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Abstract

In general equilibrium models where agents trade sequentially in multiple periods. the
equilibria that endogenously occur in later periods can be robustly indeterminate if
production sets are not evervwhere differentiable (as. for example. with linear activities).
The present paper proves that if technology is smooth. then equilibria are sequentially
regufar. That is. the equilibria of the endogenously generated economies occurring in Jater
periods that confirm the unanimous expectations formed by agents in earlier periods are
regular (and thus. for example. isolated from other equilibria). The paper also proves and
utilizes the standard result that the overall intertemporal equilibria are regular. © 1997
Elsevier Science B.V.

JEL classification: D31 D90
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1. Introduction

The standard approach to studying the determinacy of the general equilibrium
model recognizes that although indeterminacy can occur for certain parameters.
equilibria are at least generically locally unique (see. for example, Mas-Colell.
1985. for an overview). Among the parameters of these models. however. are
factor endowments. variables that are generated endogenously by past processes of
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capital accumulation rather than determined exogenously. As a consequence.
theorems stating that the set of parameters exhibiting indeterminacy has measure
zero leave open the possibility that certain endowment points. despite being
contained in a measure-zero set. arise systematically. To address this complication,
we consider a multiple-period general equilibrium model and interpret the in-
tertemporal equilibria as occurring through a sequence of trading at different dates.
In a two-period model. for example. a sequential interpretation of equilibrium has
agents in the first period unanimously anticipating a second-period price vector
and. on the basis of these expectations. making first-period consumption choices
and contracting for certain goods (‘real assets’) to be delivered in the second
period. In the second period. agents deliver or receive the goods they contracted
for in the first period and trade again to arrive at their second-period consumption
choices.

Under this interpretation, first-period trading generates a second-period econ-
omy. thus permitting a formal study of the determinacy question with endowments
endogenously determined. It is natural to speculate that. generically in the
parameters of the multiple-period economy. the economies that arise in the
second-period are regular and. in particular, have a finite number of equilibria.
This conclusion is not correct. With linear activities technologies — the reference
model for this literature (see Kehoe, 1980. and Mas-Colell. 1985) - and inelasti-
cally supplied factors of production. Mandler (1995) showed that there are
non-empty open sets of parameters such that the resulting second-period economies
typically have indeterminate equilibria. Indeed. it is precisely the equilibria of the
second-period economies that ‘continue’ the intertemporal equilibrium (i.e. that
confirm the prices unanimously foreseen in the first period) that can be arbitrarily
close to other equilibria. We call this phenomenon sequential indeterminacy. In
contrast., a model is sequentially regular if almost all of the second-period
economies generated by the intertemporal equilibria of the model are themselves
regular. We show that if the technology of an economy is described by a
sufficiently smooth transformation tunction. then sequential indeterminacy does
not arise robustly. More precisely. the set of economies that are both regular and
sequentially regular is open and dense in our parameter space. Naturally. we allow
the model to be rich enough to incorporate the inelastically supplied factors that
arc crucial for the appearance of sequential indeterminacy in the linear activities
case.

What is the significance of the fact that sequential determinacy occurs only
with certain types of technology? A central triumph of the Arrow-Debreu
approach to equilibrium theory is its generality. A remarkable diversity of models
can be incorporated into the framework: in particular, restrictions on the nature of
technology are minimal. Earlier neoclassical descriptions of technology using
differentiable production functions have always been criticized on the grounds that
marginal products were ill-defined and that some form of fixed coefficients were
more accurate empirically (see Pareto. 1897. sections 714 and 717, for an early
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example). The only important restriction on technology in the Arrow—Debreu
theory, however. is that production sets are convex. Production sets can therefore
be of the linear activity analysis variety (as in Koopmans, 1951), which many
regard as a basic description of technology. Subsequently, the theory of regular
economies also incorporated the activity analysis model of production. The
Arrow—Debreu criticism of earlier versions of equilibrium analysis therefore
appears complete: differentiable technologies are not only superfluous for exis-
tence and optimality but for determinacy as well. The earlier paper (Mandler.
1995) showed that endowments associated with indeterminacy can in fact arise
routinely when the economy is placed in an intertemporal setting and there are
linear activities. The present paper in contrast shows that with differentiable
technologies later-period indeterminacy essentially disappears. To have a sensible
model of production. therefore. we have to make just those painful assumptions
about technology that the set-theory approach was. in part, designed to avoid.
More positively, our results imply that classical marginal productivity theory
retains its relevance for economic theory. a position that many outside the
Arrow—-Debreu tradition never relinquished.

In the next section we introduce a two-period model with a smooth production
technology and prove that generically the equilibria are locally unique. Our
approach to regularity is distinctive and simple in that the first-order conditions of
firms are used directly in the definition of regularity: the proof of generic
regularity is correspondingly straightforward. Naturally. the restriction to smooth
technologies is a limitation compared with the most general models of regular
production economies (see, for example. Mas-Colell. 1975). However. even given
our focus on smooth technologies the set-up of the present model does not strive
for maximum generality. For notational convenience. we require that the inelasti-
cally supplied "factors of production” are the only second-period goods that can be
contracted for in the first period. And to keep the proofs shorter. we assume that
goods are either produced and have a zero endowment or are not produced and
have a strictly positive endowment; this supposition. along with standard boundary
conditions, will guarantee the convenience that equilibria always occur in the same
coordinate subspace. Given the potential link between inelastically supplied factors
and indeterminacy, however, we take some care to allow for such factors.

