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Abstract

Several decision models in marketing science and psychology assume that a consumer chooses by pro-
ceeding sequentially through a checklist of desirable properties. These models are contrasted to the utility
maximization model of rationality in economics. We show on the contrary that the two approaches are nearly
equivalent. Since the number of preference discriminations that an agent can make increases exponentially
in the number of properties used, checklists provide a rapid procedural basis for utility maximization.
© 2011 Elsevier Inc. All rights reserved.

JEL classification: D01

Keywords: Bounded rationality; Utility maximization; Choice function; Lexicographic utility

1. Introduction

In shopping for a car online, suppose you first decide on a maximum price, then narrow down
your search to cars with a manual transmission, then look to see if any sport cars are available,
then any Italian sport cars . . . and you end up buying a red Alfa Romeo.
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In this example you make your decision when facing a set of alternatives using only properties
of the alternatives. A property is simply a subset of alternatives, e.g., all sports cars. You go
through your checklist of properties until you are able to narrow down the set of alternatives
sufficiently. At each step you eliminate the alternatives that do not have the specified property,
or, if no alternative has the property, you do not eliminate any options and move on to the next
property. No maximization of utility or of preferences is invoked: all that is required is an ordered
list of desirable attributes. That the list is ordered means that earlier properties always trump later
properties; if the car buyer checks car color only with his final property, then color can never
take precedence over the properties checked earlier on. This lexicographic feature of ordered
properties makes choosing by checklist appear distant from the classical economic agent’s pursuit
of utility. Moreover, a checklist is easy to execute, while maximizing utility may seem to be a
daunting task. In the words of Herbert Simon:

The assumption of a utility function postulates a consistency of human choice that is not
always evidenced in reality. The assumption of maximization may also place a heavy (often
unbearable) computational burden on the decision maker [25, p. 16].

Checklists present a challenge to Simon’s view. Although easy to use, checklists implicitly
impose a utility ordering on alternatives; the checklist and utility models are in fact nearly equiv-
alent. Checklists in addition can make fine preference discriminations using only a handful of
properties; from the checklist point of view, utility maximization is computationally undemand-
ing.

The sequential elimination of alternatives by whether or not they possess properties underlies
several decision-making models in psychology1 and marketing science.2 Since any decision pro-
cedure that follows a flowchart of ‘yes or no’ questions can be written as a checklist, checklists
can serve as normative guides in fields such as clinical medicine.3 The specific checklist model
we present is a simplified (deterministic) version of ‘elimination by aspects’ [26], which

is relatively easy to apply . . . involves no numerical computations and . . . is easy to explain
and justify [27, p. 489].

Decision-making with a checklist is considered basic precisely because it eschews any use
of preference relations over alternatives, the hallmark of economic analysis. Its attraction is its
simplicity: it generates ‘fast and frugal’ heuristics [11], appropriate when time, knowledge and
computational power are scarce. [11] indeed emphasize the contrast between such heuristics and
‘demonic rationality’, by which they mean preference or utility maximization.

As the views of Simon and the psychologists illustrate, it is not clear at first sight that there
is a connection between checklists and the economic model of maximization. And the fact that
discriminations among alternatives made by one property can never be overturned by later prop-
erties suggests that the only maximizing agents that the model can capture are agents with
lexicographic preferences on Rn+ who do not make trade-offs among different types of goods

1 See [26,2,3,15].
2 See, e.g., [28]. The term ‘non-compensatory choice models’ is used in these fields to underscore the lack of ‘trade-

offs’ between earlier and later properties.
3 See for example [8].
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or attributes (where, e.g., agents prefer more of good 1 and good 2 quantities are decisive only
when good 1 quantities are tied).

We will see that the reverse is the case: the agents who use our benchmark model of checklists
– where all the alternatives that will be rejected are eliminated in finitely many steps – always
make choices that maximize some utility function. Since lexicographic preferences on Rn+ can-
not be represented by a utility function, it follows that checklist users cannot in this sense be
lexicographic. So, whatever goes on in the minds of checklist users, they act like classical max-
imizers. While we can extend the benchmark model of checklists to cover agents without utility
functions, such agents remain handicapped: their checklists will go on indefinitely eliminating
options without end.

The lexicography example illustrates the broader principle, contra Simon, that having a util-
ity function contributes to rather than detracts from decision-making efficiency. We will see
that checklist users can sift through alternatives rapidly: the number of properties they must
go through relative to the number of preference discriminations n that they make shrinks to 0
as n increases. Checklist users can in effect perform a binary search, which makes the number
of preference discriminations they make an exponential function of the number of properties
that they use. As a result, an agent who makes a 1,000,000 preference discriminations needs a
checklist that is just 20 properties long.

Comparable conclusions hold for the agents of consumer theory who choose commodity bun-
dles. It might seem that checklist users cannot exhibit the uncountably many indifference classes
that textbook consumers have. But in fact the choice behavior of any utility maximizer can be
generated by some checklist. Moreover the checklist can be one of the benchmark checklists that
execute quickly: for any finite set of alternatives, the agent will need to go through only finitely
many properties on his or her checklist before coming to a decision.

So not only will any agent who uses the benchmark model of quickly-executing checklists
have a utility function but the converse holds as well: any utility maximizer can make decisions
with a quickly-executing checklist (though here some domain qualifications will come into play).
The tractability that has attracted psychologists to checklists thus obtains if and only if checklist
users display the trade-offs of utility maximizers.

We end up near [11]’s point of view but with a caveat. Checklists are indeed ‘fast and frugal’:
they are a fast and frugal way to maximize utility.

2. Checklists

Fix a nonempty set of alternatives X. An agent faces a domain A of choice sets, where each A

in A is a nonempty subset of X. For each choice set A in A, the agent selects a nonempty
c(A) ⊂ A. Following tradition, we call c a ‘choice function’ but each c(A) is a set.

A decision maker who chooses by checklist decides on a c(A) by going through a sequence
of properties; for each property, if there is an alternative in A that has that property then the agent
eliminates all those alternatives that do not. While an agent may use a large pool of properties
to discriminate among alternatives, in our benchmark model we require that for every A a final
selection is reached in a finite number of steps.

Formally, a property P(i) is simply a set of alternatives, P(i) ⊂ X, and we say ‘alter-
native x has property P(i)’ when x ∈ P(i). A checklist is a sequence of properties P =
(P (1),P (2), . . .) = P(i)i∈I where the set of indices I is either {1, . . . , n} or the entire set of
natural numbers {1, . . . , n, . . .}.
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Given a choice set A ⊂ X and a checklist P , define inductively the following ‘survivor sets’
Si(A):

S0(A) = A,

Si(A) =
{

Si−1(A) ∩ P(i) if Si−1(A) ∩ P(i) �= ∅,

Si−1(A) otherwise.

This sequence makes precise the elimination procedure we described. At each step i the agent
checks whether the current set of surviving alternatives has the ith property. If some alternatives
do, the alternatives that do not are thrown away. Otherwise, all alternatives survive to the next
round. In both cases the agent moves to step i + 1.

Definition 1. A choice function c defined on a domain A has a checklist if and only if there
exists a checklist P such that, for all A ∈ A, there is a property P(j) such that

Si(A) = Sj (A) for all i � j,

c(A) = Sj (A), (1)

and we then say that P is a checklist for c.

A choice function that has a checklist thus satisfies two features. First, the procedure ‘finitely
terminates’: for any choice set A there exists a property in the checklist such that, from that stage
onwards, the set of survivors does not shrink any further.4 Second, this set of permanent survivors
coincides with what the choice function selects from A.

Some properties in a checklist might have no impact on choice, e.g., when a property discrim-
inates only between alternatives that properties earlier in the checklist have already ranked. The
impact of a property on choice can also vary with A. In our opening car example, suppose P(1)

is the set of all cars cheaper than $15,000. Then, if A contains no car cheaper than $15,000, a
checklist that omits P(1) but is otherwise identical would make the same selection from A. The
irrelevance of any property i with P(i) ∩ A = ∅ ensures that a checklist will never eliminate all
alternatives from a choice set A.

