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In a common-values election where voters receive a signal about which candidate is
superior, suppose there is a small amount of uncertainty about the conditional likelihood
of the signal’s outcome, given the correct candidate. Once this uncertainty is resolved,
the signal is i.i.d. across agents. Information can then fail to aggregate. The candidate less
likely to be correct given agents’ signals can be elected with probability near 1 in a large
electorate even if the distribution of signal likelihoods is arbitrarily near to a classical
model where agents are certain that a particular likelihood obtains given that a specific
candidate is correct.
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1. Introduction

The Condorcet jury theorem shows that agents with independent information who vote for the candidate or proposal that
their signal indicates is superior will be virtually certain to elect the correct candidate when the population is large (see, e.g.,
Miller, 1986; Young, 1988). The subsequent game-theoretic literature, where voters take into account when they are likely
to be pivotal, has given information aggregation strategic foundations. As long as the identity of the correct candidate has
some impact on the signal probabilities, then in the Nash equilibria where agents optimally use their available information
the likelihood that the correct candidate is elected will again approach 1 as the population size increases (see Feddersen
and Pesendorfer, 1996, 1997; Myerson 1998, 2000; Wit, 1998; following Austen-Smith and Banks, 1996).

In both the Condorcet and game theory approaches, agents have common values (the same preferences over candidates,
given the same information) and receive a signal of candidate quality that is i.i.d. once we fix the correct candidate. We
make one adjustment: agents have a little uncertainty about the probability of the signal’s outcome, again fixing the correct
candidate. Conditional on the resolution of this uncertainty, the signal is i.i.d. This change to the environment can lead
information to fail to aggregate: the candidate that usually has the smaller conditional probability of being correct given the
voters’ signals can be elected with near certainty.

Labeling the candidates 0 and 1 and the signal realizations α and β , the traditional approach supposes that the signal’s
probability of coming up α, which we call the signal bias, is certain to equal some number q0 when 0 is correct and is
certain to equal some other number q1 when 1 correct. We assume instead that agents have two densities over the signal
bias, one when 0 is correct and the other when 1 is correct. But once the uncertainty about the signal bias is resolved, each
voter faces the same i.i.d. signal. This set-up allows agents to be virtually sure that the bias is near qi when i is correct,
i = 0,1. Since signals are conditionally i.i.d., the signal realizations are exchangeable.1 Exchangeability means that all finite
permutations of a sequence of realizations are equiprobable; e.g., for any three tosses of a coin, HHT, HTH, and THH, are
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equally likely, which is weaker and more plausible than assuming that tosses are independent. The Bayesian tradition has
argued forcefully that exchangeability is the only coherent and defensible reformulation of the independence assumptions
of classical probability theory (Kreps, 1988, is persuasive and well known in economics). We therefore take the view that,
just as with coin tosses, an exchangeability approach is considerably more plausible than an i.i.d. model. See Mandler (2010)
for more on the Bayesian view of large elections.

When agents are uncertain about the signal bias, the symmetric Nash equilibria of the resulting voting game are deter-
mined by the local characteristics of the two densities that govern the signal bias. It turns out that it is only the slopes of
the densities at specific critical values that matter for the candidates’ probabilities of victory. Exploiting this fact, we show
that the candidate that is less likely to be correct given the agents’ signals can be elected with high probability: for any
ε > 0 there is a model where, in a large population, the probability is greater than 1 − ε that the candidate that is less
likely to be correct given agents’ signals is elected. Since only the slopes of the densities are relevant, this conclusion holds
even if the distributions that govern the signal bias are arbitrarily near to a classical model where agents are certain that
a specific bias obtains (conditional on a specific candidate being correct). The naive behavior of the older Condorcet jury
theorem, where agents throw strategic caution to the wind and just vote their signals,2 can therefore perform much better.
In fact, even an electorate that ignored its signals can outperform a Nash electorate.