In Section 3 we introduce the second-period economies generated by a two-
period equilibrium and prove that generically the two-period economies are
sequentially regular. The proof will use the carlier result on generic regularity.

The concluding discussion in Section 4 begins by addressing a potential
paradox. A smooth technology may be closely approximated by a linear activities
technology. The smooth economy nevertheless generically has determinate sec-
ond-period equilibria while the "nearby’ linear activities economy can be robustly
indeterminate. We use an example to explain how these results are consistent. We
then indicate how the results of the two-period model can be extended to a finite
number of periods.
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2. A two-period model of general equilibrium

2.1. Commaodities

There are two time periods. i=1.2. In each period /. commodities are
partitioned into a set of L, consumption goods and M, factors of production. The
latter are goods that are used in production but do not give any agent utility
directly. A price vector for commodities is (p={(p,, p.) w=0r, ny)) e
RIUTE RMM: We use wy' to denote the first m coordinates of w.

2.2. Production

Production sets will be defined using two transformation functions. g,: R*' X
R X(R" X {0}"") > R and ¢, REXR™ >R Y, ={(z. fi. f)ER" X
R X (R" X AO}Y""): g \(z). f,. f,) < O} describes the production processes of
the first period. giving the set of possible productions among first-period consump-
tion goods. z,. first-period factors. f;. and an m-dimensional coordinate subspace
of second-period factors. f,. We assume that m > 0. Y,={(z,. f)ER" X
RY:: g.(z,, f,) < 0} gives the productions that are possible among second-period
consumption goods. z,, and second-period factors, f,. Factors are the only
second-period goods produced by production processes using first-pertod inputs.
This assumption is only for simplicity and could be generalized to incorporate
second-period consumption goods being produced directly by first-period inputs:
alternatively, although some of our assumptions are not natural for this interpreta-
tion. we may think of second-period consumption goods as being produced
indirectly through the creation of second-period factors which in turn produce
second-period consumption goods. Although we do not need an cxplicit assump-
tion. it is natural to suppose that if f,"(j) <f,(j) <0 forany j€{l..... m} and if
gz fi f,) = 0. then g(zy. f,. )= 0. i.c. second-period factors. which can
be produced in first-period production processes. cannot be used productively as
inputs in those processes.

We use the following assumptions on the ¢,

Assumption Al. The functions g, and g, are convex. and have the following
properties: (i) If the sequence (z,. f,. f,), is such that z,(j), = > for some

n

jell.... L} or £,()), > = for some je{l..... m}. then g ((z,. fi. [,),)>0
for all n sufficiently large: if (z,. f3), is such that z,(j), = > for some
jef{l... .. L.}, then g.((z,. f3),)>0 for all » sufficiently large. (ii) For all

AeR . gl fio £,)=0=g(Az. Af. Af)=0 and g¢.(z. L) =0=
¢>(Azy. AL =0,
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Assumption A2. I (2. f,. f,)is such that f(j) > 0. forany j€{1..... M,}. then
either ¢,(z,. f1. f,) > 0or (2. f,)=0. Similarly. it (,. f,) is such that f.(j) >
0. for any je{l..... M.}, then either g-(z.. f,)>0or z, = 0.

Assumption A3, There exists a (2. f. f,) with (2. f,)>0 such that
g/(z. fi- f,)<00and a (2. f7) with 7, > 0 such that g,(z,. f,) <0.

Assumption A4. Atpoints (2, > 0. f, < 0. f,> 0)and (2, > 0. f, < 0)in their
domains: (i) ¢, and g, are C°. (i) If S, is an arbitrary n <L, + M, +m
dimensional coordinate subspace of R X RY X(R" x{0}*> ") and vE S\
{0}. then y-Dg, =0 implies v'D g v>0:if S, is an arbitrary n, <L, + M,
dimensional coordinate subspace of R’>"¥: and v e §,\{0}. then v-Dg,=0
implies v'D g,y > 0. (iii) Dg, > 0 and Dg,> 0.

Assumption Al is standard. Assumption A2 says that in order for positive
outputs to be produced all inputs are required. Along with our other assumptions.
A2 guarantees that all equilibria occur in the same coordinate subspace. Assump-
tion A3 says that all consumption goods and produced factors may simultaneously
be produced in positive amounts. The second and third parts of Assumption A4.
respectively. require that the transformation functions are differentiably strictly
quasi-convex and differentiably monotone. There is no technological barrier to any
consumption good in either period being an input: we will, however. momentarily
impose requirements that. in equilibrium. preclude consumption goods from being
used in the aggregate as inputs.