3. Checklist users are utility maximizers

Consider again the car buyer that opened the paper and the lexicographic flavor of his deci-
sions. This agent makes a series of categorical judgments, where any discrimination between cars
made by a property trumps all discriminations made by properties later in the checklist. It might
therefore seem that the only preference relation that such a checklist user could maximize is the
lexicographic preference on Rn+. Recall that lexicographic preferences, on R2+ for example, are
defined by x � y if and only if x1 > y1 or (x1 = y1 and x2 � y2): more of good 1 always trumps
any increase of good 2.

The following example shows how to express categorical judgments as properties. We begin
with some terminology. We call a complete and transitive binary relation on X a preference re-
lation and say that a choice function c on the domain A maximizes a preference relation � if

4 After reaching P(j) in Definition 1, to execute a decision the agent must conclude that it would be pointless to
consider any further properties. The agent can make this inference in two prominent cases: if Sj is a singleton or if Sj is
a subset of a single indifference class (taking preferences as primitive in the latter case). The remaining cases are more
problematic and ‘finite termination’ must be understood as an approximate description, as we will explain in Section 7.
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Fig. 1. Coordinate cutoff preferences.

c(A) = {x ∈ A: x � y for all y ∈ A} for all A ∈ A. A choice function c on the domain A max-
imizes a utility function if there exists a function u : X → R such that c(A) = {x ∈ A: u(x) �
u(y) for all y ∈ A} for all A ∈ A. Any c that maximizes a utility function automatically maxi-
mizes a preference relation but not vice versa, as the classic example of lexicographic preferences
on R2+ shows.

Example 1 (characteristics). In the spirit of [17], we can recast the car example that opened the
paper by viewing each car as a bundle of characteristics (horsepower, color, price, and so on). For
any continuous characteristic, such as horsepower or price, there is a class of properties that we
call ‘coordinate cutoffs’. Suppose that there are two continuous characteristics and so X = R2+.
A coordinate cutoff is a property of the form {(x1, x2): xj � r} or {(x1, x2): xj � r} where j is
the coordinate 1 or 2 and r is a real number. Coordinate cutoffs express categorical judgments
about a single characteristic, e.g., if coordinate 1 is price and P(1) = {(x1, x2): x1 � 30,000}
then any car costing less than $30,000 is ranked above any other car. For instance, suppose an
agent has four coordinate cutoffs all of the form {(x1, x2): xj � r} with cutoff levels as given
in Fig. 1 (the cutoff of property P(i) is labeled r(i)). The choice function with this checklist
maximizes a utility function: in Fig. 1 the regions from worst to best are labeled 1 through 9.

Properties in Rn+ of course do not have to be coordinate cutoffs. As a quick example, let
coordinates 1 and 2 be two foods that make up a meal – say meat and potatoes. Then a property
that placed an 800 calorie limit on the meal would be the ‘calorie cutoff’ P(i) = {(x1, x2): k1x1 +
k2x2 � 800}, where ki is the number of calories per unit of food i.

The fact that the coordinate cutoff agent in Example 1 maximizes a utility function is no fluke
and is not due to the simplification that the agent deploys only finitely many properties.

Theorem 1. If a choice function has a checklist then it maximizes a utility function.

Thus an agent whose choices come from a checklist acts ‘as if’ he is maximizing a utility
function. Of course the agent does not have to think about preferences or utility at all; the agent
can just churn through his list of properties.

All proofs are in Appendix A, but the argument behind Theorem 1 is simple. When a choice
function has a checklist we can identify each x ∈ X with a sequence of ‘ins’ and ‘outs’ that
indicate in any coordinate i whether x is in or is not in property P(i). Suppose we write down the
‘ins’ and ‘outs’ as a sequence of 1’s and 0’s respectively. When P has finitely many properties,
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use 0’s following the last property. For example, if P has four properties and x ∈ P(1), x /∈ P(2),
x /∈ P(3), x ∈ P(4), the sequence for x is 1,0,0,1,0,0,0, . . . . Now we can read this sequence
as the 0’s and 1’s of binary expansion of a number between 0 and 1; for the x above, this number
is 1

2 + 1
16 = .5625. So, given a checklist P , each x has a sequence that defines a number u(x) in

the interval [0,1]. Outside of a small class of exceptions, u(x) can serve as the utility of x for an
agent who uses P ! The reason is simply that u(x) � u(y) if and only if, at the first digit where
the sequences for x and y differ, x has a 1 and y has a 0 and therefore in the first property i that
contains one of x and y but not both it is x that must be in P(i).5

Since lexicographic preferences on Rn+ cannot be represented by a utility function, we con-
clude from Theorem 1 that an agent who chooses with a checklist cannot have such preferences
(even when the checklist consists of infinitely many coordinate cutoffs). Checklist users, who at
first glance seem not to make trade-offs, turn out to fit the most traditional model of economic
rationality.

In the next section, we will put a finer point on the problematic feature of choice behavior that
maximizes lexicographic preferences on Rn+. As we will see, it is easy to extend the checklist
model to cover such behavior. Rather the problem is that choices that maximize lexicographic
preferences on Rn+ can be produced only by checklists that fail to terminate in finitely many steps
and are therefore unwieldy. As we argued in the Introduction, the absence of a utility function
detracts from decision-making efficiency.

Theorem 1 leaves some important questions unanswered. While lexicographic preferences
on Rn+ behavior cannot arise from the standard checklists of this section, what types of choice
behavior can? That of all utility maximizers or just certain types? In particular, could the utility-
maximizing choices of textbook economic consumers arise from standard checklists? Since such
agents have uncountably many indifference classes, it might seem that they are in the same boat
as agents with lexicographic preferences on Rn+ and that their choices could not be the outcome
of the practical checklists that finitely terminate. This turns out not be the case: as we will see
in Section 6, the choice behavior of any utility maximizer is the outcome of some standard
checklist (putting domain qualifications aside for the moment). But the following example lays
out the problem that the obvious way to build a checklist that generates a preference relation
employs far too many properties to be applicable to textbook consumer choice.

Example 2. Suppose an agent uses the checklist P(1),P (2), . . . ,P (n) where the properties form
a partition of X (each x ∈ X is in exactly one property). It is easy to see that this agent also
maximizes a preference relation � with n indifference classes, P(1), . . . ,P (n) going from best
to worst: given a choice set A, no eliminations occur until the property P(i) that contains the
elements of A that have the lowest property index and at that stage all other elements of A

are eliminated. Notice that we could omit the last property P(n) without changing the choice
function that results.

Example 2 makes clear that the choices of any utility maximizer with finitely many indiffer-
ence classes could be the outcome of a checklist that finitely terminates. But the construction in
Example 2 uses the same number of properties as the number of indifference classes in � (or
one fewer). The decisions made by the textbook agents of consumer theory, who have uncount-
ably many indifference classes, therefore could not arise from a standard checklist that follows

5 The exceptions are numbers in [0,1] with two binary representations, but this difficulty can be bypassed by reading
the sequence of 0’s and 1’s as a number written in base 3 (see the proof of Theorem 1).
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Example 2 model: textbook consumers have too many indifference classes and if unsatiated have
no top indifference class to begin the checklist. We will see, however, that there are different
constructions that do provide standard checklists in these cases.

The same ‘slowness’ feature of Example 2 also raises the possibility that even agents who
make finitely many discriminations can be inefficient decision makers who proceed through a
large number of properties. We address these questions in Sections 5 and 6.

4. Extended checklists and preference maximization

We now present a more abstract version of the model, allowing sequences of properties that go
beyond the ordinary counting numbers; the new version opens the door to checklists for arbitrary
preference-maximizing behavior including the lexicographic cases that fail to have the standard
checklists of Section 3. This section is more technical; since we will not refer back to these ideas
until Section 8, it can be skipped.