A small amount of uncertainty about the signal bias can have such dramatic effects due to the role of critical signal biases
at which the expected vote shares of the two candidates are equal. As long as a neighborhood of a critical signal bias has
positive probability, agents in a large population will infer that it is highly likely that the true signal bias will lie in this
neighborhood when they condition on being pivotal (the election being tied). In contrast, the conditional probability that
the signal bias will lie outside of such a neighborhood, given that there is a tie, will converge to 0 with exponential speed
as the population size increases. The global facts about the signals then become irrelevant; agents pay attention only to the
neighborhood of the critical signal bias.

Although critical signal biases will draw all of the attention of optimizing voters, election models that rule out such
biases are problematic. If there is no critical signal bias, the probability of a tie will diminish will exponential speed as the
population size increases. Hence a perturbation of the model that introduces a ε probability of a critical signal bias will
dominate every voter’s calculation of how to act when pivotal: if the population is large then, conditional on a tie, agents
will be practically sure the signal bias lies near the critical value introduced by the perturbation.

This methodological point is the broader agenda of this paper. Any model of elections with three ingredients – (1) a large
number of agents who take independent actions, (2) expected vote shares for candidates that are unequal, (3) agents who
condition on being pivotal – is vulnerable to perturbation. If we introduce new parameters where expected vote shares are
equal those parameters will be the focus of all of the voters, even if they have only small probability. The new parameters
therefore govern the equilibrium properties of the model. And inserting the new parameters typically does not require major
surgery; they will appear when the independent actions are remodeled as an exchangeable process.

An important precedent, Ladha (1993), analyzes information aggregation with exchangeable signals and shows that ag-
gregation obtains when agents naively vote their signals. It is therefore the combination of strategic voting and exchangeable
signals that can lead to poor aggregation performance.

We will assume that there is an odd number of agents, none of whom abstain, which puts the focus on the simplest way
a single voter can be pivotal, namely where the votes of the remainder of the electorate are tied. None of our results hinge
on this modeling decision – see the working paper version of this article, Mandler (2011), for the more detailed model
where an arbitrary number of voters all have the option to abstain.

There are other ways to adapt the classical model of Feddersen and Pesendorfer (1997) that will also undermine infor-
mation aggregation. Feddersen and Pesendorfer (1997, Section 6), Kim and Fey (2007), and Bhattacharya (2007) show that
the heterogeneity of voters’ preferences and uncertainty about voters’ preferences can block information aggregation. The
present paper, in contrast, sticks to a pure common-values setting and our results hold for arbitrarily small (ε) perturbations
of a classical information aggregation model. In a different literature, the argument in Acemoglu et al. (2009) resembles our
main point: in a model where different individuals observe a sequence of state-dependent signals, they show that a small
amount of uncertainty about the distribution of signals can lead to asymptotic differences in the individuals’ beliefs.

2. Elections with uncertain signal bias

There are two candidates/proposals, 0 and 1. The prior probabilities that 0 and 1 are correct equal π0 > 0 and π1 > 0,
respectively, where π0 + π1 = 1. When j denotes a specific candidate then {− j} = {0,1}\{ j}.

Voters receive one of two signals, α or β . The probability of receiving a particular signal is affected by which candidate
is correct and signals therefore convey information that can influence voting. The signal bias q will be the probability that
any given agent receives the α signal and 1 − q is the probability that an agent receives the β signal. We assume that the
signals that agents receive are conditionally independent, given q. But the signal bias q itself is uncertain even given that

2 That is, where agents vote for the candidate that is more likely to be correct, conditioning on their information but not on being pivotal.
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Fig. 1. Signal densities that lead to a failure of information aggregation.

one of the candidates is correct: q has the continuous conditional density 1
π0

g0(q) when 0 is correct and 1
π1

g1(q) when 1

is correct.3 The timeline of events is as follows.

Timeline:

(1) nature chooses a correct candidate i and a signal bias q,
(2) each agent receives an i.i.d. signal that equals α with probability q,
(3) the agents vote.

