
INTERNATIONAL ECONOMIC REVIEW
Vol. 55, No. 2, May 2014

IRRATIONALITY-PROOFNESS: MARKETS VERSUS GAMES∗

BY MICHAEL MANDLER1

Royal Holloway College, University of London, U.K.

How robust are economic models to the introduction of irrational agents? The Pareto efficiency of competitive
equilibria is not robust since one irrational agent leads to inefficiency. But the property that rational agents cannot
use their own resources to Pareto improve on their competitive allocation holds regardless of the number of irrational
agents. Full production efficiency can be robust as well, but irrational firms introduce a trade-off between efficiency
and the attainment of Pareto improvements. Regarding games, I show that while existing implementation mechanisms
are sensitive to the presence of irrational agents, there are robust alternatives with attractive welfare properties.

1. INTRODUCTION

I consider properties of economic equilibria that are “irrationality-proof,” that is, robust
to the inclusion of irrational agents. Irrational agents are simply consumers who make errors
when maximizing utility subject to a budget constraint and firms that do not maximize profits.
A property’s degree of irrationality-proofness is gauged by the number of irrational agents who
can be added to a model without overturning the property.

If just one consumer or firm in a general equilibrium model chooses irrationally, a competitive
equilibrium need not be Pareto efficient. The Pareto efficiency of competitive equilibria thus
exhibits the lowest level of irrationality-proofness, and its account of the welfare advantages
of a market economy must therefore be misleading. As a replacement for Pareto efficiency,
I show that, regardless of the number of irrational agents, the rational consumers and firms
cannot Pareto improve on their equilibrium allocation if they are restricted to use only their
own endowments and technologies, a property I call “Pareto efficiency for the rational agents.”
Since this property prevails no matter how many agents are irrational, it exhibits the highest
level of irrationality-proofness. The proof that competitive equilibria enjoy this property is only
a tiny variant of the classical argument that competitive allocations are in the core, but the
applicability of the classical argument to models with irrational agents does not seem to have
been noted.

More important results hold for production economies. If the rational firms in the aggregate
have a production set that contains the production set of the irrational firms, and if production
sets satisfy a limited constant returns property, then full production efficiency obtains. The pro-
duction efficiency of competitive equilibria thus displays an intermediate degree of irrationality
proofness: it can persist in the presence of some irrational firms but not if there are so many irra-
tional firms that the rational firms’ technology fails to dominate that of the irrational firms. The
contrast between full efficiency on the production side and “Pareto efficiency for the rational”
on the consumer side supports the folk wisdom that competitive markets root out inefficiency
in production while leaving irrational households untouched. Error-prone consumers have the
room to persist in their mistakes, but markets do not grant firms the same leeway.2 Becker
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(1957) argued long ago that attempts by irrational firms to racially discriminate in hiring can be
undone by competition from fully rational firms.

Full production efficiency can obtain in the presence of irrational firms because the rational
firms can drive the irrational out of business. This causal mechanism for production efficiency
leads to distinctive policy conclusions. Economists have customarily turned to lump-sum pay-
ments to compensate agents that would be harmed by and therefore might block policy reforms.
While lump-sum payments to rational agents do not lead to inefficiency, an irrational firm that
receives a compensation payment can make inefficient decisions and remain shielded from
bankruptcy. Irrational firms can therefore jeopardize the long tradition, based on the second
welfare theorem, of using compensation payments to design Pareto improvements. Consider
the conversion of crop subsidies into lump-sum payouts in the Common Agricultural Policy
of the European Union or the granting of carbon permits to firms to mitigate the burden of a
carbon tax. Normally, economists back these policies, but the presence of irrational firms can
overturn this advice.

To see if markets are unusually robust to the addition of irrational agents, I compare mar-
kets to games that fully implement competitive allocations. If everyone is rational, implemen-
tation games can closely approximate the outcomes of competitive markets; in some cases,
their equilibrium outcomes can exactly coincide with the competitive equilibrium outcomes.
But if some agents are irrational, then the most well-known full implementation games can
have no equilibria or have equilibria that are not Pareto efficient for the rational agents. For
example, the famous Hurwicz–Maskin–Postlewaite (HMP, 1995) implementation game typi-
cally has no equilibria when just a single agent is irrational: existence of equilibrium in this
game therefore fails to show even the lowest degree of irrationality-proofness. This fragility
may be one reason why the equilibria of Nash implementation games can seem implau-
sible. But there are alternative games where irrational agents do less damage: I construct
games whose outcomes are Pareto efficient for the rational agents at every equilibrium, re-
gardless of how many irrational agents are present. The “Pareto efficiency for the rational”
conclusion for games echoes my results for competitive markets, even though the formal ar-
guments at work in the two settings have little in common. The parallelism suggests that
Pareto efficiency for the rational will hold widely in models with irrational agents. On the
other hand, in the game setting, Pareto efficiency for the rational does not imply that the ra-
tional agents will usually gain from the presence of irrational agents, as they do in competitive
equilibria.

I assume that rational agents in games best respond to the actions taken by the irrational
agents. This approach stakes out a middle ground that avoids both the extreme rationality
assumption that all agents play best responses and the position that the consequences of irra-
tionality are so unforeseeable that rational agents must adopt actions that are always optimal
regardless of how irrational agents play. The latter approach would amount to a dominant
strategy requirement that I show leads an to impossibility result.

In both the market and game settings, the agents in this article make errors: consumers who
fail to solve constrained maximization problems, firms that do not maximize profits, and players
who fail to best respond. Prominent among the sources of error are the rules of thumb that
arise when agents, out of inertia, stick to old decision rules that have lost their validity. But
irrationality does not entail unpredictability. If anything, agents who follow rules of thumb
are easy to predict. Equilibrium analysis is therefore suitable: rational agents should be able
to adjust their actions to the behavior of the irrational agents in such a way that a profile of
mutually consistent actions can emerge.

In my results, Pareto efficiency for the rational agents illustrates the highest level of
irrationality-proofness; it holds no matter how many irrational agents are present. Other proper-
ties of market equilibria exhibit the next best level; they hold when just a single agent is rational.
No-arbitrage conditions in finance typically display this degree of irrationality-proofness. If an
arbitrage opportunity is present—for example, if asset prices fail to satisfy a martingale—then



IRRATIONALITY-PROOFNESS 445

every agent must be failing to exploit an opportunity to make a risk-free profit and hence must
be irrational.3

For some phenomena, it has long been the norm to consider the effect of irrational agents,
for example, the impact of noise traders on financial markets (see, e.g., De Long et al., 1990).
The impact of partisan voters—agents who always vote for the same candidate regardless of
their information—on information aggregation (Feddersen and Pesendorfer, 1996) can also
be understood as an analysis of irrationality-proofness. But general theories of the effect of
irrational agents have been rare. Haltiwanger and Waldman (1985, 1989) consider various games
with the express purpose of seeing how irrational agents affect equilibrium outcomes; their
results turn on whether strategic substitutes or complements are present. Fehr and Tyran (2005)
and Camerer and Fehr (2006) have deepened this line of analysis. Sutton (1997) analyzes a class
of industrial organization games with a “one rational agent is enough” degree of irrationality-
proofness, comparable to the no-arbitrage conditions of finance.