2.3. Agents

Each agent j{l..... J} has an endowment of first-period and non-produced
second-period factors. ' =(w/. w{) € R X ({0} x R¥:"™). A consumption
plan for agent j is a vector v/ = (x{. x;) € R" - Agent j maximizes a utility
function «': R "t:— R over the budget set B/(p. w)={x'€R- " :p v/ <w
- w'}. The following two assumptions on preferences are standard.

Assumption AS. For all j and at all x'e R " w is C*. For x' € R
Du/(x/)> 0 and D u/(x') is negative definite.

Assumption A6: For all jand all £/ € R " {x'eRE 1 w(x)) = u(R)) C
RECE:

2.4. Equilibrium

Let Z/(p.w)=(z{(p.w) zi(p. w)) = argmax w/(x’/) s.t. x/ € B p. w)
Given that interior indifference curves do not intersect the coordinate axes and the
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negative definiteness in Assumption AS, z/(p. w) is C' when ( p. w)> 0. The
aggregate demand function is z(p.w) =L/ z/(p.w). An agent ;s excess
demand for factors is —(w/. w}). Aggregate excess demand for factors is
—o=—(0, v)= -/ (v o))

Definition. Let (z, f)=1(z,. z,. foo fis f>). An equilibrium for a two-period
economy is a ( p. w. z, f) such that

(- f1- f,) Sargmax p, -zt wy o f, Fwcf) s g (2. £ t,) <0,

(1)
(2. f3) €argmax py- 2o+ w, - f) st g2, f2) <0,
Apow)-:150. -0, —f<0. —(f,+w,)—f,<0. (2)

Walras® law, namely p-z(p. w) —n - w= 0. holds for any economy. Along
with the fact that in equilibrium p, -z, + w» Jotwiofi=0and p, o, +w, - f,
= 0, Walras’ Jaw implies that if an inequality in (2) is strict, then the price of that
commodity equals zero. However, owing to Assumption A6, the fact that factors
are required in production (Assumption A2). and our monotonicity assumptions
(Assumption A4(iii)), we have ( p, w) > 0. Therefore, all of the inequalities in (2)
hold with equality. Note also that for any agent j. the equilibrium value of x’
must provide as much utility as any element of X/={x/eRL*"t:3f <1
gilxl. —of, £)<0. g,(xi. (—=f, — @) < 0). Since X’ has a non-empty inte-
rior (see Assumption A3). and given Assumption A6 and the boundedness of the
set of feasible - (see Assumption Al(i)), there is a 2> 0 such that any
equilibrium value for : satisfies - >:'. Owing to Assumption A2 and the
continuity of the g, there are vectors (f]. f2) <0 and £, >0 such that any
equilibrium value for f satisfies (f,. 5. —f,) < (f]. fi. —f,). We conclude that
in equilibrium no coordinate of - or f can equal 0. Finally. owing to Assumption
AdGi). g,(z). f), f)=0and g,(z,. /1) =0.

As is standard, given that all prices are positive, the price of one positively
priced commodity can be set equal to one without changing the set of equilibrium
allocations or equilibrium relative prices. We set the first coordinate of p, equal to
one. Owing to Walras’ law. the fact that prices are positive. and the zero
profitability of production, one inequality in (2) is redundant for the determination
of equilibrium: we omit the inequality in (2) corresponding to the first coordinate
in ;. We adjust our notation by letting p, and p indicate that the first coordinate
of p, has been set equal to one. and letting Z, and I indicate that the first
coordinate of z, has been omitted. Let Z,(-) and Z(-) indicate the corresponding
demand functions.

We can now describe the equilibria of an economy as the solution to a system
of equations. Given an equilibrium (p. w. z. f). another consequence of our
monotonicity assumptions is that there is a (unique) A, €R__ such that
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MDg(zy fio f)=(p.w. wi)=0 and a (unique) A, E€R_, such that
A, Dgo(z5. f2) — (p.. w,) = 0. We consider the following equations:

gz /1 £,)=0 (1). (3)
MDg (2 o £ = (prowiowl)=0 (L, +M, +m). (4)
g:(5. f1) =0 (1). (5)
A Dg( 200 f2) = (Paewy) =0 (L,+M.). (6)
Apow)—3I=0 (L ~L,—1). (7)
—w, —f=0 (M). (8)
—(f,tw)=f,=0 (M,). (9)

The number in parentheses on the right indicates the number of equations. while
the "endogenous’ variables are p. w. z. f. and A =(A,. A,). The left-hand sides
of (3)-(9) therefore define a function. say F. from RE 757D RM-Ma UL
X(R" X —=RY ™M)y x RZ_ 1o R*hiler 2= adeem =1 Corresponding to any
zero of F is a normalized equilibrium. ( p. w. z. f). and. conversely. correspond-
ing to any equilibrium ( p. w. z. f) is a zero of F. ascertained by normalizing
prices and using (4) and (6) to calculate A. We therefore refer to zeros of F as
equilibria. Also. since F is differentiable at a zero. we can say that an equilibrium
(p.w. 2. f) induces a particular value for the square matrix. DF(p. w. 2. f. A).

Definition. An equilibrium (p. w. Z. f) for a {two-period) economy is regular if
the induced DF is non-singular. An economy is regular it all of its equilibria are
regular.