In stage (2), all agents face the same probabilities q and 1 − q of the α and β signals. If instead each agent were to face
an i.i.d. draw from a distribution of possible values for q and then, once q is drawn, a further i.i.d. draw that comes up α
with probability q, we could collapse stages (1) and (2) into a single lottery where each agent receives an i.i.d. signal. We
would then return to the classical jury model.

The present density model can however be arbitrarily near to a classical model with i.i.d. signals. In particular, when a
signal in a classical model indicates that a particular candidate is more likely to be correct – ignoring any complications
from conditioning on being pivotal – then the same candidate will remain more likely to be correct following the same
signal in any nearby density model. For example, the densities in Fig. 1 lead to distributions that are near to a classical
model in which α is an i.i.d. signal that occurs with probability q0 when 0 is correct and probability q1 when 1 is correct.
Since q0 > q1, receiving the α signal in the classical model will raise one’s estimate that 0 is correct while receiving β will
lower that estimate. The signals retain this interpretation in any nearby density model. Nevertheless we will see that with
the densities in Fig. 1 information can fail to aggregate once agents condition on being pivotal.

We say that an agent who receives signal i = α,β , is an agent of type i.
Call a q∗ ∈ [0,1] such that g0(q∗) = g1(q∗) an intersection point. To avoid some knife-edge cases, we assume throughout

that, for any intersection point q∗ , the functions g0 and g1 cross at q∗ rather than being tangent. That is, we assume that if
q∗ is an intersection point then there is an open interval I ⊂ (0,1) that contains q∗ such that, for any p,q ∈ I with q < q∗
and p > q∗ , (g0(q) − g1(q))(g0(p) − g1(p)) < 0 and where (g0(r) − g1(r))/(r − q∗) is bounded away from 0 for all r ∈ I .

The information aggregation properties of equilibria will turn on whether g0 cuts g1 from above or below. We say that
an intersection q∗ is a I0,1 intersection if, for all q in the interval I given in the previous paragraph, (q < q∗ ⇒ g0(q) > g1(q))
and (q > q∗ ⇒ g1(q) > g0(q)), and a I1,0 intersection if, for all q in I , (q < q∗ ⇒ g1(q) > g0(q)) and (q > q∗ ⇒ g0(q) > g1(q)).
In Fig. 1, q∗ is a I0,1 intersection and q′ is a I1,0 intersection. (Keep in mind that each gi is an unconditional density and
hence integrates to πi , not 1.)

The population size equals n + 1, where n is an even integer. Each agent therefore thinks that the election excluding his
or her vote could in principle be tied but that one vote leads are impossible.

If we fix the signal bias q, then the candidate with the (weakly) higher conditional probability of being correct, given q,
is any i = 0,1 such that gi(q) � g−i(q). Since agents taken together receive no pertinent information beyond q, the signal
bias can be understood as the state variable for the model. Although reference to which candidate is ‘correct’ given q will
facilitate interpretation, what is important is that, conditional on q, every agent prefers the candidate i with the larger value
of gi(q) over the other candidate. We could in fact take these conditional preferences as primitive and make no mention

3 We could allow the distribution of q to have atoms, which would be a natural modeling step when seeking an approximation of a classical model,
where q is certain.
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of which candidate is correct or incorrect. Such a ‘preferences’ description would match the Feddersen and Pesendorfer
(1997) modeling strategy, except that we specialize by going to the extreme common values assumption that the agents
have unanimous preferences given q.

3. Equilibrium

An agent of type i = α,β , either votes for 0 or 1 and the probabilities that i casts these votes are given by v0
i � 0 and

v1
i � 0, respectively, where v0

i + v1
i = 1. We consider only symmetric equilibria, that is, where all agents of the same type

adopt the same voting probabilities.
Let P (E) denote the probability of an event E . Given (v0

i , v1
i ) for i = α,β , P (T |q) and P ( j leads by y votes|q) will

indicate respectively the probability of a tie and the probability that j leads by y votes, conditional on the signal bias q
and given that the population consists of n agents (not n + 1). The binomial formula gives explicit expressions for these
probabilities. When we need to emphasize that probabilities and events are a function of n, we use n as a subscript,
e.g., Pn(T |q). Although the probabilities of election outcomes are partly determined by (v0