In contrast to the above literature, when I consider the irrationality-proofness of games I take
the implementation point of view: I do not consider the effect of irrational agents on a specific
game but on what games with irrational agents can in principle achieve. My analysis is therefore
related to Eliaz (2002), which I discuss in Section 4. I do, however, share one feature with the
above literature: my agents are either rational or irrational. Another way to introduce a small
amount of irrationality is to let agents—possibly all agents—be a little irrational; the quantal
response equilibria of McKelvey and Palfrey (1995) is a leading case in point.

2. IRRATIONAL CONSUMERS

The analysis of exchange economies with irrational agents is straightforward, involving only
a simple variation on Lloyd Shapley’s proof that competitive allocations lie in the core. But this
argument is the natural place to start, and it shows how well suited the theory of the core is to
models with irrational agents.

Let there be a finite set of agents I partitioned into the rational agents IR and irrational
agents IIR. There are L goods. Each i ∈ I has a nonzero endowment of these goods ei > 0 and a
complete, transitive, and locally nonsatiated preference relation �i whose corresponding strict
preference relation is �i.4

The rational agents behave like standard consumers. Given a price vector p ≥ 0, a rational
agent i chooses a bundle from the budget set Bi = {xi ∈ R

L
+ : p · xi = p · ei} that is weakly

preferred to all other bundles in Bi. The irrational agents also have preference relations but can
err when making constrained optimization decisions. I therefore assume only that an irrational
agent i chooses some bundle from Bi.

An exchange equilibrium is a (p ≥ 0, x = (xi)i∈I) such that

�
∑

i∈I xi ≤ ∑
i∈I ei,

� xi ∈ Bi for all i ∈ I,
� if i ∈ IR and x̃i ∈ Bi then xi �i x̃i.

The irrationality of agents need not threaten the existence of exchange equilibria, which
requires the continuity of agents’ demand functions but not the rationality of preferences.

A coalition of agents C can achieve (̃xi)i∈C by exiting if
∑

i∈C x̃i ≤ ∑
i∈C ei and an exchange

equilibrium (p, x) is Pareto efficient for the rational agents if there does not exist a (̃xi)i∈IR that
IR can achieve by exiting such that x̃i �i xi for all i ∈ IR and x̃i �i xi for some i ∈ IR.

3 The martingale property of asset prices and its link to rationality requirements originates in Samuelson (1965); the
modern approach begins with Harrison and Kreps (1979). The strong irrationality-proofness of the property is well
known, but it is difficult to document an explicit statement.

4 Local nonsatiation means that for each xi ∈ R
L+ and ε > 0 there is a yi ∈ R

L+ such that yi �i xi and ‖xi − yi‖ < ε.
For vector inequalities I use the notation: x ≥ y ⇔ xk ≥ yk for all coordinates k, x > y ⇔ (x ≥ y and x 
= y), and
x � y ⇔ xk > yk for all coordinates k.
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In the language of cooperative game theory, a coalition of agents “blocks” an allocation x if
the coalition can achieve an allocation by exiting that makes every i in the coalition at least as
well off as at xi and at least one i in the coalition better off. Thus, an equilibrium (p, x) is Pareto
efficient for the rational agents if the rational agents cannot block x. Feasible allocations that
cannot be blocked by any coalition are in the “core.” Since the irrational agents choose arbitrary
rather than optimal bundles from their budget sets, the allocation x of an exchange equilibrium
with irrational agents will usually not be Pareto optimal; hence, x could be blocked by I and
is not in the economy’s core. But the same argument that shows that an arbitrary coalition
of agents cannot block a standard competitive equilibrium applies to the coalition of rational
agents. Thus, the irrational agents, though they stand in the way of full Pareto optimality, will
not lead the rational agents to split off on their own.

PROPOSITION 1. Exchange equilibria are Pareto efficient for the rational agents regardless of
the number of irrational agents.

Proofs are in the Appendix. Proposition 1 does not say that the coalition of rational agents
cannot achieve a Pareto improvement by manipulating its market demands to change p and the
commodity demands of the irrational agents. There could well be a p̂ and a feasible allocation
x̂ such that (i) the irrational agents demand (̂xi)i∈IIR at the price vector p̂ and (ii) the rational
agents are all strictly better off with x̂ than at the exchange equilibrium; see McFadden (1969).

Proposition 1 does not address whether the rational agents gain anything from their trades
with the irrational agents. Could the rational agents do equally well by themselves? If the
irrational agents have trade with nonzero value with the rational agents and the rational agents
have strictly convex preferences, there is an unambiguous answer.5

PROPOSITION 2. If, in an exchange equilibrium (p, x), the rational agents have trade with
nonzero value with the irrational agents (p(k)

∑
i∈IR

(xi(k) − ei(k)) 
= 0 for some good k) and if
the rational agents have strictly convex preferences, then any allocation that the rational agents can
achieve by exiting leaves at least one rational agent i worse off than at i’s equilibrium allocation.

The significance of Proposition 2 lies in the contrast to games that lead to allocations that are
Pareto efficient for the rational. When rational and irrational agents interact through compet-
itive markets, irrational agents still have something to offer: they allow the rational agents to
achieve welfare levels that they could not achieve on their own. We will see in Section 4 that
games with irrational agents need not share this property.

The nonzero trade condition in Proposition 2 is generic. If a standard parameterization of
agents’ excess demand functions is used, then, for almost every model, in each exchange equilib-
rium any set of agents will have trade with nonzero value with the remaining agents. Proposition
2 can therefore be read as a remark that competitive equilibria cannot be fragmented; whether
or not some agents are irrational, a competitive allocation typically cannot be achieved by
partitioning the set of agents into blocs who do not trade with each other.

3. IRRATIONAL FIRMS

Even when Pareto efficiency for the rational agents obtains, irrational consumers still cause
harm in that they obstruct full Pareto optimality. Irrational producers—for example, firms that
stick with a backward technology or that indulge a desire to discriminate in hiring—need not
lead to any harm at all.

Let Yj be the production set of firm j . I assume that each firm j is capable of inaction, 0 ∈ Yj .
Given p , a rational firm j chooses a profit-maximizing yj in Yj , whereas an irrational firm may

5 Agent i has strictly convex preferences if xi �i yi, xi 
= yi, and λ ∈ (0, 1) imply λxi + (1 − λ)yi �i yi.
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take any action as long as it does not go bankrupt. So the only restriction on an irrational firm
j is that it choose a yj ∈ Yj such that p · yj ≥ 0.