Applying the inverse function theorem to F at a regular equilibrium
(p.w. z. f. A) indicates that. locally. F has a unique solution at ( p. w. z. f. A):
consequently. equilibrium allocations and relative prices are also locally unique.
To see that a regular economy can have only a finite number of normalized
equilibria. we recall first that we have already remarked that there is a " > 0 such
that any equilibrium value for - satisfies = > " and also (f}. f3) <0 and f,> 0
such that any equilibrium value for f satisfies (f. /5. —f,) <(fl. f3. —f))
Given Assumption A1(i). there is a compact set C=C_ X C_ xC, XC, X C,.
CREZTmx (=RM "M2) that contains the set of equilibrium values of
(2. 2. f,- f.. f2). Consequently. given Assumption A4(iii). we have that
D. ,gAC. X C,) is a compact subset of R__. Hence. the set L,={A,€
R Az fEC XC, st AuD_ |, ¢-{z5. f5) =1} is compact. Furthermore.
if A, is restricted to L, and (z,. f3) is restricted to C_ X C, . then the set of
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(p. w,) that solves (6), say P,. is compact and a subset of R%:. """ We can
now reason similarly for the variables A, and ( p,. w ): letting P)" indicate the
projection of P, onto the m coordinates corresponding to w', the sets L, = {A, €
R 3z fi. [HEC. XC, X Cpoand wi € P st AD, gz, f. f,)=wY)
and P, ={(p,.w)eRl M, 3, €L, and (.. fs. IJEC. XC, XC, st
A Dg(zy. fio f) = (powowi) =0} are compact and P, CREMSince F s
continuous on the compact set P, X P, X C X L, X L,. a regular economy has a
finite number of normalized equilibria.

2.5. The set of perturbations

Technology in the first period is parameterized by specifying a set of admissi-
ble first-period transformation functions. Given a fixed g, that meets our assump-
tions. we suppose, for each « in some open. bounded set A CR”_. that
gl fio ) =gl fioa S0 a, f,(m)) is admissible.

To parameterize preferences we construct a set U' ot acceptable utilities for
some i€ {l..... J}. First. given a symmetric matrix H € R‘Ebtbolam1/2 yng
an he R" ™ et h-x'+(x'YHx' be denoted f(H. ). Giving (H. h) the
Euclidean norm, let .7 be the set of all f(H. h) such that [|[(H. k)| <b. for
some fixed b € R, _. Given a fixed utility function #' that meets the assumptions
imposed above. we define U’ by the requirement that ' € ' if and only if there
is some f(H. h) €5 such that u' =’ + fCH. h). As necessary. we will indicate
the functional dependence of i's demand and aggregate demand on u'.

The utilities for i introduced by these perturbations may violate Assumption AS
or A6. If the perturbations are in sufficiently small sets. however. then we can
assume. using arguments similar to the reasoning used above to conclude that the
unperturbed model has a finite number of equilibria. that. for all perturbations. all
equilibrium values of (z. f). (p. w). and A are contained in compact sets that do
not intersect the coordinate axes. We label these sets K. P.and _1. respectively. It
is then not difficult to show. again requiring the sets of perturbations to be in
smaller sets if necessary. that. for all (. w)€ P and «' € U'. z'(p. w. u') and
therefore z( p. w, u') are C'. In the following definition the set of perturbations is
to be understood as obeying these restrictions.

Definition. The set of perturbations is ¢ = A X L. and a (two-period) economy is
ala.u)es.

We observe that our earlier argument that regular economies have a finite number
of equilibria can be extended to any regular economy in the set of perturbations by
restricting ( p. w. 2. f. A) to the compact set P X K X 1.
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Theorem 2.1. The set of regular rwo-period economies is open and dense in the set
of perturbations.

Proof. Given the compactness of P X K X .1, openness is standard. To prove
density, let G: P X KX A X & — R 2M=3Mt 1 he  defined as
F(p.w. z, f. A) for the economy (. 1') € &. By the transversality theorem (see,
for example. Guillemin and Pollack. 1974). to show that there is a dense set of
parameters such that DF(p, w, z. f. A) is non-singular if F(p, w, z. f, A) = 0.
it is sufficient to show that DG(p. w, z. f. A. @. u') has full row rank if
G(p, w. z. f. A, a. h)=0. (Recall that # is the linear term in the perturbations
of u')

We observe first. given that (A, f,) > 0 at equilibrium and that « > 0. that
Assumption A4(ii) and (iii) imply that the matrix B =

o e PSR TEINIEES LD, kG 0
ADI e A DI ey ALamD; L, gy Dow
Ay D e A (Do +a (0D ) Apa, 1 m) DT L g a8
Aa Do e A ADDT e A D it = @ D] o 80) @D )

is nonsingular. If we represent G as ((p. w. ) —Z. —w, — f. gz, f. )
MD. gz fio £ =P MD; 80 f fha, —wi(p), j=1...., m,
AIDf,qu(:l‘ fie 1) —wy ”(.fp +wy) —fo. gz f2) Ay D::g:(3:~ f2)=p,.
XD, g(z,. f,) —w,), then B is the matrix of derivatives of the third, fourth.
and fifth blocks of entries in G with respect to (z,. a, A,). Consequently. the
following subset of the columns of DG,