i , v1
i )i=α,β , we suppress this

dependence in the notation.
We assume that each agent takes the other agents’ voting probabilities as fixed and acts to maximize the conditional

probability that the correct candidate is elected given the signal the agent observes. Suppose that an arbitrary agent votes
for j and that the remaining agents’ actions are governed by (v0

i , v1
i )i=α,β . We then use C j(i) to denote the (unconditional)

probability that the correct candidate is elected and that the arbitrary agent under consideration receives the i signal.
To illustrate how C j(i) is calculated, consider as an example C0(α) and observe that

C0(α) = P (0 is correct, 0 is elected, α is observed) + P (1 is correct, 1 is elected, α is observed),

where the probabilities above are calculated assuming that the agent under consideration votes for 0 and the remaining
votes are determined by (v0

i , v1
i )i=α,β . Let’s begin with the first term, P (0 is correct, 0 is elected, α is observed). Since the

action taken is a vote for 0, the conditional probability that 0 wins and α is observed given q is simply qP (0 leads by
� 0 votes|q), here exploiting the fact that we have ruled out a one vote loss for 0 among n voters. Since we are dealing
with the case where 0 is correct, when we step back to take account of the uncertainty regarding q, we must integrate
using the density for q that holds when 0 is correct:

P (0 wins, 0 is correct, α is observed) =
∫

[0,1]
qP (0 leads by � 0 votes|q)g0(q)dq.

The second term is similar. Since we are considering a vote for 0, the conditional probability that 1 wins and α is observed
given q is qP (1 leads by � 2 votes|q) and so

P (1 wins, 1 is correct, α is observed) =
∫

[0,1]
qP (1 leads by � 2 votes|q)g1(q)dq.

Hence

C0(α) =
∫

[0,1]
q
[

P (0 leads by � 0 votes|q)g0(q) + P (1 leads by � 2 votes|q)g1(q)
]

dq.

The expression C j(i) gives the unconditional probability of the event that the correct candidate is elected and the agent
under consideration observes the i signal, on the assumption that the agent votes for j. The agent chooses j to maximize
the conditional probability that the correct candidate is elected given that the i signal is observed, that is,

C j(i)

P (i is observed)
.

Since the denominator P (i is observed) remains unchanged regardless of which candidate type i votes for, the sign of
C0(i) − C1(i) by itself determines whether voting for 0 or 1 is optimal when signal i is observed.

We therefore say that type i weakly (resp. strictly) prefers voting for j to voting for k if C j(i) − Ck(i) � 0 (resp. > 0).4

Definition 1. An equilibrium is a (v0
i , v1

i )i=α,β such that, for i = α,β , and j = 0,1, v j
i > 0 ⇒ i weakly prefers voting for j to

voting for − j.

4 Preference can instead be viewed in expected utility terms. If utility equals 1 when the correct candidate is elected and 0 if not, then C j(i) is the
probability of the event that utility equals 1 and signal i is observed, assuming the agent votes for j. Division by P (i is observed) then gives the conditional
expectation of the agent’s utility given that i is observed and assuming the agent votes for j. Hence voting for j is weakly preferred to voting for k if and
only if the agent’s conditional expected utility is weakly larger when voting for j.
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It will be useful to have explicit expressions for the C0(i) − C1(i). We have

C0(α) =
∫

[0,1]
q
[

P (0 leads by � 0 votes|q)g0(q) + P (1 leads by � 2 vote|q)g1(q)
]

dq,

C1(α) =
∫

[0,1]
q
[

P (0 leads by � 2 votes|q)g0(q) + P (1 leads by � 0 vote|q)g1(q)
]

dq.