I label the economy’s finite set of firms F , partitioned into the rational firms FR and irra-
tional firms FIR. Define the aggregate production set of the rational firms YR = ∑

j∈FR
Yj , the

aggregate production set of the irrational firms YIR = ∑
j∈FIR

Yj , and the aggregate production
set overall Y = YR + YIR = ∑

j∈F Yj .
Let θij ≥ 0 be the ownership share of consumer i in firm j where, for each firm j ,

∑
i∈I θij = 1.

Given p and the production decisions (yj )j∈F , consumer i’s profit income is
∑

j∈F θij p · yj , and
so the budget set for agent i is now Bi = {xi ∈ RL

+ : p · xi = p · ei + ∑
j∈F θij p · yj }. A production

equilibrium is a (p ≥ 0, x = (xi)i∈I , y = (yj )j∈F ) such that
�

∑
i∈I xi ≤ ∑

i∈I ei + ∑
j∈F yj ,

� xi ∈ Bi for all i ∈ I,
� if i ∈ IR and x̃i ∈ Bi then xi �i x̃i,
� yj ∈ Yj for all j ∈ F ,
� if j ∈ FR and ỹj ∈ Yj then p · yj ≥ p · ỹj ,
� if j ∈ FIR then p · yj ≥ 0.

Proposition 1—that equilibria are Pareto efficient for the rational agents no matter the
number of irrational agents—extends to production equilibria. The only wrinkle concerns the
production possibilities that are available to the rational agents if they exit. When a rational firm
j that exits is wholly owned by rational consumers, the departing rational agents should have
access to all of Yj . But if a rational firm j is partly owned by irrational consumers, the irrational
consumers who remain behind should not be denied all use of j ’s technology. I could let both
the stayers and exiters use of all of Yj , a legitimate solution if Yj satisfies constant returns to
scale (CRS).6 But if Yj shows decreasing returns to scale, then the stayers and exiters would
collectively be capable of productions that the unified economy had not been able to produce.
To avoid this problem, I assume that, for any rational firm j , the rational agents when they exit
can use a scaled-down version of any production available to j , where the scaling factor must
be less than or equal to the share of firm j that the rational consumers own. For each j ∈ FR, set
some nonnegative μj ≤ ∑

i∈IR
θij and let the rational agents when they exit use any production

bundle that equals μj yj for some yj ∈ Yj . The bound on μj prevents a partitioned economy
from producing previously unavailable bundles. One reasonable way to proceed would be to set
μj = 0 if j is at least partly owned by irrational consumers and shows decreasing returns, μj = 1
if j is wholly owned by rational consumers, and μj > 0 if j is partly owned by rational consumers
and satisfies CRS (which in the last case would let the rational agents use any yj ∈ Yj ).

To extend Proposition 1, define a production equilibrium (p, x, y) to be Pareto efficient for
the rational agents if there does not exist a ((̃xi)i∈IR , (̃yj )j∈FR) such that x̃i �i xi for each i ∈ IR

and with strict preference for some i ∈ IR, ỹj ∈ Yj for each j ∈ FR, and

∑
i∈IR

x̃i ≤
∑
i∈IR

ei +
∑
j∈FR

μj ỹj .

Assuming that consumer preferences satisfy the assumptions of the previous section, we can
conclude that production equilibria are Pareto efficient for the rational agents, regardless of the
number of irrational agents (see the Appendix for a proof).

6 A production set Yj satisfies CRS if λ ≥ 0 and yj ∈ Yj imply λyj ∈ Yj . Normally CRS has no content: for any Yj

that exhibits decreasing returns one can invent a new commodity input specific to firm j , distributed to consumers to
match their ownership share in j , and a new CRS production set Y j that coincides with Yj at the points in Y j where the
coordinate of the invented good equals 1. The behavior of the economy with these Y j will be identical to the behavior
of the original economy. This trick can be used to define the productions available to departing rational agents, which is
in fact the special case in the model below where μj = ∑

i∈IR
θij for each rational firm j . But both this special case and

the general model go beyond an accounting convention. Since the rational firms are considering an actual exit, letting
an exiting firm j use a scaled-down version of Yj is a substantive assumption about how technology can be subdivided.
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The more important feature of irrational firms is that they need not interfere with full
production efficiency. To achieve production efficiency, two conditions must be met. First,
the rational firms must have technologies that are at least as advanced as the irrational firms:
YR ⊃ YIR. If this condition were not satisfied—if the irrational firms can produce some bundles
that the rational firms cannot—then the irrational firms could produce inefficiently and still
survive market competition. The second condition is a version of CRS. In a world of decreasing
returns technologies, profit-maximizing firms can earn positive profits in equilibrium. Hence,
one or more of these firms could instead operate inefficiently, using its profits to subsidize its
inefficient production. One simple assumption (stronger than what I will impose) that would
rule out this scenario would be to suppose, in addition to YR ⊃ YIR, that YR exhibits constant
returns. Constant returns is not terribly demanding; it in effect requires that all inputs are
marketed commodities.7

The assumption that I do use is weaker and folds in the requirement that YR ⊃ YIR. If there
exists a constant returns production set Ŷ such that YR ⊃ Ŷ ⊃ YIR, I say that YR constant returns
dominates YIR. The main advantage of constant returns domination over plain constant returns
arises when there are industries where no irrational firms operate. In these industries, any or all
of the rational firms can exhibit decreasing returns.

A production equilibrium (p, x, y) is production efficient if there does not exist (̃yj ∈ Yj )j∈F
such that

∑
j∈F ỹj >

∑
j∈F yj .

PROPOSITION 3. If YR constant returns dominates YIR, then any production equilibrium with
p � 0 is production efficient, regardless of the number of irrational consumers or firms.

No exit of rational agents is involved in Proposition 3; production efficiency obtains despite
the presence of irrational agents. If, in addition to the assumptions of Proposition 3, every
consumer is rational, then full Pareto efficiency obtains.

The compatibility of irrational firms and full production efficiency contrasts with the more
limited efficiency-for-the-rational-agents that holds on the consumer side. This divergence par-
allels the different punishments that competitive markets mete out to irrational producers and
consumers. The consumers of market economies need not be any more rational than their
counterparts in other institutional settings; their optimization errors only bring about a utility
loss. But competitive markets can drive backward producers out of business, putting firms on a
tighter leash.

Formally, the economies in Proposition 3 achieve production efficiency instantaneously. A
more realistic picture emerges if the CRS condition is applied only to the long run; then
irrational firms can survive for a while and are only driven slowly from the market. Constant
returns and, hence, constant returns domination are questionable when imposed on production
for the near future since outputs in the near future require inputs, such as installed capital
equipment, that are not marketed commodities. In these shorter time frames where decreasing
returns prevails, inefficient irrational firms can survive. But CRS or constant returns domination
is plausible when imposed on production for the more distant future since all inputs should then
be purchasable. If production activities for the immediate future are separable from activities for
the more distant future and irrational firms do not use their short-run profits to cross-subsidize
long-run production, the logic of Proposition 3 will eventually apply: after enough time passes,
production efficiency will obtain.