In our earlier elimination procedure, each set of survivors Si(A) is a subset of its immediate
predecessor Si−1(A). Since therefore Si−1(A) = ⋂

k<i Sk(A), we could equivalently define the
elimination by

S0(A) = A,

Si(A) =
{⋂

k<i Sk(A) ∩ P(i) if
⋂

k<i Sk(A) ∩ P(i) �= ∅,⋂
k<i Sk(A) otherwise

for each i > 0. The new definition has the advantage that it can be applied to ‘longer’ sets of
properties: we can weaken the assumption that the indices I in a checklist are a set of natural
numbers and suppose instead that I is well ordered by some �, letting 0 be the least element
of I .6 The assumption that I is well ordered implies that each i ∈ I has an immediate successor;
thus the procession through the checklist of properties remains orderly. For an arbitrary well-
ordered I , the above definition employs a variant of standard induction (transfinite induction) to
specify each Si(A) as a function of its entire set of predecessors and P(i).

We say that a choice function c has an extended checklist if c satisfies Definition 1 except
that the Si(A) are defined as above and I is permitted to be any well-ordered set whose least
element is 0.7 The terminal step j continues to be defined as in Definition 1 but now need not be
finite. Any of our earlier checklists, which we call ‘standard’, qualifies as an extended checklist,
and conversely, if c has an extended checklist that ‘finitely terminates’ – for each A ∈ A, the
index j identified in Definition 1 is finite – then c has a standard checklist since then we can
excise all but the properties with finite indices.

The main advantage of extended checklists is that they give an exact characterization of pref-
erence maximization.

6 A set B is well ordered by � if � is a linear order (a complete, transitive, and antisymmetric relation) on B such that
every nonempty subset of B has a least element b: b � x for all x ∈ B . See [12] for the set theory concepts we use in this
section.

7 In terms of ordinal numbers, the distinction between standard and extended checklists is that in the former case I

must equal (technically, be order isomorphic to) an ordinal number equal to ω or less while the latter case imposes no
such restriction. Also, notice that if we apply an arbitrary well-ordered set of properties to a choice set A, it could happen
that Si(A) is empty for some i (when

⋂
k<i Sk(A) = ∅). But if c has an extended checklist then this possibility does not

arise since we require c(A) �= ∅ for A ∈ Σ .
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Theorem 2. A choice function has an extended checklist if and only if it maximizes a preference
relation.

Since ‘having an extended checklist’, as an assumption on choice functions, is equivalent to
preference maximization, it is equivalent to any characterization of preference maximization for
choice functions. For example, it is equivalent to [21]’s version of the strong axiom of revealed
preference. Notice also that Theorem 2 imposes no restriction on the domain of the choice func-
tion; for example, it applies equally to budget sets in consumer theory and to finite sets.

Regarding the ‘only if’ half of Theorem 2, it is easy to detail the preference relation that an
agent with an extended checklist implicitly maximizes. Recall from Section 3, that when a choice
function has a checklist, we can identify each x with the sequence of ‘ins’ and ‘outs’ that indicate
in any coordinate i whether x is in or is not in property P(i). We then declare x � y if the x and
y sequences are identical or x scores an ‘in’ at the first coordinate where the sequences differ.
Now if a eliminates b in the checklist’s sequential eliminations – that is, if both a and b have
survived to some stage i − 1 but only a survives to stage i – then a 	 b since the first property
that has only one of a and b must have a and not b. So if x is �-maximizing on some A then x

could never be eliminated, and conversely if x is chosen from some A then x 	 y must obtain
for every y in A that is not chosen. So the choice function indeed maximizes the � we have
defined.8

For the ‘if’ half of Theorem 2, suppose we are given a choice function c that maximizes a
preference relation �. We can then build an extended checklist from a familiar item, the weakly-
better-than sets of the preference relation �: for each x ∈ X, set a property Px equal to {y ∈ X:
y � x}, ignoring the duplicates that arise when x ∼ x′. We then list in arbitrary order – tech-
nically, we well order – these properties to form an extended checklist. When this checklist is
applied to some A, the agent will eventually hit a property Px where x � y for all y ∈ A, where-
upon no further eliminations occur. The upper contour properties used here are less natural than
the properties we have seen so far in examples. But the upper contours do not have to be taken
literally as properties that an agent would actually employ. As we will see in Proposition 1, any
choice function that has a checklist (perhaps a checklist with ‘natural’ properties) also has a
checklist that consists of upper contours; and for characterization purposes a checklist of upper
contours is the easier object to work with.

Given Theorem 1, the checklists that produce choices that maximize lexicographic prefer-
ences on Rn+ must be extended rather than standard. The following example shows what they can
look like.

Example 3 (characteristics revisited). To eliminate the puzzle of checklists and lexicographic
preferences on Rn+, suppose all the properties in Example 1 are coordinate cutoffs of the form
{(x1, x2): xj � r}, as in Fig. 1. So if, e.g., P(1) = {(x1, x2): x1 � r} then any bundle with x1 � r

is ranked above any bundle with x1 < r according to the preferences maximized by any c that has
P(1) as its first property. If we increase the number of properties and let the cutoff levels ‘fill in’
each axis (become dense in R+), we approach preferences that have a strictly increasing utility

8 A less general argument works via the weak axiom of revealed preference (WARP). A choice function with an
extended checklist must satisfy WARP since if x is chosen when y is available it must be that if there is a first property
P(i) that contains either x or y but not both then P(i) contains x, hence if y is chosen from any S that contains x then x

must be chosen too. So on any domain where WARP implies that a choice function maximizes some preference relation,
for example the finite subsets of X, a choice function with a checklist must also maximize a preference relation.
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function. As Theorem 1 showed, no matter how many coordinate cutoff properties an agent uses
in a standard checklist, the preferences that result cannot lexicographically rank bundles first
according the level of coordinate 1 and second according the level of coordinate 2. But there is
an extended checklist for such preferences that uses coordinate cutoffs: begin with a countably
infinite set of properties of type {(x1, x2): x1 � r} (where the r’s for these properties are dense
in R+) and then proceed to a countably infinite set of properties of type {(x1, x2): x2 � r} (again
with the r’s dense in R+).

Having established that standard checklists with dense coordinate cutoff properties cannot
lead to lexicographic preferences on Rn+, it would be interesting to know what type of prefer-
ences they do in fact generate. As long as the cutoffs are of the {x: xj � r} form, it is easy
to confirm that the preferences that result will be strictly monotone but we do not have an exact
characterization. Observe also that even before becoming dense, coordinate cutoff properties rule
out choice functions that maximize continuous preferences. Consider for example a sequence of
points in region 4 in Fig. 1 that converges to x. Any point in this sequence is strictly dispreferred
to y in region 5 and yet the limit point x is strictly preferred to y. The failure of continuity
persists no matter how many additional cutoffs we add.

Example 3 indicates that the problem with lexicographic preferences on Rn+ is not that they
cannot arise from checklists but that they arise only from checklists that are problematic from a
procedural standpoint. As we will see, the utility maximizers of consumer theory, even though
they typically have uncountably many utility levels, do not suffer from the same difficulty, but so
far the only checklists we have seen that can generate such behavior (in the ‘if’ half of Theorem 2)
are extended and hence need not finitely terminate.9 To show that tractable checklists can lead to
textbook consumer behavior, in Section 6 we find replacement checklists that are standard.

Mathematically, the trouble with lexicographic preferences on Rn+ is not lexicography per se.
Theorem 2 reported that any preference-maximizing choice function has a checklist, and a check-
list embeds an ordering on X into the lexicographic ordering of {0,1}I where I is a well-ordered
set of indices.10 Lexicographic preferences on Rn+ on the other hand coincide with the lexi-
cographic ordering of the n-fold copy of R+. While the existence of an extended checklist for
lexicographic preferences on Rn+ shows that we can embed these preferences into a lexicographic
ordering that uses {0,1} rather than R+, the cost is that the set of indices must expand beyond
the natural numbers, which is the mathematical counterpart of being procedurally unwieldy. We
comment further on this trade-off in Section 8.

5. Quick checklists 1: agents who finitely discriminate

Since checklists make for practical decision-making procedures only when the elimination of
options concludes after finitely many steps, we need to pin down which preferences can arise
from our benchmark model of ‘standard’ checklists. (Until further notice, all checklists will now
be standard rather than extended.) Although finite termination might seem incompatible with
preferences with uncountably many indifference classes, we will see that any case of utility-
maximizing decision-making can be the outcome of a checklist that finitely terminates.