h f (2. a, A)) wy s > A, W,
D,z 0 0 0 ]
0 —1 0 0 0 0 0 0

0 - B 0 0 0 0

0 : - -1 0 0 0 0

0 0 0 0 -1 0 0 0

0 0 0 0 D. ¢ 0 0

0 0 0 0O - ADY g D.g, O
L0 0 0 0 - ' —1]

has full row rank when G(-) = 0. and the proof is complete. if D,Z(p. w, h) has
rank L, + L, — | when (p, w) is an equilibrium price vector. To see that this is
the case, an application of the implicit function theorem to the first-order
conditions of agent i's optimization problem indicates that D, z'( p. w. h) is equal
to the upper left L, + L, rows and columns of

) g1
Du' p
7] I
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It therefore follows from standard results in consumer theory (see. for example.
Barten and Bdhm. 1982). and easy to confirm directly. that D, z'(p. w. &) (a
multiple of the Slutsky substitution matrix) is such that D, z'(p. w. k) p =0 and
has rank L, + L, — 1. However. since p > 0 at any (p. w) € P. it follows that
for any y € RY %7 '\{0}, v cannot be in the null space of D,Z'(p. w. h): in
other words. D,Z(p. w. h) v #0 for all ye& RY"5 1\ {0}). Hence
D,Z'(p. w. 1) and therefore D, Z(p. w. h) have rank L, + L, — 1. as claimed.
0

3. Sequential regularity

We now define the second-period economies generated by a given equilibrium.
(p .w’. 2. f7) of one of the two-period economies described in Section 2.
We first describe how (p”.w ™. 27, f7) can be interpreted as occurring through
a sequence of trading in consecutive periods. For a more detailed discussion. see
Mandler (1995). Each agent ; has the same endowments and preferences as
described in the previous section: now. however. each j wransfers wealth across
the two periods through the purchase or sale of a vector of produced factors.
k'€ R™x{0}": " to be delivered at the beginning of the second period. For
simplicity (and in accord with a measure of realism). we allow agents to contract
only for the delivery of producible factors and not for consumption goods and
non-produced factors. Each agent faces a pair of budget constraints p; - x| + ¢ -
k! <w, - w inthe first period and p. - x{ <, - (k' + w!) in the second period.
where ¢ € RY: are the first-period prices for the delivery of second-period factors.
In the first period. p, and w, are to be thought of as (unanimously) anticipated
prices.

Setting ¢ equal w, . the two budget constraints that an agent now faces reduce
to the single budget constraint of the previous section. Consequently the consump-
tion choices of any agent will be identical to the choices made in the two-period
economy’s equilibrium. Furthermore. &/ will be chosen so that p; - z{(p. w)=
wy - (k' + w!): each j saves or borrows in an amount such that the value ot j's
second-period endowment will equal the value of the second-period consumption
bundle specified by the two-period equilibrium. In addition. in order for
(paows. o0 fy) to be an equilibrium for the economy that appears in the
second period. we must have ¥/_ | k'=/". Note that at the beginning of the
second period all the characteristics of a well-defined economy are specified. Each
agent j owns an endowment equal to k&’ ~ ] and a utility function. u': R - R.
given by «/(x/. - ). where x{ = z/(p . w ). The production set is Y-.

The above discussion indicates how an arbitrary two-period equilibrium can be
instituted through trading during each period and how a second-period economy is
generated. There 1s a technical difficulty. however. owing to the fact that agents
care only about the value of their endowment in the second period. not the
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particular vector of factors that comprise their endowment. Concretely. a unique
k=(k")/_| need not be specified by the requirements

Cel(pTow Ty =wy (Kt ed). jEef{l . J}.

ék‘,:/., (10)
./Y'

In fact. considering that p; -z, = w5 -fy . it is easy lo confirm that the set of &
that satisfies (10). which we label &,. is a (J — 1)m — 1)-dimensional affine
subspace in R’". Thus. unless there is either one individual or one produced
factor. a single two-period equilibrium will generate an infinite number of possible
economies in the second period. We summarize the above discussion with the
following definition.

Definition. An equilibrium (. w ™. = . f ) of a two-period economy. (a. u')
€&, generates a (J— ){m — 1)-dimensional set of second-period economies,
each identified with a distribution of endowments. k € #,.

When (J— 1Xm—1)>0, we give the set of second-period economies the
Lebesgue measure: when (J— 1)(m — 1) =0, we define the singleton set of
second-period economies to have full measure and the empty set to have zero
measure.