For an example of how the dynamic path to full efficiency plays out, let time run from 1 to T
and suppose each firm j produces a single good at each date. Assume for each period t that the
production set of firm j for its output at t, Yj (t), uses an input stream that lasts for τ periods. The

7 Once again one cannot resort to the trick of rationalizing constant returns by postulating a firm-specific input
for each firm with a decreasing returns technology. The reason, however, is not due to any fractional rescalings of
production sets, but interference with the requirement that YR ⊃ YIR. If each firm requires a firm-specific input in
order to produce, then any y in YIR that actually produces some good cannot be in YR. So CRS must be given its
standard substantive interpretation.
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outputs that appear before date τ, therefore, use inputs prior to date 1, but these inputs are not
included among economy’s L goods.8 Let the rational firms have technology that is at least as
good as the technology of the irrational firms:

∑
j∈FR

∑T
t=1 Yj (t) ⊃ ∑

j∈FIR

∑T
t=1 Yj (t). Because

the production of outputs at early dates requires inputs that have to be applied before date 1, the
Yj (t) for t < τ may exhibit decreasing returns to scale, but suppose that the Yj (t) exhibit CRS for
t ≥ τ. Then, as t increases, the number of outputs produced under CRS increases. The economy
can proceed through time by letting a firm j incur debt when it begins the purchase of an input
stream and then paying off this debt and distributing any profits to its shareholders when the
output appears τ periods later, thus ruling out cross-subsidization. In an equilibrium where the
rational firms maximize profits and all firms must earn nonnegative profits, Proposition 3 applies
to all the outputs produced under constant returns. The number of outputs whose production
is efficient therefore steadily increases through time. If an inflow of new firms introduces
more advanced technology into some existing sectors and if these entrants do not maximize
profits, then production inefficiency could obtain in some sectors of the economy while it is
being driven out in the innovation-free sectors. Competitive general equilibrium models with
irrational agents can thus give a Schumpeterian account of firm entry–exit dynamics.

In a competitive equilibrium model that contains only rational agents, a firm with sufficiently
backward technology will shut itself down. In the present model, as in the Schumpeterian
tradition, irrational firms with backward technology firms must be driven out of business.9

Although the two mechanisms will often cause the same firms to exit, they can lead to sharply
different policy advice. Consider, for instance, the traditional design of trade liberalization and
deregulation policies that harm firms that have been protected from market competition. When
firms or consumers could be harmed by (and might therefore obstruct) reforms, the classical
welfare theorems show how to engineer Pareto improvements using lump-sum compensation
payments. But with irrational firms, lump-sum payments can undermine production efficiency:
they give irrational firms the leeway to take inefficient actions without going bankrupt. Irrational
firms therefore present policymakers with a trade-off: Pareto improvements are possible if
compensation payments keep irrational firms afloat, but then production efficiency will be
undermined. Either production efficiency or a Pareto improvement can be achieved but not
both.10

Despite the common ground with Schumpeter, the logic presented here for why the rational
and efficient firms come to predominate differs from the evolutionary mechanisms that the
main Schumpeterian modeling tradition has relied on. In Proposition 3, production efficiency is
achieved entirely through the price system, as the rational firms drive the irrational firms from
the market. In evolutionary models (e.g., Nelson and Winter, 1982, and earlier Alchian, 1950;
Friedman, 1953), in contrast, the efficient firms become more prevalent because they make
larger profits and grow faster.

To summarize, the theory of production efficiency in this article is distinct from both the
evolutionary and Arrow–Debreu explanations. The present account operates via the price
mechanism but does so without the Arrow–Debreu assumption of universal rationality.

4. GAMES WITH IRRATIONAL AGENTS

The irrationality-proofness of efficiency in competitive markets raises the question of
whether markets are distinctive in this regard. Can games do as well as markets? To com-
pare like with like, I consider games that fully implement competitive allocations and assess the
irrationality-proofness of their efficiency properties. Under the assumption that all agents are
rational, the starting point of Walrasian and Nash equilibria, markets and games that implement
competitive outcomes bear a close resemblance. But differences come out when some agents

8 As always, each Yj (t) is a subset of R
L.

9 See Klette and Kortum (2004) and Lentz and Mortensen (2005) for modern Schumpeterian approaches.
10 The working paper version of this article uses the example of trade liberalization to illustrate this dilemma.
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are irrational. The typical constructions of classical implementation theory are brittle: just one
irrational agent can lead to nonexistence of equilibria or inefficiency for the rational agents.
But better performing games can be designed.

There are many ways to define equilibrium in games with irrational agents. Adopting the view,
discussed in the introduction, that irrational agents can be predictable, I define equilibrium as a
strategy profile such that the strategy of each rational agent is a best response to the strategies of
all other agents, whether they be rational or irrational, just as in a Nash equilibrium of a standard
game every agent best responds to the strategies played by the other agents. This definition
of equilibrium stakes out a compromise: I let some agents be irrational, avoiding the full-bore
rationality assumptions of Nash implementation, but also let rational agents best respond to the
actions of irrational agents—the rationals do not think the irrationals as so erratic that they must
play strategies that are optimal no matter how the irrationals act. The value of the compromise
is that desirable equilibria will exist. As we will see, a dominant-strategy approach would lead
to an impossibility result.

To keep the parallels between markets and games tight, I consider mechanisms that fully
implement the outcomes that are targeted: when all agents are rational, the set of equilibrium
outcomes and the set of competitive allocations will coincide exactly, just as all competitive
equilibria lead to competitive allocations when all agents are rational.

There are again L goods, and each agent i ∈ I has an endowment ei � 0 and preferences
�i, defined over nonnegative bundles of the L goods, that are complete, transitive, monotone,
continuous, and convex.11 I fix the endowment profile (e1, . . . , eI) throughout, where I is the
number of agents.12 If there are competitive allocations on the boundary of agents’ consumptions
sets, then those allocations would not be Nash implementable (Hurwicz et al., 1995). So, even in
the absence of irrational agents, there would be no game whose equilibria exactly coincide with
the competitive allocations, hampering comparison to the rest of the article. To step around
this problem, I make an interiority assumption that each i’s indifference curve through ei does
not intersect the coordinate axes.13 When agents’ preferences (�i)i∈I satisfy the assumptions of
this paragraph, I say that (�i)i∈I (or simply the model) is admissible. For any admissible model,
an exchange equilibrium (as defined in Section 2) exists. Let e denote

∑
i∈I ei.

A mechanism is defined by strategy sets Si for i ∈ I and an outcome function g that maps each
strategy profile s = (s1, . . . , sI), where si ∈ Si for all i ∈ I, to a feasible allocation x = (x1, . . . , xI),
that is, an x where

∑
i∈I xi ≤ e. Given a mechanism and an admissible (�i)i∈I , an equilibrium is

a pair (s = (s1, . . . , sI), IR) that specifies a strategy si ∈ Si for each agent i and a set of rational
agents IR such that, for each i ∈ IR,

gi(s) �i gi(̃s i, s−i) for all s̃ i ∈ Si.

