ∗

i ⊂ P N
i does not require Nash adjustment, then P ∗

i ∩ Range h−i �= � and hence
ui(�P N

a ,P N
b
)�ui(�P N

i ,P−i (P
∗
i )) (see the definition of case III). So ui(�P N

i ,P−i (P
∗
i ))�ui((si(P

∗
i ),

s−i (�P N
i ,P−i (Pi )

))) = E(ui |K(P ∗
i )) implies the � rationality of hi .

So far we have fixed P� and � ∈ P�. For any P ′
� �= P�, again select an arbitrary �′ ∈ P ′

�,
define the gi as before, and set hi(Pi) = gi(Pi) for each Pi, i = a, b, implying that the hi are �
rational on the entirety of their domain. �
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Proof of Theorem 4. For any P ∗
i , let PP ∗

i
be the partition of K(P ∗

i ), with typical element
PP ∗

i
(s−i ), defined, for all s−i , by

� ∈ PP ∗
i
(s−i ) ⇔ (s−i = s−i (�) and � ∈ K(P ∗

i )).

Then E(ui |K(P ∗
i )) = ∫

Si
E(ui |PP ∗

i
(s−i )) d�(s−i |K(P ∗

i )).
Suppose P ∗

i ∩ Range¬i h �= �. Given some s−i , consider an arbitrary P ∗−i such that s−i =
s−i (

⋂
j �=i

P ∗
j ) and (

⋂
j �=i

P ∗
j ) ∩ (P ∗

i ∩ Range¬i h) �= �. Then P ∗
j ⊂ Range hj , j �= i, and of course

(
⋂
j �=i

P ∗
j ) ∩P ∗

i �= �. For P ∗′
i ⊂ Pi , where Pi ⊃ P ∗

i , the mutual partitional ignorance of i’s

move implies P ∗′
i ∩ (

⋂
j �=i

P ∗
j ) �= � and so (

⋂
j �=i

P ∗
j ) ∩ (P ∗′

i ∩ Range¬i h) �= �. Hence, i’s update

independence implies �(
⋂
j �=i

P ∗
j |P ∗′

i ∩ Range¬i h) = �(
⋂
j �=i

P ∗
j |P ∗

i ∩ Range¬i h) and therefore

�(s−i |K(P ∗′
i )) = �(s−i |K(P ∗

i )). (4.1)

Now suppose P ∗
i ∩ Range¬i h = �. Given some s−i , let P ∗−i satisfy s−i (

⋂
j �=i

P ∗
j ) = s−i

and P ∗
i ∩ (

⋂
j �=i

P ∗
j ) �= �. For P ∗′

i ⊂ Pi , the mutual partitional ignorance of i’s move implies

P ∗′
i ∩ (

⋂
j �=i

P ∗
j ) �= �. Since P ∗

i ∩ Range¬i h = �, mutual partitional ignorance also implies

P ∗′
i ∩ Range¬i h = �. Hence K(P ∗

i ) = P ∗
i and K(P ∗′

i ) = P ∗′
i . Update independence therefore

again implies (4.1).
Thus for any P ∗′

i ⊂ Pi

E(ui |K(P ∗′
i )) =

∫
S−i

E(ui |PP ∗′
i

(s−i )) d�(s−i |K(P ∗
i )). (4.2)

If hi plays a dominated action, there exist Pi ∈ Pi and P ∗′
i ⊂ Pi such that, for each

s−i , ui((s
′
i , s−i , �′)) > ui((si, s−i , �)) whenever (s′

i , s−i , �′) ∈ P ∗′
i and (si, s−i , �) ∈ hi(Pi).