Given any second-period economy k. each j maximizes «’(x/. x{) subject to

the constraints p,- x4 <w,-(k'+ wi) and v/ =z{(p,.w ). In some open set
P CRE M that contains ( p5 . w ). the solution to each consumer’s problem.
ips. wa. k). and the aggregate demand function. I.{(p,. w,. k) =
vy

L/ 24psows k) are C' functions of (p,. w,). Since we are only interested in
the regularity and determinacy of equilibria with price vectors near (p, . w ). the
discussion that follows should be understood as referring only to (p-. wy) € P~

Definition. A {(normalized) equilibrium for a second-period economy is a
(ps.wa. 220 f2) such that

(z2. fr) €argmax p.- oo+ s fssitoga(za. fy) <O, (1
S paows k) —2.<0. (12)
—w,—(f, +f)=<0. (13)

If(p . w’ . 2. f )is an equilibrium of the underlying two-period economy.
then it is straightforward to confirm that (/<. w,. = . f,°) is an equilibrium for
the generated second-period economy. We use the term continuation equilibrium
to refer to (ps . ws . 2. f2 )

We now turn to regularity of the continuation equilibria of the set of generated
second-period economies. Given an equilibrium (p,.w,. 2,. f2) of a second-
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period economy k with (p,. w,) € P,. we can describe the nearby equilibria
using the following system of equations:

g:(2. f,) =0 (1. (14)
A Dgy(za. fo) =(Paowa) =0 (Ly+M,). (15)
—w, = (f, +£)=0 (M,). (16)
(pows k) —32,=0 (L,—1). (17)

Here the endogenous variables are ( p. w.), .. f>. and A,: the left-hand side of
(14)-(17) therefore defines a C' function Fi: P? ><RL>< RY: xR, .
R>L:%2M:  Since. corresponding to any equilibrium (p,, ws. o, f) there is
unique A, that satisfies (15), we can say that an equilibrium (p,. w,. 2,. f5)
induces a value for the matrix DF3(P.. w1, Za. fou Ay

Definition. An equilibrium of a second-period economy is regular if the induced
DF}(p,. wy, 22, fo, A,) is non-singular. A two-period equilibrium is sequen-
tially regular if the continuation equilibrium of almost every generated second-
period economy is regular. A two-period economy is sequentially regular if each
two-period equilibrium of the economy is sequentially regular.

Theorem 3.1. The set of two-period economies that are both regular and sequen-
tally regular is open and dense in the set of perturbations.

Proof. The proof proceeds in two steps. In Step 1 we show that if the continuation
equilibrium of one of the second-period economies generated by a two-period
equilibrium is regular, then the continuation equilibrium of almost every second-
period economy generated is regular. Step 1 will also verify the openness claim.
To prove density. we show in Step 2 that the set of two-period economies. such
that each two-period equilibrium generates at least one second-period economy
whose continuation equilibrium is regular, is dense in the set of perturbations.

Step 1. Let k denote the second-period economy whose continuation equilibrium
is regular. If the set of second-period economies contains one element. then our
claim is trivially satisfied. If the set of second-period economies contains more
than one element. then we parameterize the set by letting each element of the set.

except k. be represented as a (5. w) € oV IR, L where
g7 =D e the (J — 1Xm — 1) — | dimensional sphere with radius | and
center k. Each k is identified with the n &€ o """ D" ! that is an element of the
line that contains k and & and the u € R . that equals the Euclidean distance
between k and k. Let & o'/ " """ !xR__—R" be the function that
indicates the &k’ identified by (7. w).

It is sufficient to show that for every n. DFY(ps.wsy. 2. fi . A7) is

non-singular for almost every w. since then Fubini's theorem 1mplle> thal. for
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almost every (n, w). DFY(p,, wy, z5. fy'. A5) is non-singular. Of course. it
then follows that DF{(ps, wy. 25, f», A; ) is non-singular for almost every k.

First, we express Fy as (—w, —(f +1,). g.(z,. f2). A, D. g(2,. fo) —
P2 Ay Dy 82250 f3) = w,, Z( Py, wy, k) —Z,). We then have,

DFf= f, <2 A Wa p-
-1 0 0 0 0

D. g, 0 0 0

\,D? g, D.g, —1

: - -1 0

0 —1I 0 D, I, D;7I

Given the assumptions on the utilities and the standard Slutsky decomposition,
we have

-1 0 0 0 0
D g 0 0 0

DFh ADE g D.g 0 -1
i —1 0

J J

0 ~1 0 Yok +wi) L(S—v'3)

J=1 J=1

where, for each j. §’ is the Slutsky substitution matrix and v/ is the column
vector of income effects. Fixing 7, we can view the above matrix as a function,
say v, of u. We then have y( ) =

~1 0 0 0 0

D. g 0 0 0

/\:D:::,_—ﬂh’: D. g, 0 a

: - . ; -1 ;0
0 —1 0 Y pk(n D+ - wk +wi) Y (ST viE)

i=1 =1

and letting ¢ = X7_ v/(k’(n, ) — k(5. 1)),

0O 0 0 0 O
0O 0 0 0 0
y(u)=yO0)+ul0 0 0 0 0]
0O 0 0 0 O
0 0 0 ¢ O

We have assumed that y(0) is non-singular. The following lemma shows that
v( @) is non-singular for almost every wu, which proves Step 1.
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Lemma 3.1. Let A and B be n X n matrices. If there exists u p € R such that
A+ wB is non-singular. then for almost every p € R. A+ uB is non-singular.