9 The problem shows up in the proof of Theorem 2 when we take the nonconstructive step of well-ordering the upper
contour sets to create the extended checklist.
10 Here 1 and 0 play the same role that ‘in’ and ‘out’ did in our earlier discussions: an I -sequence a is ranked strictly
higher than I -sequence b if, at the first coordinate where a and b the sequences differ, a registers a 1.
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As Example 2 made clear, choice behavior that marks out a finite number of discriminations
can always be the consequence of a checklist that finitely terminates. But finite termination is
then too weak a test of practicality. Recall the worst-case scenario of the checklists in Exam-
ple 2 where the number of properties equals the number of preference discriminations. An agent
that uses such a checklist would spend a long time eliminating alternatives before coming to a
decision, ending up with a procedure that is plodding and profligate instead of fast and frugal.

This section and the next address these points. Can a checklist make a given finite number of
discriminations reasonably quickly? And can the agents of consumer theory use a checklist at
all?

Our measure of decision-making speed is the number of properties per preference discrim-
ination. While a checklist user could of course use a single property and thus make decisions
rapidly, such an agent would be dividing the universe of alternatives X coarsely, into just two
indifference classes. So instead we ask how the potential number of preference discriminations n

varies as a function of the number of properties that an agent uses or, equivalently, how many
properties are needed to make n discriminations.

We define a checklist P to make n discriminations if there is a choice function c that maxi-
mizes a preference relation with n indifference classes and P is a checklist for c. To ensure that
there are not multiple values for n that meet this definition, we assume in this section that the
domain of choice sets A includes every two-element subset of X. Notice that a checklist that
makes n discriminations can make a final selection from some choice sets before coming to its
final property; our measure of speed – the number of properties that will make n discriminations
on the entire domain A – therefore might not be appropriate if an agent has enough information
about which choice sets he is likely to face. We briefly address expected decision-making speed
at the end of this section.

To see how many properties are needed for a checklist to make n discriminations, let’s la-
bel the indifference classes 1, . . . , n, going from worst to best. Since the number of properties
required depends only on the number of indifference classes, we may as well take each indiffer-
ence class to be a singleton. The agent does not ‘begin’ with these indifference classes or even
have to recognize their existence: 1, . . . , n merely denote the indifference classes of the prefer-
ence that the checklist we now construct implicitly maximizes. With this notation, our question
becomes, for X = {1, . . . , n}, how many properties are needed so that the choice function that
results divides X into n indifference classes? Luckily the n − 1 answer given in Example 2 fails
to be the minimum when n > 3.

Consider, as an example,

X = {1,2,3,4}.
Given our labeling convention, the choice function c must maximize the usual order � on inte-
gers. It is easy to see that P(1) = {4,3}, P(2) = {4,2} is a checklist for c. Following Theorem 3,
we show how an agent might come to use a checklist like this.

Next, consider

X = {1,2,3,4,5,6,7,8}
with c again maximizing �. Define the checklist P(1) = {8,7,6,5}, P(2) = {8,7,4,3}, P(3) =
{8,6,4,2}. Again, it is easy to verify that this is a checklist for c. (It suffices to consider just the
two-element subsets of X.)

Notice how the first example is nested in the second: the last two properties P(2) and P(3) of
the second example treat {5,6,7,8} and {1,2,3,4} just as P in the first example treats {1,2,3,4},
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with the additional first property P(1) serving only to separate the two chains. So, we have
provided a checklist with two properties that makes four discriminations, and a checklist with
just one additional property that makes twice as many discriminations. This conclusion extends
inductively:

Theorem 3. If X contains at least n alternatives then there is a checklist that makes n discrim-
inations with k properties, where k is the smallest integer such that 2k � n. Furthermore, any
checklist that makes n discriminations must have at least k properties.

The properties above that illustrate Theorem 3 may seem convoluted but they arise in natural
ways. Suppose an agent makes decisions by proceeding through a series of attributes where each
attribute forms a ‘linear’ scale that distinguishes between any pair of alternatives and is viewed
by the agent as either a good or a bad. For cars, two examples of such linear attributes would
be price and horsepower; roughly speaking, no two cars have the same price or horsepower. If
each property in an agent’s checklist is based on a linear attribute and the agent seeks to make
decisions quickly, then the first property, based on the first attribute, merely has to divide X into
two parts in such a way that each alternative in part P(1) has more of the first attribute than each
alternative in the other part X\P(1). The second property must do more since the agent will want
P(2) to discriminate both among alternatives that are in P(1) and among alternatives that are not
in P(1); otherwise P(2) would not be doing enough discriminatory work. So P(2) must divide
both P(1) and X\P(1) into two parts, where again each alternative in one part has more of the
second attribute than each alternative in the other part. And so on with any further properties,
which will define one of the checklists that could serve for Theorem 3.11 So if an agent chooses
in this way, the number of properties in the agent’s checklist will be the minimum that can create
the number of preference discriminations revealed in the agent’s choice behavior.

Theorem 3 shows how checklists become more and more efficient as the number of preference
discriminations increases: the maximum number of preference discriminations n is an exponen-
tial function of the checklist length k. Or, if we take n as primitive, then the minimum number of
properties required is a less-than-polynomial function of n and hence the ratio of the minimum
number of properties to n falls to zero as n increases. Since 220 � 1,000,000, Theorem 3 explains
why a million preference discriminations require only twenty checklist properties.

We can compare the efficiency of a checklist to other choice procedures that make the same
number of discriminations. Suppose an agent with n indifference classes wants to find the high-
est indifference class in a choice set; in the notation of the above examples, the agents seeks
out, given A ⊂ {1, . . . , n}, the largest integer in A. The solution of this problem via ‘yes or
no’ questions is a classic illustration of binary search: first ask ‘does A contain an integer be-
tween n

2 and n?’, and then, if yes, ask ‘does A contain an integer between 3n
4 and n?’ and,

if no, ask ‘does A contain an integer between n
4 and n

2 ?’, and so on. That a recursive com-
puter program, where the choice of the ith question depends on earlier answers, can execute
this algorithm in �log2 n
 steps is hardly news (�x
 denotes the least integer � x).12 What is
notable about a checklist is that it executes the algorithm nonrecursively. A property P(i) does
not change as a function of the eliminations that occur prior to i, and every property is used for
every A. To do without input from earlier steps, each property in effect encodes a set of ques-
tions. Consider again X = {1,2,3,4,5,6,7,8} and let m denote maxA. Then P(1) ‘asks’ one

11 This construction is laid out in more detail in [18].
12 See, e.g., [16, Chapter 6, Theorem B].
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question, ‘is m ∈ {8,7,6,5}?’, P(2) ‘asks’ two conditional questions, ‘if m ∈ {8,7,6,5} then is
m ∈ {8,7}?’ and ‘if m /∈ {8,7,6,5} then is m ∈ {4,3}?’, and P(3) ‘asks’ four conditional ques-
tions. For i > 1, the eliminations prior to i ensure that only one of the antecedents of the P(i)

questions is satisfied. Property P(i) therefore asks the right question, and without recursive in-
structions or an exhaustive tree of n − 1 ‘if then’ commands (where each answer to a command
leads to a distinct subsequent command).

An optimal tree of ‘yes or no’ questions can in principle outperform a checklist. Suppose
we can ask questions of the form ‘does A intersect Y ⊂ {1, . . . , n}?’. Then, depending on the
probabilities that particular integers lie in A, the minimum expected number of questions can be
less than �log2 n
. For example if it is highly likely that m ≡ maxA = 4, then one can first ask
‘does A intersect {5,6,7,8}?’ and if not ‘does A intersect {4}?’. But if each x ∈ X is equally
likely to be m then �log2 n
 is the minimum expected number of questions: the optimal tree does
no better than the optimal checklist.13

6. Quick checklists 2: classical utility maximizers

Checklists with a finite number of properties are appealingly concrete: there is a uniform
upper bound on the number of properties the decision maker has to examine before the choice
procedure terminates. When checklists are not restricted to be finite, it remains true that each
choice set needs to be checked against only finitely many properties but there might not be any
bound on the number of properties that serves simultaneously for all choice sets. (In this section,
all checklists are standard rather than extended.) This small difference gives checklists much
greater reach when they are not required to be finite. Indeed, we will now see that, subject to a
domain restriction, for any case of utility-maximizing choice behavior there is always a checklist
that generates that behavior. For utility functions with uncountably many utility levels, such
as those found in textbook consumer theory, these checklists are ‘quick’ in that the number of
properties the agent must check is a negligible fraction of the uncountable number of preference
discriminations that the agent implicitly makes.