Since P ( j leads by � 0 vote|q) = P ( j leads by � 2 vote|q) + P (T |q),

C0(α) − C1(α) =
∫

[0,1]
qP (T |q)

(
g0(q) − g1(q)

)
dq. (3.1)

Similarly,

C0(β) − C1(β) =
∫

[0,1]
(1 − q)P (T |q)

(
g0(q) − g1(q)

)
dq. (3.2)

4. Information aggregation

We first set down a benchmark for information aggregation. Since the distribution of the signals is determined by q,
q provides all of the payoff-relevant information of the model and is strictly more informative than the particular vector
of signals that agents happen to receive; as we earlier pointed out, q can therefore be interpreted as a state variable. We
define a candidate i to be (weakly) more likely to be correct given q if gi(q) � g−i(q). Our common values assumption implies
that if q were known then all agents would agree to vote for a candidate i that is more likely to be correct; and, outside
of deviations on a measure 0 set of q’s, selecting such a candidate is the only decision rule that will maximize the ex ante
probability of selecting a correct candidate. Consequently, given a sequence of equilibria indexed by the population size n,
we define information aggregation to obtain if for every q a candidate more likely to be correct given q is asymptotically
sure to be elected.

Definition 2. Information aggregation obtains for the sequence 〈(v0
i (n), v1

i (n))i=α,β 〉, if and only if, for all realizations of q,
the probability that the elected candidate is more likely to be correct converges to 1 as n → ∞.

Definition 2 closely follows Feddersen and Pesendorfer (1997), but in FP the preference of the median voter determines
which candidate must win, given q, if information aggregation is to obtain, whereas in our setting all voters agree on which
candidate should win, given q.

Since the state variable q can be accurately estimated in a large electorate from the sample proportion of agents who
receive the α signal, the Definition 2 benchmark is in principle achievable. In fact, as long as the two types adopt distinct
strategies, v0

α �= v0
β , the sample proportion who receive α can be inferred from an election’s equilibrium returns: the pro-

portion of votes that 0 receives, say x, will converge to v0
αq + v0

β(1 − q) as n increases and so we can back out q from

x = v0
αq + v0

β(1 − q) in a large electorate. But although the information the population needs to determine the optimal can-

didate can be deduced from its aggregate behavior, the optimal candidate need not be the likeliest to win.5 As we will see,
the performance of elections misses the Definition 2 benchmark by a wide margin; far from electing the more-likely-to-be-
correct candidate with high probability for every q when n is large, the electorate can select the less-likely-to-be-correct
candidate for most values of q.

The main principle of our analysis will be that if the population is sufficiently large then ties are most likely to arise
at those signal biases near the critical value where the expected vote shares of the candidates are equal. Since agents
care about their votes only when they are pivotal, they can ignore all other signal biases. As we will see, this principle
implies that in an equilibrium for a large electorate a critical signal bias can occur only at an intersection point q∗ of the
signal densities – otherwise both types would vote for the same candidate and there would be no critical signal bias at
all. The classification of intersections given in Section 2 then determines which type of agent is more likely to vote for
each candidate. Having witnessed a α signal, the α types will assign higher probability than the β types to the larger q’s
in a neighborhood of a critical signal bias. Suppose for instance that a critical signal bias q∗ is a I0,1 intersection. Then
g1(q) > g0(q) for the q’s slightly greater than q∗ , and so the α type will be more likely than the β type to vote for 1. Since
the expected proportion of α types in the population equals q and since the expected vote shares for the two candidates
are equal at q∗ , candidate 1 will be the expected victor when q > q∗ and 0 will be the expected victor when q < q∗ . The

5 Since the state variable can be inferred from the votes, the failure of information aggregation in the present model differs from the failure in Theorem 4
of Feddersen and Pesendorfer (1997).
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I1,0 case leads to the opposite result. These conclusions are based only on local facts – the intersection classification – and
not on which candidate is globally more likely to be correct; as a consequence, equilibria can fail to aggregate information.

Definition 3. The strategies (v0
i , v1

i )i=α,β lead to a potentially close election at q if and only if

v0
αq + v0

β(1 − q) = v1
αq + v1

β(1 − q).