Proof of Lemma 3.1. 1f the function 4: R — R defined by A( u) = det( A + uB) is
constant, then 4( ) # 0 for all w. If A( w) is non-constant, then it is a polynomial
of some order between | and #, and so for at most # values of w.det( A + uB) = 0.
For the remaining values of u, A + uB is non-singular.

To see that the openness conclusion now follows, we consider a regular and
sequentially regular economy (a. u') and an open neighborhood & of (a. u')
such that all (a. u') € &" are regular and where. consequently, the (finite) number
of two-period equilibria is constant. For each two-period equilibrium
(p*.w*. 2" f) of (a, u'Y. DFS(ps.wy. 2. fo. Ay) is non-singular for
some & (indeed for almost every k). By fixing (J — 1)(m — 1) coordinates of k.
we may vary k continuously as a function of (a, u') €& if we vary the
two-period equilibrium continuously as a function of the parameters. Hence, we
can assume that DF;(p;. w5 . 25 . fy . Ay) can also be varied continuously in
the parameters and therefore there is an open subset & C & that contains (a. u'Y
such that DF;(p,. wy, z5. f'. A3) remains non-singular. Hence, for all (a. u")
€&, DF{(p5.wy. 2. f> . AY) is non-singular for almost every second-period
economy generated by (p°.w ™. 2. f7). Since we may construct a & in this
way for each of the finite number of two-period equilibria. the intersection of the
&” can serve as an open neighborhood within which all equilibria are sequentially
regular.

Step 2. As for density, we observe first that by Assumption A4(ii). the upper left
4 X 4 block of DF} is non-singular. The following lemma shows that if we can

perturb the main diagonal elements of D, Z,. then DFY is non-singular.

Lemma 3.2. Given a matrix.

A b
et 1]

¢ B
with B square and A square and non-singular. C is non-singular for almost every
choice of the main diagonal elements B, . ... B,. of B.

Proof of Lemma 3.2. We define L matrices consisting of the first N+,
i=1...., L. rows and columns of C. We consider d,: R — R defined by d(B,) =
det(matrix /= 1). Since det( A)# 0. 0 is a regular value of d,. Hence, by the
implicit function theorem, d, '(0) is a set of measure 0. We can now proceed by
induction. Let d,: R X R\ d; '(0) be defined by f»(B,. B,)= det(matrix i =2).
Since 0 is again a regular value of d,. d, '(0) is a set of measure 0. Given that at
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each stage / only sets of measure 0 are removed from R', we are left with a set of
full measure in R* such that det(C) # 0.

We now show that the main diagonal elements of D; Z,(py. wy. k) can in
fact be perturbed without altering the non-diagonal elements or the other entries of
DFY(py.ws. z7. fy, AJ). Specifically, given an arbitrary small perturbation of
the main diagonal entries in D; Z,(py. w. k). we will show that there is a
'€ U' that will achieve this perturbation and leave z'(p”, w™) unchanged.
Moreover. beginning with u', as the perturbation of demand becomes small,
@t —u'. With z'(p~. w ") unchanged, (p~.w™. 7. f7) remains a two-period
equilibrium and % remains a second-period economy for (p*. w™, 7, "), and
consequently the other entries of DFy(py, wy, z5. fy'. A3) are unchanged. To

confirm that such a 2" exists, let #'=:'(p". w) and recall from consumer theory
that
bs(piwi B [z o[ i
~ = I3 it ( 18)
D, u(p;.wi. k) vioof| - &1

where w is the Lagrange multiplier in ¢'s second-period maximization problem, Z
is L, X L,, and
S -1
. D: u'  p,
Z L:' _ Valds P> . (19)

v o8 0

We can therefore arrive at the desired perturbatlon of Dy Hps. o wy, k) if we can
perturb (Z,,..... Z, ;) while leaving z'(p~.w™), u, v. and z, (for i, j=
2.....L,. i #)) unchanged. To find a &' that meets these requ1rements, we first
complete the construction of a perturbation of Z, say 7. We already have values
for 2,,(1'. J=2.... é:)i we use these values, the equation 2p:=0, and the
requirement that Z is symmetric to attain (unique) new values for
ZAH ..... ZA‘L‘. 23l ..... ZA“. Next. we define

where V' is L, X L, and where » and ¢ are kept at the values specified in (18).
We have VZ+ v’ =1 and therefore VZp« + wv'p, = p,. Given that we have
required Zp, =0 and that, from standard consumer theory. »'p, =1, we have

7= p,. Consequently. 7 ‘Z+av' =av' =0, and therefore «=0. Thus, given
(18) and (19). to make the prescribed perturbations it is sufficient that D7, 4'(2')
=V and Dia'(#) = Du'(2') hold. The latter equality guarantees that z'(p*. w™)
remains unchanged. Defining W=V —D? _u(%), a &' that will meet these
conditions is «'( x')+ (1 /2)x{Wx}, — 8/ Wxi. (Note that, given the symmetry of
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Z, V and thus W are symmetric.) Taking sufficiently small demand perturbations,
W can be chosen to be arbitrarily near the 0 matrix and therefore &' arbitrarily
near u'. For the construction of a similar perturbation argument. see Geanakoplos
and Polemarchakis (1986).