So each rational i in an equilibrium (s, IR) optimizes with si given that the other agents play s−i.
A mechanism ((Si)i∈I , g) implements competitive allocations when the set of rational agents is

IR if, for any admissible model (�i)i∈I and any allocation x,

(there is an equilibrium (s, IR) such that x = g(s)) ⇔(
(p, x) is an exchange equilibrium for (�i)i∈I for some p

)
.

In words, a mechanism implements competitive allocations when IR is the set of rational agents
if, for all preference profiles, any equilibrium outcome of the mechanism when IR is the set of

11 The preferences �i are monotone if xi > zi implies xi �i zi, convex if λ ∈ [0, 1] and xi �i zi imply λxi + (1 − λ)zi �i

zi, and continuous if {xi ∈ R
L+ : xi �i zi} and {xi ∈ R

L+ : zi �i xi} are closed sets for all zi ∈ R
L+.

12 Equivalently, I could let e = (e1, . . . , eI ) vary and assume that the game designer knows e and can use this
information along with agents’ strategy choices to determine allocations. I could also let e be revealed by agents’
strategy choices.

13 Formally, �i satisfies interiority if, for all xi ∈ R
L+, xi �i ei ⇒ xi � 0.
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rational agents is a competitive allocation, and conversely for any competitive allocation there
is an equilibrium of the mechanism when IR is the set of rational agents whose outcome is
that allocation. Although it will turn out that competitive allocations cannot be implemented
when some agents are irrational—just as they cannot be in an exchange economy with irrational
agents—this definition is designed to say what the implementation of competitive allocations
would mean in such cases.

The above definition indicates that implementation is “full”: the sets of equilibrium outcomes
and competitive allocations coincide when all agents are rational. A weaker definition would
require only that for each competitive allocation x there is some equilibrium that reaches x but
would allow other equilibria to reach noncompetitive allocations. The fit with the competitive
markets would then be looser, since competitive equilibria always generate competitive allo-
cations when all agents are rational. But, in addition, the weaker definition of implementation
would be too permissive. Some games that for each competitive allocation x have an equilibrium
that reaches x can also implement a vast set of other allocations.14

I first consider a specific mechanism, a much simplified version of a mechanism in HMP,
that fully implements competitive allocations when all agents are rational. The introduction of
irrational agents into this game blocks even the existence of equilibrium.

EXAMPLE 1. Each Si = {(p i, xi) ∈ (RL
+\{0}) × R

L
+ : p i · xi = p i · ei}. Given the strategies

(p i, xi)i∈I , let P = {p : p = p i for some i} denote the set of price vectors that the agents an-
nounce, and let #P be the number of distinct announced price vectors. The outcome g((p i, xi)i∈I)
of the mechanism is then the allocation (xi)i∈I defined by

(1) if #P = 1 and
∑

i∈I xi = e, then

xi = xi for all i ∈ I,

(2) if #P = 2 and there is a k such that ‖p k‖ > ‖p i‖ for i 
= k, xk ≤ e and p i · xk = p i · ek,
then

xk = xk and xi = 0 for i 
= k,

(3) if #P > 2 and there is a k such that ‖p k‖ > ‖p i‖ for i 
= k, then

xk = e and xi = 0 for i 
= k,

(4) in all other cases, xi = 0 for all i ∈ I.

It is easy to confirm that the allocation of any exchange equilibrium (p, (xi)i∈I) is an equilib-
rium outcome of this mechanism when all agents are rational, IR = I. In the equilibrium, each
agent i names p and xi: if there are at least two agents, rules 2 and 4 imply that any unilateral
deviation for an agent k can at best lead to a x̃k such that p · x̃k = p · ek. Conversely, given
an equilibrium of the mechanism, (p i, xi)i∈I , rules 2, 3, and 4 imply that if two or more agents
name different prices, then only an agent k who names a price vector such that ‖p k‖ > ‖p i‖
for all i 
= k will avoid the 0 bundle; since there can be only one such k, the equilibrium must
have a unanimous announcement of prices p . And the xi must satisfy

∑
i∈I xi = e since other-

wise any agent would take advantage of rule 2 to avoid the 0 bundle. Rule 2 also implies that
any agent k could by deviating achieve any x̃k ≤ e such that p · x̃k = p · ek. Given that ek is
therefore achievable, the interiority assumption implies that each xk � 0. Since

∑
i∈I xi = e, we

have e � xi for all i, assuming that there are at least two agents. It then follows from convexity
that for any i there is no x̃i �i xi with p · x̃i = p · ei, whether x̃i is feasible or not (see the proof

14 Consider, for example, a mechanism where all agents name an allocation x; if everyone names the same x, then
each i receives xi and otherwise everyone receives the 0 bundle. Any allocation is then an equilibrium outcome when
all agents are rational.
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of Proposition 4 for more detail on this point). Thus, the equilibrium delivers a competitive
allocation.15

The all-rational equilibria are delicate, however. If the population includes irrational agents
who choose arbitrary elements of Sk, then typically there will be no equilibria. If two or more
irrational agents choose different prices and there are two or more rational agents, then there will
be no profile of optimizing strategies for the rational agents (just as in the previous paragraph).
If there is a single irrational agent i , still with two or more rational agents, then unless xi and the
Walrasian demands of the rational agents at p i happen to sum to e there will be no equilibrium:
there again could not be a unanimous announcement of prices since one of the rational agents
would take advantage of rule 2 to name a different price and achieve his Walrasian demand.
Existence of equilibrium thus displays a minimal level of irrationality-proofness: if there are
two rational agents then just one irrational agent is enough to prevent there from being an
equilibrium.

The irrationality-proofness problem of the above example is that equilibria fail to exist
when irrational agents are present. Other mechanisms that implement competitive allocations
when all agents are rational, for example, Jackson et al. (1994), which uses undominated Nash
equilibria, always have equilibria when irrational agents are present but fail to achieve Pareto
efficiency for the rational agents.

Are there mechanisms that, when all agents are rational, fully implement competitive allo-
cations and, when some agents are irrational, not only have equilibria but have only equilibria
that achieve Pareto efficiency for the rational agents?

As in Section 2, a coalition C can achieve (xi)i∈C by exiting if
∑

i∈C xi ≤ ∑
i∈C ei. Given IR, let

us say that the allocation (xi)i∈I is Pareto efficient for the rational agents if there is no (̃xi)i∈IR that
IR can achieve by exiting such that x̃i �i xi for all i ∈ IR and x̃i �i xi for some i ∈ IR. Finally, a
mechanism ((Si)i∈I , g) is Pareto efficient for the rational agents if, for any admissible (�i)i∈I , any
set of rational agents IR ⊂ I, and any strategy profile for the irrational agents (si)i∈IIR , there is
an equilibrium (s, IR) where the irrational agents play (si)i∈IIR and, for every equilibrium (s, IR)
when the irrationals play (si)i∈IIR , g(s) is Pareto efficient for the rational agents. In line with my
definition of the implementation of competitive allocations, I require that every equilibrium,
not just one, leads to an outcome that is Pareto efficient for the rational.