Example 3 illustrates how a quick checklist for a classical utility function might arise. Let
X equal R2+ and suppose, as in Example 3, that properties are the coordinate cutoffs {(x1, x2):
x1 � r1} and {(x1, x2): x2 � r2}, where r1 and r2 each vary over a countable set dense in R+:
when these properties are placed in some order, they define a checklist P . On the domain A of all
finite sets in X the checklist P defines a choice function c since for any pair of distinct bundles
y and z there must be a coordinate j such that yj and zj differ; so there will be a property that
contains one of y and z but not both. By Theorem 1, c must maximize a utility function and
thus we have a checklist for a utility function with uncountably many utility levels. Of course an
agent who chooses in this way never has to think about the preferences or utility he is implicitly
maximizing.

This illustration only goes so far: while it shows that a checklist that generates uncountably
many utility levels can arise from coordinate cutoffs, for an arbitrary utility on Rn+ there might
not be a coordinate-cutoff checklist that maximizes that utility. Subject to a domain qualification,
however, we can at least conclude that any choice function that maximizes a utility does have
some checklist. When the domain consists of finite sets, the reason is simple: given a choice
function that maximizes a utility function u, we may define a checklist P by setting, for each

13 If questions of the form ‘is m ∈ Y ?’ are permitted, which is exactly the game ‘Twenty questions’, Huffman coding
[14] generates the optimal tree. See also [29], and [10] for the connection to our problem.
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rational number r , the property Pr = {x ∈ X: u(x) � r} and then listing these properties in
any order. The u-maximal alternatives in an A will never be eliminated: if at any stage i the
set of survivors from the previous rounds contains some alternatives that are in P(i), then the
u-maximal alternatives must be among them. Conversely, any z in A that is not u-maximal will
eventually be eliminated by a Pr such that r lies strictly between u(z) and the maximum utility
achieved by the alternatives in A. This checklist moreover has a procedural interpretation if we
view each r as a numerical satisfaction threshold. At each stage, the consumer keeps only the
alternatives that are ‘satisficing’, if any, and otherwise he keeps all of them. Then in the next
stage he modifies the satisfaction threshold.

To give an exact characterization of the choice functions with checklists, let � be a pref-
erence relation and let A ⊂ X be called �-top-dense if and only if A contains a �-maximal
element x and for all y with x 	 y there exists z ∈ A such that x 	 z 	 y. If A is a do-
main of choice sets, we will say that (A,�) satisfies the domain restriction if and only if
{x ∈ X: x is a � -maximal element of some � -top-dense A ∈ A} intersects at most count-
ably many �-indifference classes. The pair (A,�) will necessarily satisfy the domain restriction
if A is a family of finite sets or if � has countably many indifference classes.

Theorem 4. A choice function c on a domain A has a checklist if and only if there exists a utility u

that c maximizes such that (A,�) satisfies the domain restriction, where u represents �.

Theorem 4 shows the reach of checklists. They can generate utility-maximizing behavior that
divides the universe of alternatives into a continuum of indifference classes and yet still eliminate
the inferior alternatives from a choice set in a finite number of steps. Theorem 4 also slightly
refines Theorem 1: if a choice function c has a checklist, we now know not only that c maximizes
a utility but also that the domain restriction holds.

The following example illustrates why the domain restriction is needed: in the absence of a
restriction, there are utility-maximizing choice functions that do not have a checklist. Given a
preference relation �, let an upper contour of � be a set of the form {x ∈ X: x � z} for some
z ∈ X.

Example 4. Let X be the interval [0,1], let the domain A of c be the closed sets in X, and let c

maximize the preference � and hence the utility defined by u(x) = x. Since each closed interval
in X is �-top-dense, (A,�) fails to satisfy the domain restriction. But suppose nevertheless there
is a checklist P for c. Since � is the only preference relation that c maximizes, the proposition
below lets us assume that the checklist consists only of properties P(i) that are �-upper contours.
That is, if there is a checklist P̂ for c then there is also a checklist P for c that consists solely of
�-upper contours.

Assume then that there is a P that is a checklist for c that consists of �-upper contours. If
minP(i) denotes the �-minimal element of P(i), then there will be at most countably many
minP(i) for the properties in P . Pick some y ∈ X that is not one of these minP(i), and set
A = {x ∈ X: x � y}. Then, for any i, Si(A) will equal the closed interval whose lower boundary
equals max{minP(k): minP(k) < y and k � i} and whose upper boundary equals y. Since
Si(A) �= {y} = c(A) for all i, P could not in fact be a checklist for c.

That we may take a checklist in Example 4 to consist solely of upper contours reflects a wider
principle that is essential for the proof of Theorem 4.



Author's personal copy

84 M. Mandler et al. / Journal of Economic Theory 147 (2012) 71–92

Fig. 2. Relationships between various checklist notions.

Proposition 1 (canonical checklists). If c has a checklist then there is a preference relation �
such that c maximizes � and has a checklist that consists of upper contours of �.

The preference � whose existence is assured by the proposition is in fact the ordering, men-
tioned in Section 3 and used in several of our proofs, that identifies each x ∈ X with the sequence
that assigns a 1 to coordinate i if x is in property P(i) and otherwise assigns a 0, and then de-
clares x better than y if, in the first coordinate where the x and y sequences differ, x scores a 1.
Choice functions can have a vast array of checklists; the availability of canonical checklists al-
lows us to narrow our focus to a particular highly tractable checklist, which makes a proof of
Theorem 4 feasible.14

7. Utility maximizers always have quick approximate checklists

As we have seen, the choice behavior of utility maximizers does not coincide exactly with
that of agents who use a checklist (a domain restriction is necessary), nor of agents who use an
extended checklist (since then we go beyond utility maximization to preference maximization).
Fig. 2 summarizes our findings so far.

In this section we resolve the question mark in the picture by introducing checklists that ap-
proximate the decisions made by a choice function, a concept that will apply to arbitrary domains.
To define approximate, we consider the limit of the set of survivors selected by a checklist: al-
though the procedure never yields exactly the decision c(A) at any finite step, it approximates

14 Consistent with the proposition, there can be a c and a � such that c has a (standard) checklist and maximizes �
and yet not have a checklist of �-upper contours; � can even have a utility representation. For an example, define for
any irrational number x the set A(x) = {x} ∪ {r ∈ Q: r < x} and let A consist of all such A(x). A c on this domain
that always selects an irrational number has the checklist P(1) = {all irrational numbers}. Although c also maximizes
the utility given by u(z) = z there can be no standard checklist for c consisting of u upper contours since for each
irrational x we would have to include {y ∈ R: y � x} in the checklist (as in Example 4).
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c(A) more and more accurately as the number of steps increases. In the limit, we get exact equiv-
alence between the choices of checklist users and utility maximizers.

As no notion of distance is present in our set-up, we use a set-theoretic definition of the
convergence of the Si(A). A choice function c on the domain A has an approximate checklist
if and only if there is a checklist P such that, for all A ∈ A,

c(A) =
⋂
i∈I

Si(A),

where the Si(A) are defined from P as in Section 2 (and I is finite or equals the natural numbers).
Although after any finite number of steps the set of survivors may still contain other alternatives
in A beside the chosen ones, it is only the chosen alternatives that survive all steps of elimination:
for any alternative x ∈ A rejected by the choice function, there exists a property that contains
C(A) but not x.

Theorem 5. A choice function maximizes a utility function if and only if it has an approximate
checklist.