Since we have ruled out abstention, the left- and right-hand sides above will both equal 1
2 . We use the label ‘potentially

close’ because the expected number of votes for 0 and 1 are equal when Definition 3 applies.

Definition 4. A sequence of equilibria 〈(v0
i (n), v1

i (n))i=α,β 〉 has the critical signal bias q̂ if and only if the sequence converges
to a (v 0

i , v 1
i )i=α,β that leads to a potentially close election at q̂ and v 0

α �= v 0
β .

The condition v 0
α �= v 0

β (or equivalently v 1
α �= v 1

β ) ensures that the sequence of equilibria is potentially close at one q
rather than at every q.

We can then restate our main principle as: if n is large enough agents will conclude that ties are most likely to occur
in a neighborhood of a critical signal bias. To understand this principle, suppose a sequence of equilibria has the critical
signal bias q̂, let Q̂ be an interval of signal biases with q̂ in its interior, and let Q̂ c be the complement of Q̂ in [0,1]. Then
Pn(T |Q̂ c)

Pn(T |Q̂ )
, the ratio of a probability of a tie conditional on q being in Q̂ c relative to the probability of a tie conditional on

q being in Q̂ , will converge to 0 as n → ∞. The law of large numbers helps explain this fact. If q is the true signal bias,
the law of large numbers implies that for large n it is a virtual certainty that 1/(n + 1) times the difference between the
number of votes for 0 and 1 is near(

v 0
αq + v 0

β (1 − q)
) − (

v 1
αq + v 1

β (1 − q)
)
,

where (v 0
i , v 1

i )i=α,β is the limit of the sequence of equilibria. Since this quantity equals 0 when q = q̂ and is bounded away
from 0 for q ∈ Q̂ c , ties are much more likely when n is large if we condition on Q̂ rather than Q̂ c .6

The first important implication of the principle that, when n is large, ties are more likely near critical signal biases is
that in equilibrium critical signal biases must be intersection points. If some sequence of equilibria had a critical signal
bias q̂ that is not an intersection point then g j(q̂ ) > g− j(q̂ ) for one of the candidates j and each agent would conclude,
when n is large, that if he is pivotal then j is more likely to be correct. Agents of both types would therefore adopt the
pure strategy of voting for j when n is large and hence the sequence could not in fact have a critical signal bias at q̂ (or any
other q). To make the same argument more formally, suppose the critical signal bias q̂ is not an intersection point and set
the interval Q̂ to contain q̂ and be small enough that Q̂ contains no intersection points; the sign of g0(q) − g1(q) is then

constant on Q̂ . Since Pn(T |Q̂ c)

Pn(T |Q̂ )
→ 0, the C j(i) are determined only by the q’s in Q̂ : (3.1) and (3.2) therefore imply

C0
n(α) − C1

n(α) ≈
∫
Q̂

qPn(T |q)
(

g0(q) − g1(q)
)

dq,

C0
n(β) − C1

n(β) ≈
∫
Q̂

(1 − q)Pn(T |q)
(

g0(q) − g1(q)
)

dq,

when n is large. Both these expressions have the same sign, the sign of g0(q)− g1(q) on Q̂ . Hence, for large enough n, v0
α(n)

and v0
β(n) must either both equal 1 or both equal 0, which implies that the limit (v 0

i , v 1
i )i=α,β cannot lead to a potentially

close election at q̂. We therefore rule out sequences of equilibria with a critical signal bias that is not an intersection point.
Conversely,

Proposition 1. For any intersection point q∗ there exists a sequence of equilibria that has a critical signal bias equal to q∗ .