PROPOSITION 4. There are mechanisms that are both Pareto efficient for the rational agents and
implement competitive allocations when all agents are rational.

Thus, there are games that perform reasonably well regardless of the number of irrational
agents and how they play. The proof of Proposition 4 designs a mechanism with two stages of
competition. The first stage ensures that if some or all of the irrational agents choose strategies
that nominate consumption bundles inconsistent with an outcome that is Pareto efficient for
the rational, then the rational agents can split off on their own; they can defeat some or all of
the irrational agents in an integer game and determine a final allocation using only their own
resources and the resources of any irrational agents who do happen to nominate compatible
consumption bundles. A “victorious bloc” that contains all of the rational agents thus emerges
from the first stage. The second stage is more traditional and is similar to the HMP mechanism.
If a single agent in the victorious bloc deviates from a candidate equilibrium, the deviator can
achieve only those bundles that are in a budget set defined by prices that the agents in the
victorious bloc simultaneously announce. Multiple deviations, on the other hand, set off an
unwinnable integer game where everyone but the winner receives an undesirable bundle. As
usual, this device blocks outcomes that the mechanism aims to avoid (in this case, the allocations

15 If there is a single agent, then rules 1 and 4 imply that the only equilibrium allocation of the mechanism is e1,
which is the competitive allocation. The fact that the mechanism implements competitive allocations when all agents
are rational without a restriction on the number of agents is due to my assumption that goods can be freely disposed of.
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that fail to be Pareto efficient for the rational). The integer games in the two stages thus serve
opposite purposes. In the first, some or all of the irrationals may well be defeated in equilibrium,
while in the second there can be no winner.

The universe of possible mechanisms displays such strategic variety that one might wonder
if we can do better. Are there mechanisms that implement competitive allocations even when
irrational agents are present? The answer is “no.” For suppose two models, 1 and 2, differ only
in the preferences of the irrational agents and let each have a unique competitive allocation
that differs from the competitive allocation of the other model. If competitive allocations were
always achieved, then, in either model k, for any strategy profile that the irrational agents might
play, there would be a profile of equilibrium strategies for the rational agents that leads to the
competitive outcome of model k. But if, say, model 1 obtains and the irrational agents play
some profile (si)i∈IIR , it will be an equilibrium for the rational agents to play the profile that
they play in model 2 when the irrational play (si)i∈IIR (since the rational agents’ preferences are
unchanged).

PROPOSITION 5. There is no mechanism that implements competitive allocations when IR 
= I
(i.e., some agent is irrational).

Games and competitive markets therefore share some common ground. As with markets,
games with irrational agents cannot always reach a competitive outcome, but they can achieve
Pareto efficiency for the rational agents. Still there is an important difference between markets
and games. In the mechanisms that underlie Proposition 4, when irrational agents do not choose
strategies compatible with an efficient allocation, the rational agents trump them and split off
on their own. In fact, the rational agents will typically end up with bundles that in the aggregate
use only their own endowments. So in games, the property of “Pareto efficiency for the rational
agents” does not imply that the rational agents will gain from the presence of irrational agents. In
contrast, as we saw in Section 2, in a competitive equilibrium the rational agents will generically
trade with the irrational agents and thus achieve welfare levels that they could not achieve on
their own (see Proposition 2). In this generic sense, markets can outperform full-implementation
games: they automatically use the resources of the irrational agents to make the rationals better
off.

If the strategic actions of irrational agents cannot be predicted, then my definition of equilib-
rium is open to criticism. In equilibrium, each rational agent best responds to the strategies that
all other agents play, whether they are rational or irrational; implicitly, the rational agents know
how the irrational play. To accommodate unpredictable irrational agents, I could require that
each rational agent’s strategy be a best response to the other agents’ strategies, whatever set of
agents turns out to be irrational and for all strategy profiles that the irrational agents might play.
Since any agent can be irrational, this would require that rational agents play weakly dominant
strategies. But then, unfortunately, there cannot be a mechanism that is Pareto efficient for the
rational agents. For suppose to the contrary that there were such a mechanism. Then, when all
agents are rational and play their dominant strategies, a core allocation would have to result. If
instead an allocation x were to occur that some coalition C could block, then when C is the set of
rational agents and the irrational agents happen to play their dominant strategies, x would ensue
and x cannot be Pareto efficient for the rational (since IR = C and C can block x). Since there is
no dominant-strategy mechanism in an exchange economy setting whose outcomes consist only
of core allocations, no mechanism can be Pareto efficient for the rational agents when rational
agents are required to play dominant strategies.16

Eliaz (2002), an innovative theory of implementation that allows for irrational agents, takes
a different tack and requires each rational agent to play a strategy that is optimal no matter

16 See Serizawa (2002) for stronger impossibility results that imply that there is no mechanism that implements only
core allocations in my setting. Earlier results of this nature reach back to the seminal Hurwicz (1972) and include
Dasgupta et al. (1979), Satterthwaite and Sonnenschein (1981), and Zhou (1991).
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who is irrational and how they move. The Eliaz model avoids the roadblock that accompanies
dominant-strategy implementation by restricting the number of irrational agents. In contrast, I
placed no restrictions on the number of irrational agents in this section or in Section 2 and only
minimal implicit restrictions in Section 3.

I have avoided any hint of Bayesian implementation; all agents implicitly have the same in-
formation. Had I permitted asymmetric information, there would have been no hope for Pareto
efficiency for the rational agents. Implementation of efficient outcomes in the face of asymmet-
ric information would require players with knowledge of other agents’ characteristics to patrol
those individuals, for example, report their characteristics to prevent them from misrepresent-
ing themselves. Since irrational agents might fail to undertake patrolling strategies, they can
convert a model with nonexclusive information (no single agent has privileged information)
into a model with exclusive information. In incomplete information settings, therefore, a single
irrational agent can dramatically alter what can be implemented.17

5. CONCLUSION

One goal of irrationality-proofness is to serve as a robustness check. For the property of a
model to be reliable, it should survive the introduction of irrational agents who do not trade or
choose strategies optimally. By recasting efficiency—moving from classical Pareto efficiency to
production efficiency and to Pareto efficiency for the rational agents—competitive equilibria
can pass the robustness test. Indeed, these alternative definitions of efficiency can withstand
the introduction of large numbers of irrational agents. These conclusions are driven by the
separating feature of prices. If rational consumers and firms face a common price vector, then
constrained forms of efficiency will hold, even when irrational agents are present.