Approximate checklists help explain how a checklist that has the entire set of natural numbers
as its set of indices would work practically. Such checklists can raise a termination problem: even
when no further eliminations occur after some property P(j), the agent may not know this fact.
The agent will know it for choice functions that always select singletons (see footnote 4). But
in most other cases, the practical distinction between ordinary and approximate checklists is not
sharp. For both models, the agent would have to declare at some point that the set of alternatives
has been winnowed down adequately.

8. Multivalued properties and the representation of preferences

While so far we have focused on checklists as decision-making procedures, they can also be
seen as a representation device for preferences. This section explores this possibility and the
connection to [4]’s theory of lexicographic utility.

We can rephrase our initial model of standard checklists by replacing each property P(i) with
the indicator function of P(i), that is, the function ui : X → {0,1} with ui(x) = 1 if and only
if x ∈ P(i), and redefining Si(A) to equal arg maxui(x) s.t. x ∈ Si−1(A) for all i > 0. Each of
these newly defined Si(A) will coincide with our originally defined Si(A). For the more general
case of extended checklists, we can instead use Si(A) = arg maxui(x) s.t. x ∈ ⋂

k<i Sk(A) for
i > 0.

This reformulation suggests replacing the ui above with functions that have a larger range
(‘multivalued properties’). Among the prominent possibilities, we could admit any ui that maps
to a finite set with at least two elements, or any ui that maps into R. Indeed we could go one step
further and instead of functions, use a complete and transitive relation Ri on X, and set

Si(A) =
{
x ∈

⋂
k<i

Sk(A): xRiy for all y ∈
⋂
k<i

Sk(A)

}
(2)

for i > 0. This last proposal is evidently the most general. Given any well-ordered set of in-
dices I with least element 0 and a complete and transitive Ri for each i ∈ I , we call {Ri}i∈I a
multivalued checklist. Without loss of generality we now represent each I by the ordinal num-
ber it is equivalent to. This definition of a multivalued checklist does not require I � ω (where
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ω denotes the ordinal number for N). So multivalued checklists generalize extended rather than
standard checklists. If each Ri has at most two indifference classes (our original model) we say
{Ri}i∈I is two-valued, if the number of indifference classes of each Ri is finite we say {Ri}i∈I is
finite-valued, and if each Ri has a real-valued utility representation we say {Ri}i∈I is real-valued.

With the Si(A) given by (2), we can define {Ri}i∈I to be a multivalued checklist for a choice
function c by applying Definition 1.

Theorem 2 extends to any multivalued checklist: a choice function c has a multivalued check-
list if and only if it maximizes a preference relation. The ‘if’ direction follows from the original
argument we gave for Theorem 2. For the ‘only if’ direction, some minor adjustments to the
proof of Theorem 2 show that if {Ri}i∈I is a multivalued checklist for c then c maximizes the
binary relation �L on X that is induced by the lexicographic ordering of the Ri , that is,15

x �L y ⇔ [
(not xRiy) ⇒ (∃k < i with not yRkx)

]
. (3)

Theorem 2’s applicability to multivalued checklists suggests their use as a representation de-
vice. One way to proceed is to say that a multivalued checklist {Ri}i∈I represents the preference
relation � if {Ri}i∈I is a checklist for the choice function c, defined on say the finite subsets of X,
that maximizes �. But it is equivalent and simpler to omit any mention of choice functions and
just say that a multivalued checklist {Ri}i∈I represents the preference relation � if � = �L

(as defined by (3)). Requiring that a checklist is n-valued (for n = two, finite, real) provides a
correspondingly more restrictive definition of representation. Evidently there is a trade-off, al-
ready mentioned at the end of Section 4, between the number of indifference classes (n) and
the number of multivalued properties (I ): to represent a given �, a smaller n can necessitate a
larger I .

A real-valued checklist is the definition of representation that [4] proposed in his classical
work on utility theory.16 To see that [4] picked an n that deftly judged the trade-off, observe that
with no restrictions on the admissible Ri , multivalued checklists can be trivial and have no value
for representation purposes: any preference relation � can be represented by the multivalued
checklist that consists of the single relation �. Moreover, there are preference relations that can
be ‘concisely’ represented by a real-valued checklist – that is, I can be small – but that have
neither a classical utility representation nor a ‘concise’ finite-valued checklist. The pertinent
example is of course the lexicographic ordering on R2+, which can be represented by a real-valued
checklist with I = 2 but where any finite-valued checklist representation must have an I > ω

(this conclusion follows from Theorem 1). Thus real-valued checklists are restrictive enough to
be useful but not so restrictive that they are always unwieldy. In fact, [4]’s construction would
lose most of its value if we added even the smallest additional restriction on the admissible Ri ,
that each must have only countably many indifference classes: one may show that any such
‘countably-valued’ checklist that has an index set I � ω must represent a preference relation
that could also be represented by a classical utility function. Therefore, to get a concise (I � ω)
representation when a classical utility is unavailable, a real-valued checklist is required.

In our terminology, the main theorem in [4] states that any preference relation � can be
represented by a real-valued checklist. Theorem 2 implies this result. Indeed, [4]’s proof uses
utility functions with ranges that take on two values; thus, he implicitly showed that any �

15 This extension of Theorem 2 would not hold if the Ri were not required to be complete and transitive. See
[1,13,19,20].
16 We thank Chris Tyson for stressing the connection between our work and Chipman’s. For a survey of Chipman’s
theory and related developments, see [9].
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can be represented by a two-valued checklist, which is the content of Theorem 2.17 Outside of
Theorem 2, our results do not intersect with lexicographic utility theory, for the very reason that
we restrict the range of the admissible Ri . The range restriction indeed exposes a rich structure
hiding inside [4]’s theory; for example, the capacity of a two-valued checklist to make a finite
number of preference discriminations that is an exponential function of the number of properties
(see Theorem 3) has no parallel in the theory of real-valued checklists, since in the latter case
one Ri can by itself make infinitely many discriminations.

Finally, we note that our original model of two-valued checklists performs reasonably well
as a representation tool. [5] showed that there are preferences relations that can be represented
by only those real-valued checklists {Ri}i∈I that use an I that is uncountable. Since Theorem 2
applies to such preference relations, they can be represented by two-valued checklists – as [5]
himself makes clear – though of course I must again be uncountable. Conversely, if a preference
relation � can be represented by a real-valued checklist {Ri}i∈I with a set of indices I � ω then
one may show that � can also be represented by a two-valued checklist where I is countable
(though I may have to be larger than ω). Real-valued checklists still have an edge: as lexico-
graphic preferences on R2+ attest, there are preference relations � that can be represented by a
real-valued checklist such that I is finite but where the only two-valued checklists that represent
the same � have to use an I greater than ω – though I can at least remain countable.18 Of course
it is this ‘drawback’ of two-valued checklists that guarantees the tight connection between their
tractability as a decision procedure – that they terminate after finitely many steps – and util-
ity maximization. Two-valued checklists have to use a set of properties that goes beyond ω to
represent a � in just the cases where � has no utility representation.

9. Concluding remarks

Since Simon’s contribution [24], we have been used to thinking of ‘procedural rationality’
as entirely separate from, and even opposed to, ‘substantive rationality’. This paper leads to a
different view. We have considered a tractable, realistic procedure that can underpin utility max-
imization, blurring Simon’s distinction. While this procedure is by no means the only possible
one for a procedural agent, it is tractable and realistic in many contexts, as demonstrated by its
popularity with psychologists.

There are other ways to aggregate properties and for each method one may investigate whether
the procedure generates rational behavior. For at least some procedures, the moral of this paper
– that realistic procedures can mask utility maximization – will continue to apply. For example,
suppose an agent always chooses those alternatives that satisfy the most properties. Then, for any
given standard checklist on some finite domain, the choice function that results will maximize
the rational preference � defined by x � y if and only if the number of properties that x has
is at least as great as the number of properties than y has. For a converse, if we are given a
preference � then we can construct a checklist whose choices maximize � by including, for
each y, a property Py = {x ∈ X: x � y}. One can proceed similarly for utility maximization and
nonfinite domains (with the necessary technical adjustments). The same conclusions hold if we
were to aggregate by a weighted sum of the number of properties satisfied.