6 This argument does not lead to a proof since the law of large numbers does not give the probability of an exact tie. Consider, however, two signal
biases q̂ and q′ , where some (v0

i , v1
i )i=α,β , leads to a potentially close election at q̂ but not at q′ . It is well known that Pn(T |q̂) converges to 0 at rate 1√

n

while Pn(T |q′) converges to 0 at rate e−cn , where c > 0. So Pn(T |q′)
Pn(T |q̂)

→ 0. Given that the likelihood of a signal bias is governed by a density, the probability

that the bias assumes any particular value is zero. But a similar conclusion holds for sets of biases. If an interval Q̂ ⊂ [0,1] contains q̂ in its interior and if
the closure of Q ′ ⊂ [0,1] contains no q at which (v0

i , v1
i )i=α,β leads to a potentially close election, then Pn(T |Q̂ ) converges to 0 at rate 1

n while Pn(T |Q ′)
converges to 0 at rate e−cn , c > 0. Thus Pn(T |Q ′)

Pn(T |Q̂ )
→ 0. See Good and Mayer (1975), Chamberlain and Rothschild (1981), and Mandler (2010) for these rate

of convergence results.



M. Mandler / Games and Economic Behavior 74 (2012) 257–268 263
Proposition 1 is our main technical result and is proved in Appendix A.
We now argue that for the sequences of equilibria given by Proposition 1 the global information aggregation properties

are determined by the local fact of whether the intersection point q∗ is of class I0,1 or I1,0. Given that agents will ignore
any signal bias not in a neighborhood of q∗ , it is no surprise that it is only the properties of the signal densities near q∗
that matter.

Consider a sequence of equilibria with limit (v 0
i , v 1

i )i=α,β that has a critical signal bias at the intersection point q∗ .
To illustrate, assume q∗ is a I0,1 intersection and that we are in the typical case where q∗ �= 1

2 (as in Fig. 1). Then, since
expected vote shares are equal in the limit when the signal bias is q∗ , at least one of the types must be mixing between
voting for 0 and voting for 1 when n is sufficiently large.7 If, say, type β mixes then (3.2) implies that

C0
n(β) − C1

n(β) =
∫

[0,1]
(1 − q)Pn(T |q)

(
g0(q) − g1(q)

)
dq = 0, (4.1)

for all large n. In deciding between 0 and 1, the type α agent, using (3.1), examines the sign of

C0
n(α) − C1

n(α) =
∫

[0,1]
qPn(T |q)

(
g0(q) − g1(q)

)
dq. (4.2)

Our main principle implies that we may ignore all q except those near q∗ . Now the α type, having witnessed the α signal,
will assign higher posterior probability to the larger values of q in a neighborhood of q∗ – specifically those greater than
q∗ – than the β type assigns. In the above integrals, this difference appears as the weight q in (4.2) versus the weight 1 − q
in (4.1). Consequently, given (4.1) and that q∗ is a I0,1 intersection, it must be that the α type strictly prefers to vote for 1
when n is large: for q’s that are slightly larger than q∗ , 1 is more likely to be correct and the α type views these q’s as
more likely. Similarly, if we assume it is the α type who is mixing, then the β type, who believes that the smaller values
of q near q∗ are more likely, will strictly prefer voting for 0 to voting for 1 when n is large. Whoever is mixing, therefore,
our assumption that q∗ is a I0,1 intersection implies that, for large n, the α type has a higher probability of voting for 1 (or
lower probability of voting for 0) than the β type.

Now if the true q turns out to be greater than q∗ then the expected proportion of type α voters will be larger at q than
at q∗ , while if the true q is less than q∗ then the expected proportion of type α voters will be smaller at q than at q∗ . Since
for large n expected vote shares are equal when the true signal bias is q∗ , our conclusion that the α type is more likely
than the β type to vote for 1 when q∗ is a I0,1 intersection means that if the true q is greater than q∗ then candidate 1 will
have the larger expected vote share while if the true q is less than q∗ then it is 0 that will have the larger expected vote
share. So if q > q∗ the law of large numbers reports that as n → ∞ the probability that 1 is elected converges to 1 while if
q < q∗ then the probability that 0 is elected converges to 1.

The analysis of I1,0 intersections is entirely parallel, but the conclusions of the last two paragraphs are reversed: when n
is large the α type will have a higher probability of voting for 0 than the β type, and so when the true q is greater
than q∗ the probability that 0 is elected converges to 1 and when the true q is less than q∗ the probability that 1 is elected
converges to 1.