My analysis of games shows no inevitable divide between the irrationality-proofness of ef-
ficiency in games and in competitive markets. But in contrast to markets, the conclusion that
irrational agents in a game do little harm requires a careful construction. We have to let the
rational agents’ strategies vary as a function of the irrational agents’ strategies and rule out asym-
metric information. From this broader perspective, the irrationality-proofness of efficiency is
more robust for markets than for games.

APPENDIX: PROOFS

PROOF OF PROPOSITION 1. Let (p, x) be an exchange equilibrium. If the rational agents can
achieve (̃xi)i∈IR by exiting, then

∑
i∈IR

x̃i ≤ ∑
i∈IR

ei. Multiply by p to get (1) p · ∑
i∈IR

x̃i ≤
p · ∑

i∈IR
ei. If (̃xi)i∈IR is a Pareto improvement for the rational agents, then (2) x̃i �i xi for

all i ∈ IR, and (3) x̃h �h xh for some h ∈ IR. Given the optimization of the rational agents,
(3) implies p · x̃h > p · eh, and, since �i is transitive and locally nonsatiated for each i ∈ IR,
(2) implies p · x̃i ≥ p · ei for all i ∈ IR. Sum over i ∈ IR to get p · ∑i∈IR

x̃i > p · ∑i∈IR
ei,

contradicting (1). �

PROOF OF PROPOSITION 2. First, observe that if (p, x) is the exchange equilibrium and (̃xi)i∈IR

satisfies
∑
i∈IR

x̃i ≤
∑
i∈IR

ei + ϕ
∑
i∈IIR

(ei − xi)(A.1)

for some ϕ ∈ R, then (1) in the proof of Proposition 1 will obtain (since p · ∑
i∈IIR

(ei − xi) = 0).
Hence, if (̃xi)i∈IR satisfies (A.1) then (̃xi)i∈IR does not Pareto dominate (xi)i∈IR .

17 See Postlewaite and Schmeidler (1986) and Blume and Easley (1990) for the implementation consequences of
exclusive information.
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Suppose IR can achieve (̃xi)i∈IR by exiting and that x̃i �i xi for all i ∈ IR. Then Proposition
1 implies x̃i ∼i xi for all i ∈ IR. Since there is a k with p(k)

∑
i∈IR

(xi(k) − ei(k)) 
= 0 and since
p · ∑

i∈IR
(xi − ei) = 0, there must be an l with p(l) > 0 such that

∑
i∈IR

(xi(l) − ei(l)) > 0. Since
any allocation (̃xi)i∈IR achieved by exiting must satisfy

∑
i∈IR

x̃i ≤ ∑
i∈IR

ei, we have (̃xi)i∈IR 
=
(xi)i∈IR and therefore x̃h 
= xh for some h ∈ IR. By strict convexity, if λ ∈ (0, 1) then λxh + (1 −
λ)̃xh �h xh. Thus, (λxi + (1 − λ)̃xi)i∈IR Pareto dominates (xi)i∈IR . Since, however,

∑
i∈IR

xi ≤
∑
i∈IR

ei +
∑
i∈IIR

(ei − xi), and

∑
i∈IR

x̃i ≤
∑
i∈IR

ei,

we have
∑
i∈IR

(λxi + (1 − λ)̃xi) ≤
∑
i∈IR

ei + λ
∑
i∈IIR

(ei − xi).

Since (λxi + (1 − λ)̃xi)i∈IR therefore satisfies (A.1), we have a contradiction. �

PROOF OF EXTENSION OF PROPOSITION 1. Only a couple of changes to the proof of Proposition
1 are needed. If the rational agents can achieve a Pareto improvement by exiting, there exist
(̃xi)i∈IR and (̃yj )j∈FR , where each ỹj ∈ Yj , such that x̃i �i xi for each i ∈ IR, with strict preference
for some i ∈ IR, and

∑
i∈IR

x̃i ≤ ∑
i∈IR

ei + ∑
j∈FR

μj ỹj . Since ỹj ∈ Yj , profit maximization gives
μj p · yj ≥ μj p · ỹj for each j ∈ FR. Hence, p · ∑

i∈IR
x̃i ≤ p · ∑

i∈IR
ei + p · ∑

j∈FR
μj yj . But op-

timization for the rational agents implies p · x̃i ≥ p · ei + p · ∑j∈FR
θij yj for all i ∈ IR, with strict

inequality holding for some i ∈ IR. Summing over the rational consumers and using the fact
that μj ≤ ∑

i∈IR
θij gives the contradiction p · ∑

i∈IR
x̃i > p · ∑

i∈IR
ei + p · ∑

j∈FR
μj yj . �

PROOF OF PROPOSITION 3. Let (p, x, y) be an equilibrium with p � 0 and suppose it is
not production efficient. There would then exist (y′

j )j∈F such that
∑

j∈F y′
j >

∑
j∈F yj . Since

p � 0, p · ∑
j∈F y′

j > p · ∑
j∈F yj . But since the rational firms are maximizing, p · ∑

j∈FR
y′

j ≤
p · ∑

j∈FR
yj . Hence, p · ∑

j∈FIR
y′

j > p · ∑j∈FIR
yj , and so p · ∑

j∈FIR
y′

j > 0. Since YR constant
returns dominates YIR there exists a constant returns production set Ŷ such that YR ⊃ Ŷ ⊃ YIR.
Hence, there is a ŷ ∈ Ŷ and (̂yj )j∈FR such that

∑
j∈FR

ŷj = ŷ = ∑
j∈FIR

y′
j . So p · ∑j∈FR

ŷj > 0,
and since Ŷ satisfies constant returns, for any α > 0, α

∑
j∈FR

ŷj ∈ YR. Hence, for any α > 0 there
exists a (̃yj )j∈FR , with each ỹj ∈ Yj , such that p · ∑j∈FR

ỹj = p · α
∑

j∈FR
ŷj = α(p · ∑

j∈FR
ŷj ),

and so there must be a j ∈ FR such that p · ỹj ≥ 1
|FR|α(p · ∑j∈FR

ŷj ). Since (i) for each α > 0

there is a j ∈ FR and ỹj ∈ Yj satisfying this inequality, (ii) 1
|FR| (p · ∑

j∈FR
ŷj ) > 0, and (iii) there

are finitely many firms, there must be at least one firm in FR that can make unboundedly great
profits, contradicting the assumption that (yj )j∈FR are equilibrium production decisions. �

PROOF OF PROPOSITION 4. We fix the admissible model throughout. The mechanism consists of
two parts. The first part determines if there is a “victorious coalition.” The first four coordinates
of a strategy si for agent i are relevant to this part. These are Ci⊂ I, which gives i’s proposal
of a coalition, a “coalition integer” ni ∈ N, a price p i ∈ R

L
+\{0}, and a consumption bundle

xi ∈ R
L
+. Given (Ci, ni, p i, xi)i∈I , C is victorious iff there exists (n, p) such that (i) for each i ∈ C,

C i = C, p i = p , ni = n, and p · xi = p · ei, (ii) n > nk for each k /∈ C, and (iii)
∑

i∈C xi = ∑
i∈C ei.