17 This result precedes Chipman in the mathematical literature on ordinal numbers, see Cuesta Dutari [6,7] and Sierpin-
ski [23].
18 Following Example 3, lexicographic preferences on R2+ can be represented by a two-valued checklist such that
I = ω2 (the ordinal that orders 2 copies of ω by ranking each number in copy 1 below each number in copy 2).



Author's personal copy

88 M. Mandler et al. / Journal of Economic Theory 147 (2012) 71–92

There are cases where a checklist will simplify choice and other cases where it will not. If
you have to choose from {cherries, peaches, apricots, figs, dates, oranges, apples, pears}, it may
be natural to consider the properties ‘summer fruits’ or ‘winter fruits’. But it may not be so easy
for an agent to find properties that will make a choice from a set of disparate alternatives, for
example, a decision about how to spend a lump-sum retirement distribution from the set {special
vacation, new car, house remodeling, golf club membership, live-in housekeeper, down payment
on kid’s house, increase in pension contributions, donation to charity}. Since any checklist will
lead to preference maximization, the very presence of natural properties, which could prompt an
agent to use a checklist, can determine whether substantively rational behavior materializes.

The fact that checklists always generate preference-maximizing behavior means that the
model cannot be used to compare the decision-making speed of preference-maximizers with
other types of agents. [18] takes up this subject.

Although we believe that the checklist model is new to economics, we should mention [22],
who underlines the potential importance of unary relations (what we call ‘properties’) in
decision-making. Although distantly related, that work was the initial stimulus for this project.

Appendix A. Proofs

It is convenient to present the proofs of some results in reverse order.

Proof of Theorem 2. Let the choice function c have the extended checklist P . We identify each
x ∈ X with the vector px ∈ {0,1}I given by px(i) = 1 if x ∈ P(i) and px(i) = 0 if x /∈ P(i) (of
course each px can be associated with many alternatives). We order {0,1}I lexicographically:
for p,q ∈ {0,1}I , define �L by p �L q ⇔ (q(i) > p(i) ⇒ ∃k < i with p(k) > q(k)). The
asymmetric and symmetric parts of �L are labeled >L and =L respectively. To conclude that �L

is a linear order, we could appeal to the fact that the lexicographic order of any family of linear
orders with well-ordered indices must itself be a linear order. But to argue directly, completeness
follows from the fact that (1) if p = q then (q(i) > p(i) ⇒ ∃k < i with p(k) > q(k)) obtains
vacuously, while (2) if p �= q then the well-ordering of I implies that j = min{i: p(i) �= q(i)}
is well defined and hence p >L q if p(j) > q(j) and q >L p if q(j) > p(j). Case (2) also
yields antisymmetry. For transitivity, if p =L q =L r then p = q = r and hence p =L r . If on
the other hand p �L q >L r or p >L q �L r set j = min{i: p(i) �= q(i) or q(i) �= r(i)}. Then
p(j) � q(j) � r(j) with at least one strict inequality. Hence p(j) > r(j) and p(i) = r(i) for
i < j , i.e., p >L r .

Let � now denote the relation on X given by x � y ⇔ px �L py : since �L on {0,1}I is a
linear order, � on X is a preference relation. To see that for any A ∈ A, c(A) = {x ∈ A: x � y for
all y ∈ A}, suppose first that x ∈ c(A). If y 	 x for some y ∈ A and we set j = min{i: px(i) �=
py(i)} then the fact that x ∈ Si(A) for all i < j implies that y ∈ Si(A) for all i < j . But since
y ∈ P(j) and x /∈ P(j), x /∈ Sj (A), contradicting x ∈ c(A). Conversely suppose x ∈ A and x � y

for all y ∈ A. Then, since c(A) is nonempty, x � z for some z ∈ c(A). Since z ∈ Si(A) for all i,
x � z implies {i: px(i) �= pz(i)} = ∅ (otherwise z would be eliminated at min{i: px(i) �= pz(i)}).
So x ∈ Si(A) for all i, i.e., x ∈ c(A).

Now suppose that c maximizes some preference relation �. To construct a checklist, let I =
X ∪ {0} and let � be a well-ordering of I with 0 < x for any x ∈ X. (This is a nonconstructive
step: the principle that any set can be well ordered relies on the axiom of choice.) For each
x ∈ X define P(x) = {y ∈ X: y � x}. Fix A ∈ A and some x ∈ c(A). Then, for any z ∈ X with
x /∈ P(z), the fact that x � y for y ∈ A and the transitivity of � imply y /∈ P(z) for any y ∈ A. So,
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for any z ∈ X, if x ∈ ⋂
w<z Sw(A) then x ∈ Sz(A). Since x ∈ S0(A), transfinite induction implies

that x ∈ Sz(A) for all z ∈ X. Moreover, for all y /∈ c(A), y /∈ P(x) and so y /∈ Sx(A). Finally
observe that Sz(A) = Sx(A) for all z such that x � z, so that the terminal step j in Definition 1
is well defined. �
Proof of Theorem 1. Let c have a checklist P : I → 2X . As in Theorem 2, given P , each x ∈ X

can be associated with a unique px ∈ {0,1}I , where the ith component is defined by px(i) = 1 if
x ∈ P(i) and px(i) = 0 if x /∈ P(i). Define u : X → R by

u(x) =
∑
i∈I

px(i)

3i
.

Since
∑

j>i
1
3j < 1

3i for any i ∈ I , this u is a utility representation for �, where, as in the proof
of Theorem 2, � is the preference relation � on X induced by the lexicographic order �L on
{0,1}I . (A utility representation for � is a u such that x � y ⇔ u(x) � u(y).) The proof of
Theorem 2 also shows that c(A) = {x ∈ X: x � y for all y ∈ X} for all A ∈ A. Hence c(A) =
{x ∈ X: u(x) � u(y) for all y ∈ X}. �
Proof of Theorem 3. Given a P that makes n discriminations and the choice function ĉ for
which P is a checklist, we may without loss of generality let 1, . . . , n denote the indifference
classes of the preference relation � that ĉ maximizes and let the linear order over {1, . . . , n} that
c induces be � (the standard order on the integers). That is, g � h for g,h ∈ {1, . . . , n} if and
only if, for all x ∈ g and y ∈ h, x � y. It is sufficient to consider only choice functions c defined
on subsets of {1, . . . , n} that always select the �-maximal element. Specifically, if ĉ is the choice
function that maximizes �, then let A be in the domain of c if and only if there is a Â in the
domain of ĉ such that g ∈ A ⇔ (∃x ∈ Â such that x ∈ g).

Both conclusions of the theorem hold for n = 1 since the empty set of properties can then
serve as the desired checklist. So assume henceforth that n > 1.

For the second half of the theorem, suppose c has a checklist P with s properties. As in the
proof of Theorem 2, identify each x ∈ {1, . . . , n} with the px ∈ {0,1}s given by px(i) = 1 if
x ∈ P(i) and px(i) = 0 if x /∈ P(i), which we may read as an integer’s s-digit binary expansion.
Since there are 2s integers with s binary digits and given that n > 1, 2s < n would imply that
there is a distinct pair x, y ∈ {1, . . . , n} identified with the same integer and so then px = py .
Since the domain A contains the two-element sets we have c({x, y}) = {x, y}, contradicting the
assumption that c maximizes �. So for this domain we cannot have 2s < n.

Regarding ‘there is a checklist that makes n discriminations with k properties, where k is the
smallest integer such that 2k � n’, suppose this claim holds for 1, . . . , n − 1. Partition {1, . . . , n}
into Zl = {1, . . . ,m} and Zu = {m + 1, . . . , n}, where m = n/2 if n is even and m = (n + 1)/2
if n is odd. Then, since n > 1, we have 2k−1 � |Zr | for both r = l and r = u. The induction
hypothesis implies that c|Zu (the choice function defined by restricting c to subsets of Zu) has a
checklist P = (P (1), . . . ,P (k − 1)) and that c|Zl

has a checklist P ′ = (P ′(1), . . . ,P ′(k − 1)).
Define the checklist Q by Q(1) = Zu and Q(i + 1) = P(i) ∪ P ′(i) for i = 1, . . . , k − 1.