The density conclusion is now straightforward. If we wish to find a regular and
sequentially regular economy within & of some arbitrary (a, u'), we choose an
open set &' that contains only regular economies with precisely n equilibria such
that each element of & is within & of (a, u'). Given an equilibrium
(p*.w*. 2z, f*) of an arbitrary («a, u'Y €&, the preceding argument implies
that we can find a non-empty open set &' C &  such that
DFy(p;, w;, z5. fo . A5) is non-singular at all (@, u') €&". (As in the argu-
ment concluding Step 1, we vary the equilibrium (p", w™, =", f") and k
continuously in the parameters.) Proceeding sequentially through the other n — 1
equilibria in &', we construct a series of non-empty open sets, &..... &", with
grlcg' i=1.....,n—1, where for at least i of the equilibria in
&', DFy(p,.w5y. z;, fy', A3) is non-singular. Given Step 1, any economy in
&" is sequentially regular. O

4. Discussion

There may seem to be a paradox in that a smooth production technology can be
closely approximated by a linear activities technology. Theorem 3.1 shows that,
generically, the second-period continuation equilibria in the smooth case are
regular, while Mandler (1995) shows that in the linear activities case second-period
continuation equilibria can be robustly indeterminate. Thus, an arbitrarily small
change in technology can eliminate second-period local uniqueness.

As the following example should make clear, there is no contradiction in this
‘discontinuity’. Suppose, in the second period of a two-period model, there is one
consumption good and two factors of production. Let w € R> . indicate the
aggregate endowment of the two factors and let the production set be given by
Y={(z, /)R g(f)+z<0), where g: —R> > R is convex. The smooth case
is described by assuming that g is C' on the interior of its domain. Setting the
price of the single second-period consumption good equal to 1, equilibrium prices
for the factors w € R> must equal Dg(— w). In Fig. | the smooth curve labeled S
is the isoquant set {f€ —R2: g(f) = g(— w)}. The uniqueness of the equilibrium
values for w then corresponds to the uniqueness of the hyperplane supporting
—w. In the linear activities case, the transformation function will lead to a
piecewise-linear isoquant; the set L in Fig. 1 is an example. Since L has a kink at
— w, there is a multiplicity of supporting hyperplanes at — w. or. in other words,
an indeterminacy of equilibrium factor prices. Note that for generic endowments
—w will not occur at a kink; however. Mandler (1995) shows that when
endowments are determined endogenously. second-period endowments at kinks
arise robustly.
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f(2)

Fig. 1.

In what sense can we think of a sequence linear activities production sets
converging to a smooth production set? Since both smooth and piecewise linear
transformation functions are elements of the set of continuous functions defined on
—R? . it is natural to define a sequence of production sets as converging if there
exist transformation functions that describe the production sets that converge with
the topology of C° uniform convergence on compacta. In terms of this topology, a
smooth element of the function space may be approximated by a piecewise-linear
element. The convergence of a sequence of piecewise-linear g, to a smooth g can
be seen graphically in terms of isoquants. Let each L, have kinks only at elements
of §; then simultaneously increase the number of kinks and let the maximum
distance between kinks be well-defined and decrease to 0 as n — ¢, As long as a
kink remains at — w, a one-dimensional set of equilibrium factor prices will occur
at each element of the sequence g,. The fact that a g, arbitrarily close to a
smooth g still need not be everywhere differentiable thus allows indeterminacy to
persist. It is clear from Fig. 1, however. that the set of equilibrium values for w
along the sequence g, will converge to Dg(—w); in fact. such a convergence
result holds in more general contexts.

The two-period results of this paper extend to models with an arbitrary finite
number of periods 7. To mimic the two-period model of Section 2, suppose that
agents in periods t=1....,T— 1 can contract for produced factors that are
delivered and then used in production in period 7 + 1. If parameters that perturb
the production of factors in periods before 7 are included in the model, then a
proof of the generic regularity of the 7-period equilibria can proceed analogously
to the proof of Theorem 2.1. As for sequential regularity. we can associate with
each T-period equilibrium the sets of rth-period economies occurring at 1=
2....,7, and the continuation equilibria (which now last 7+ 1 — ¢ periods) that
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confirm the expectations formed in the T-period equilibrium. Similarly to the
two-period model. the presence of multiple agents and produced factors of
production in some period t=2..... T will lead the set of rth-period economies
to be multi-dimensional. ' A T-period equilibrium is sequentially regular if. for
each r=2..... T. the continuation equilibrium of almost every rth-period econ-
omy is regular. The proof of generic sequential regularity iterates the argument
given for the two-period case. For each 1 =2..... 7. the existence of a rth-period
economy whose continuation equilibrium is regular implies that the continuation
equilibrium of almost every rth-period economy is regular. The existence of a
tth-period economy (for r=2..... T) whose continuation equilibrium is regular
for a dense set of 7-period economies is guaranteed by the perturbation argument.
The only substantial difference relative to Step 2 of the proof of Theorem 3.1 is
that, for T=1..... T — 1. a perturbation of the second derivatives of the 7th-period
transformation function (leaving the tirst derivatives unchanged) is necessary.
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