So the agents in a victorious C must all propose C, play a common n that defeats all outsiders
in an integer game, announce a common price, and announce consumption bundles that are
individually affordable and jointly feasible using the resources of C. If there is no victorious
coalition, the mechanism g assigns each i ∈ I the consumption bundle 0.
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In the second part of the mechanism, which is relevant only if there is a victorious coalition
C, any agent in C can reject the bundle assigned to him in the first part. The second part of
each si has three components: a a or r, which indicates whether i accepts or rejects i’s assigned
bundle, an integer mi that determines the “dominant” rejection, and the consumption wi that
i proposes to receive if i’s rejection is dominant. Joining together the two parts of a strategy,
we have, for each i ∈ I, Si = (2I × N × R

L
+\{0} × R

L
+) × ({a, r} × R

L
+ × N) with typical element

si = (Ci, ni, p i, xi, a or r, wi, mi).
If C is victorious and, for all i ∈ C, si announces a, then C is unanimous. If there is a victorious

and unanimous coalition C, then the outcome given by g is for each i ∈ C to receive the xi given
by si and for each i /∈ C to receive the 0 bundle. If there is a coalition C that is victorious but
not unanimous, define the set of rejectors RC = {i ∈ C: i announces r}. If #RC ≥ 2 the integer
game in the second part of the mechanism determines the dominant rejection: if there is a i ∈ C
such that mi > mk for k ∈ C\{i} and wi ≤ e, then the outcome is for i to receive wi and each
k ∈ I\{i} to receive 0. In all other cases with #RC ≥ 2, the outcome is for each i to receive 0.
If RC = {i} but p · wi 
= p · ei or wi >

∑
k∈C ek (where p is the common price announcement of

the members of C), then each k ∈ I receives 0. Finally, I impose the following “single deviation
rule”: if RC = {i}, p · wi = p · ei, and wi ≤ ∑

k∈C ek, then the outcome is that i receives wi and
each k ∈ I\{i} receives 0.

Fix the strategies of i ∈ IIR, and let nIR denote max{ni : i ∈ IIR}. Let (p, xi)i∈IR be an exchange
equilibrium for the society consisting solely of IR. Then (IR, nIR + 1, p, xi; a, 0, 1) for each
i ∈ IR, along with the given si for i ∈ IIR, is an equilibrium. For suppose some i ∈ IR deviates
by announcing a different coalition, a different price, or a different coalition integer. If this
deviation does not permit there to be a victorious coalition, then i would receive 0 and so
the deviation would not be undertaken. And the deviation can permit there to be a victorious
coalition only if ni > nIR + 1 and i’s coalition announcement is {i}, in which case i receives either
the consumption x̃i = ei or x̃i = 0; since in either case, xi �i x̃i, one again concludes that it is
optimizing for i not to deviate. If, on the other hand, i deviates with (IR, nIR + 1, p, xi; r, wi, mi),
then i receives either 0 (if p · wi 
= p · ei, wi >

∑
k∈IR

ek, or mi ≤ mk for some k ∈ C\{i}) or,
given the definition of an exchange equilibrium, a wi with xi �i wi. Thus, for any strategy profile
for the irrational agents, there is an equilibrium where the irrational agents play that profile.
Furthermore, given that (p, xi)i∈IR is an exchange equilibrium for IR, the equilibrium outcome is
Pareto efficient for the rational agents. In the case where IIR = ∅, for any exchange equilibrium
(p, x), the outcome of the above equilibrium is the competitive allocation x.

It remains to show that any equilibrium outcome is Pareto efficient for the rational agents and
is the competitive allocation when IIR = ∅. Let x be an arbitrary equilibrium outcome. Since
Pareto efficiency for the rational agents holds vacuously if IR = ∅, suppose that IR 
= ∅. Since
any agent i can receive ei by announcing ({i}, ni, p i, ei; a, 0, 1), where ni > nk for all k ∈ I\{i},
there must be exactly one victorious coalition C, and IR must be a subset of C. For the remainder
of the proof, let p be the price vector announced by C. If #IR ≥ 2, then C must be unanimous,
since otherwise the agents in C play an integer game with no equilibrium—each i ∈ IR would
have to announce a ni such that ni > nk for all k ∈ C\{i}. Continuing with the case where C is
victorious (and hence unanimous) and #IR ≥ 2, the single deviation rule implies, for i ∈ IR, that
xi must be a �i-maximum on {wi ∈ R

L
+ : p · wi = p · ei, wi ≤ ∑

k∈C ek}. Given the monotonicity
of �i, p � 0. Given interiority, the outcome for IR ⊂ C, (xi)i∈IR , is strictly greater than 0 in every
coordinate; therefore, since #IR ≥ 2,

∑
k∈C ek � xi for i ∈ IR. There must, therefore, be a ε > 0

such that any wi with ‖xi − wi‖ < ε and p · wi = p · ei satisfies wi ≤ ∑
k∈C ek and hence xi �i wi.

The convexity of �i then implies that if x̃i �i xi, then p · x̃i ≥ p · ei. For if there were a x̃i ∈ R
L
+

with x̃i �i xi and p · x̃i < p · ei, then by convexity xi = λ̃xi + (1 − λ)xi �i xi for any λ ∈ (0, 1),
and so by choosing λ sufficiently small and since p � 0, one can find a wi � xi with ‖xi − wi‖ < ε

and p · wi = p · ei, which by monotonicity satisfies wi �i xi and hence wi �i xi. So x̃i �i xi ⇒
p · x̃i ≥ p · ei. Moreover, x̃i �i xi and p · x̃i = p · ei cannot occur: if it did, then x̃i �i xi �i ei

and interiority give x̃i � 0, and so, by continuity, for any α ∈ (0, 1) sufficiently near 1, α̃xi �i xi

and p · α̃xi < p · ei. Hence, for i ∈ IR, xi is �i-maximizing on {wi ∈ R
L
+ : p · wi = p · ei}. The
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proof of Proposition 1 then applies. Due to the price p announced by all k ∈ C, the equilibrium
must satisfy Pareto efficiency for the rational agents. In the case where C is victorious and
#IR = 1, the agent i ∈ IR must receive an outcome xi �i ei, since i could receive ei by announcing
({i}, ni, p i, ei; a, 0, 1), where ni > nk for all k ∈ I\{i} (as at the beginning of the paragraph).
Hence, the equilibrium again satisfies Pareto efficiency for the rational agents. Finally, note
that if IIR = ∅, then C = I. Since, furthermore, the outcome xi is �i -maximizing on {wi ∈ R

L
+ :

p · wi = p · ei} for each i ∈ I, (p, x) must be an exchange equilibrium. So, when IIR = ∅, the
outcome x of any equilibrium is the allocation of an exchange equilibrium. �

PROOF OF PROPOSITION 5. In the text. �
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