For any checklist R, let SR
i (A) denote the ith set of survivors when R is applied to the choice

set A.
To see that Q is a checklist for c, notice first that if A ∈ Zu then S

Q
k (A) = S

Q
k−1(A) = c|Zu(A∩

Zu) = c(A), and similarly if A ∈ Zl then S
Q
k (A) = c(A). For all A that contain both elements

of Zl and elements of Zu, application of Q(1) yields S
Q
1 (A) = A ∩ Q(1) = A ∩ Zu. Since
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Q(i + 1) ∩ Zu = P(i), for i = 1, . . . , k − 1, application of properties Q(2) through Q(k) yields
S

Q
k (A) = SP

k−1(A ∩ Zu) = c|Zu(A ∩ Zu) = c(A). �
Proof of Proposition 1. Call U ⊂ X an upper set of a preference relation � on X if (x ∈ U

and y � x) ⇒ y ∈ U .
Let c with domain A have the (standard) checklist P and let I be the indices of P . We

know from the proof of Theorem 2 that c maximizes the preference relation � on X defined
by w � z ⇔ pw �L pz, where pw ∈ {0,1}I is given by pw(k) = 1 ⇔ w ∈ P(k) and �L is the
lexicographic order on {0,1}I . Define the countable family P of upper sets of � by Pq = {w ∈ X:
pw �L q} ∈ P if and only if q ∈ {0,1}I has finitely many coordinates k such that q(k) = 1.
Enumerate P by a bijection κP → Î , where Î is N or {1, . . . , n}, which defines a checklist P̂

and thus, for any A ∈ A, a sequence of survivor sets Ŝi (A). Since P is a checklist for c, for any
A ∈ A and any y ∈ A\c(A) there is an i ∈ I with y /∈ Si(A); let i(y) denote the smallest such i.
In addition, since for any given A there are only finitely many properties in P that eliminate
some y ∈ A\c(A), the index j (A) ≡ max{i(y): y ∈ A\c(A)} is well defined. Fix some A and
x ∈ c(A). Since each P̂ (k) is an upper set of � and c maximizes �, x ∈ Ŝk(A) for all k ∈ Î

(see the proof of Theorem 2). For any y ∈ A\c(A), we have x ∈ P(i(y)) and y /∈ P(i(y)) while
x ∈ P(k) ⇔ y ∈ P(k) for k < i(y). Thus

px �L qi(y) >L py

where, for any index i, qi ∈ {0,1}I is defined by qi(k) = px(k) for k � i and qi(k) = 0 for
k > i. Thus, for the index l = κ(Pqi(y) ), x ∈ P̂ (l) and y /∈ P̂ (l) and so y /∈ Ŝl(A). Since for
any y ∈ A\c(A) the index κ(Pqi(y) ) must be drawn from the finite set J = {κ(Pqi ): i � j (A)},
ŜmaxJ (A) = c(A). Thus c has a checklist that consists of upper sets of �.

To replace upper sets with upper contours, note by the proof of Theorem 1 that � has a utility
representation and hence there is a countable D ⊂ X that is dense in �, i.e., if x 	 y then there
is a d ∈ D such that x � d � y. Define a checklist whose properties consist of one upper contour
U(d) = {x ∈ X: x � d} for each d ∈ D and any Pq ∈ P such that Pq contains a �-minimal
element. To see that these properties will form a checklist P̃ for c, we need observe only that if
x ∈ c(A) and y ∈ A\c(A) and the upper set in the previous paragraph P̂ (l) that eliminated y is
not a property in P̃ , then P̂ (l) has no �-minimal element and hence, since x ∈ P̂ (l), there will
be a d ∈ D ∩ P̂ (l) such that x � d . Since x ∈ U(d) and y /∈ U(d), U(d) eliminates y. �
Proof of Theorem 4. Let c be a choice function on a domain A that maximizes a utility func-
tion u that represents � and such that (A,�) satisfies the domain restriction. Let Σ ⊂ A be the
set of �-top-dense sets in A, let σ : Σ → X be a function that selects an arbitrary �-maximal
element from each set in Σ (σ is well defined by the definition of a �-top-dense set), and let
M = {m: σ(A) = m for some A ∈ Σ}. Define a property Pr = {x ∈ X: u(x) � r} for each ratio-
nal number r and a property P m = {x ∈ X: x � m} = {x ∈ X: u(x) � u(m)} for each m ∈ M .
Due to the domain restriction, P = {Pr : r ∈ Q} ∪ {P m: m ∈ M} is countable. Hence we can
build a standard checklist P by defining a bijection f from P to N and setting P(f (Pr)) = Pr

or P(f (P m)) = P m for all Pr,P
m ∈ P . To confirm that P is a checklist for c, given A ∈ A

suppose y is u-maximal in A and that y ∈ Si−1(A). Then for any z ∈ Si−1(A) ∩ P(i) we have
u(y) � u(z) and so, since P(i) is an upper set, y ∈ Si(A). Hence y is never eliminated. On the
other hand, suppose z ∈ A is not u-maximal in A. If A is top-dense then there is a u-maximal
y ∈ A and an m ∈ M such that u(z) < u(m) = u(y). Then P(f (P m)) satisfies z /∈ P(f (P m)) and
y ∈ P(f (P m)), and hence z /∈ Sf (P m)(A). Alternatively if A is not top-dense then there is some
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r ∈ Q such that u(z) < r � u(y). Then P(f (Pr)) satisfies z /∈ P(f (Pr)) and y ∈ P(f (Pr)), and
so z /∈ Sf (Pr )(A).

For the other direction, suppose that c on a domain A has a standard checklist. By Propo-
sition 1, there is a preference relation � on X such that c maximizes � and has a stan-
dard checklist P consisting of upper contours of �. Now suppose by contradiction that
{x ∈ X: x is a � -maximal element of some � -top-dense A ∈ A} intersects uncountably many
�-indifference classes. Since P , being standard, consists of only a countable set of properties
there must then be a �-top-dense set A ∈ A with a �-maximal element m such that {x: x � m}
is not a property in P . Then for each i ∈ N there exists a y ∈ A (depending on i) for which m 	 y

and y ∈ Si(A), i.e., y is not eliminated at stage i. For suppose j were the least element of N such
that Sj (A) = c(A) (i.e., j is the stage at which the final elimination of elements �-worse than
m occurs) and let z ∈ Sj−1(A)\c(A) be one of the alternatives eliminated by P(j). Since P(j)

is an upper contour with m ∈ P(j), and P(j) �= {x: x � m}, there exists w ∈ P(j) with m 	 w

and, since z /∈ Sj (A), w 	 z. Since A is �-top-dense there must exist some y ∈ A such that
m 	 y 	 w. We must then have y ∈ Sj−1(A) since if there were a P(k) with k < j that elimi-
nated y then P(k) would also have eliminated z (since y 	 w 	 z and P(k) is an upper contour).
Since P(j) is an upper contour and y 	 w ∈ P(j), we have y ∈ Sj (A), a contradiction. �
Proof of Theorem 5. The part of the proof of Theorem 2 that shows that a c with a checklist
P : I → 2X maximizes the � induced by the lexicographic order on {0,1}I never uses the fact
that P finitely terminates. The proof of Theorem 1 therefore also does not use finite termination,
and so that proof establishes the ‘if’ part of the present theorem. For the ‘only if’ part, where
we are given a utility u that represents some � and a c that maximizes u, we use the same
checklist constructed in the proof of Theorem 4. Once again for any y ∈ c(A) and i ∈ I , we have
y ∈ Si(A) ⇒ y ∈ Si+1(A) and therefore y ∈ Si(A) for all i ∈ I . And for all z ∈ A\{c(A)}, where
therefore y 	 z for any y ∈ c(A), there must exist P(i) = Pr such that u(z) < r < u(y). So it
must be that z /∈ ⋂

i∈I Si(A), and thus c(A) = ⋂
i∈I Si(A). �
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