Hence, for each s−i , E(ui |PP ∗′
i

(s−i )) > E(ui |Phi(Pi)(si)) and so (4.2) implies E(ui |K(P ∗′
i )) >

E(ui |K(hi(Pi))), violating partitional rationality. �

Proof of Theorem 5. Let � be isomorphic to the join of Pi , i ∈ I, denoted by
∨
i∈I

Pi , with

accompanying bijection � : � → ∨
i∈I

Pi . Define F by A ∈ F if and only if A ⊂ �, and

Qi by Qi ∈ Qi if and only if there exists Pi ∈ Pi such that
⋃

�∈Qi

�(�) = Pi . Let Qi(�)

denote the Qi ∈ Qi such that � ∈ Qi . Set gi(�) = si(hi(
⋃

�′∈Qi(�)

�(�′))) for all � ∈ �, and

� (A) = �(�(A)) for all A ∈ F. Then (2) of Definition 13 obtains.
To show that (1) of Definition 13 obtains, we first observe that, for all P ∗

i , K(P ∗
i ) = P ∗

i ∩
Range¬i h. Without loss of generality set i = 1. Given some P ∗

1 , let P ∗−1 be such that P ∗
1 ∩

(
⋂
j �=1

P ∗
j ) �= �. Then since the agents j �= 2 are partitionally ignorant of 2’s move, P ∗

1 ∩h2(P2)∩
(

⋂
j �=1,2

P ∗
j ) �= � where P2 ⊃ P ∗

2 . Proceeding by induction, we conclude that P ∗
1 ∩ (

⋂
j �=1

h(Pj )) �=
�. Hence P ∗

1 ∩ Range¬1 h �= �.
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Therefore E(ui |K(P ∗
i ))

=
∫

{( ∩
j �=i

hj (Pj ))∩P ∗
i :P−i∈P−i }

E(ui |P ∗
i ∩ h−i (P−i )) d�(h−i (P−i )|P ∗

i ∩ Range¬i h),

=
∫

{( ∩
j �=i

hj (Pj ))∩P ∗
i :P−i∈P−i }

ui(si(P
∗
i ), s−i (h−i (P−i ))) d�(h−i (P−i )|P ∗

i ∩Range¬i h).

As in the proof of Theorem 4. partitional ignorance and update independence imply

�

⎛
⎝⋂

j �=i

P ∗
j |P ∗′

i ∩ Range¬i h

⎞
⎠ = �

⎛
⎝⋂

j �=i

P ∗
j |P ∗

i ∩ Range¬i h

⎞
⎠

for all P ∗′
i ⊂ Pi (where Pi ⊃ P ∗

i ) and in particular for P ∗′
i = hi(Pi). So∫

{( ∩
j �=i

hj (Pj ))∩P ∗
i :P−i∈P−i }

ui(si(P
∗
i ), s−i (h−i (P−i ))) d�(h−i (P−i )|P ∗

i ∩ Range¬i h)

=
∫

{( ∩
j �=i

hj (Pj )) ∩ hi(Pi ):P−i∈P−i }
ui(si(P

∗
i ), s−i (h−i (P−i ))) d�(h−i (P−i )|hi(Pi)∩Range¬i h).

Therefore, for any Pi and P ∗
i ⊂ Pi ,∫

{( ∩
j �=i

hj (Pj ))∩hi(Pi ):P−i∈P−i }
ui(si(hi(Pi)), s−i (h−i (P−i ))) d�(h−i (P−i )|hi(Pi) ∩ Range¬i h)

�
∫

{( ∩
j �=i

hj (Pj ))∩hi(Pi ):P−i∈P−i }
ui(si(P

∗
i ), s−i (h−i (P−i ))) d�(h−i (P−i )|hi(Pi)∩Range¬i h).

Taking expectations over {hi(Pi): Pi ∈ Pi} yields∫
{hi(Pi ) ∩ ( ∩

j �=i
hj (Pj )):Pi∈Pi ,P−i∈P−i }

ui(si(hi(Pi)), s−i (h−i (P−i ))) d�(hi(Pi)) ∩ ( ∩
j �=i

hj (Pj )))

�
∫

{hi(Pi )∩( ∩
j �=i

hj (Pj )):Pi∈Pi ,P−i∈P−i }
ui(si(P

∗
i (Pi)), s−i (h−i (P−i ))) d�(hi(Pi)∩( ∩

j �=i
hj (Pj )))

where P ∗
i (Pi) is an arbitrary P ∗

i ⊂ Pi for each Pi . Since accuracy implies that �(hi(Pi) ∩
( ∩
j �=i

hj (Pj )): Pi ∈ Pi , P−i ∈ P−i ) = 1, we conclude that Eui (gi, g−i )�Eui (fi, g−i ) for any fi

measurable with respect to Qi . �
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