Proposition 2. Let a sequence of equilibria have the critical signal bias q∗ . If q∗ is a I0,1 intersection then for q > q∗ the probability
that 1 wins approaches 1 as n → ∞ while for q < q∗ the probability that 0 wins approaches 1 as n → ∞. If q∗ is a I1,0 intersection
then for q > q∗ the probability that 0 wins approaches 1 as n → ∞ while for q < q∗ the probability that 1 wins approaches 1 as
n → ∞.

Proposition 2 implies that information aggregation can fail to obtain. For example, if an intersection q∗ is near 0 or 1
then there will be a sequence of equilibria with the critical signal bias q∗ such that for most values of q the same candidate
is elected (with probability near 1 when n is large). Yet, because the behavior of the gi near q∗ is unrelated to their behavior
away from q∗ , it could be that the candidate who is rarely elected is more likely to be correct for most values of q. See Fig. 1
where q∗ is a I0,1 intersection near 0, leading 1 to be elected at most values of q, but where nevertheless g0(q) > g1(q)

for most values of q. Thus not only can information aggregation fail – there are some q’s where the less-likely-to-be-correct
candidate, conditional on q, is elected – but it could be that for most values of q the candidate less likely to be correct is
elected. If agents pooled their information they could estimate the true signal bias with near perfect accuracy when n is
large and could therefore usually select the candidate more likely to be correct given q. In fact, even if agents cannot pool
their information they could well be better off if they simply all voted for one of the candidates regardless of their signals.
If, as in Fig. 1, a I0,1 intersection q∗ is near 0 and π0 > π1, then when n is large the agents would have higher expected
utility if they all voted for 0 compared to the equilibrium with the same n that is part of a sequence that has q∗ as a critical
signal bias. (Recall that πi is the prior probability that i is correct.)8

7 If in the limit both types play pure strategies and expected vote shares are equal then (v 0
α − v 1

α)q∗ + (v 0
β − v 1

β )(1 − q∗) = 0 must be solved at a

(v 0
α − v 1

α, v 0
β − v 1

β ) equal to either (1,−1) or (−1,1), which is possible only when q∗ = 1
2 .

8 Notice the characteristic failure of the gi in Fig. 1 to satisfy a monotone likelihood ratio property. We discuss this further below.
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Poor information aggregation performance does not depend on signal biases that show significant dispersion. To establish
this, we compare the classical model, where a signal has a fixed probability of flashing one of its two values given that 0
or 1 is correct, with a nearby model that endows the signal bias with a density. We fix the probabilities that 0 and 1 are
correct, π0 and π1. A ‘classical model’ is then simply a pair (q0,q1) ∈ [0,1]× [0,1] where q0 �= q1: the signal is sure to have
the bias q0 if 0 is correct and is sure to have the bias q1 if 1 is correct. A classical model therefore assumes that q has a
distribution defined by

P (q � q̃|i is correct) =
{

0 if q̃ < qi,

1 if q̃ � qi,

for i = 0,1. The ‘density model’ of this paper, in contrast, is defined by a pair of densities (g0, g1) where each
∫
[0,1] gi(q)dq =

πi . A density model therefore approximates a classical model if the distributions of q given that 0 or 1 is correct are near to
the distributions of the classical model, as in Fig. 1. To define ‘near’, let qt

i denote the random variable on [0,1] with density
1
πi

gt
i .

Definition 5. A sequence of density models 〈(gt
0, gt

1)〉 converges to (q0,q1) if and only if, for i = 0,1, qt
i converges in

probability to qi .9

In a classical model, the symmetric Nash equilibria of a voting game will lead the probability that the correct candidate
wins to converge to 1 as n → ∞, assuming that we refine away equilibria where agents have no chance of being decisive;
each candidate i will therefore be elected with probability πi when n is large. Since the candidate that is more likely to
be correct given the signal bias will be elected with probability that converges to 1 as n increases, information aggregation
obtains.

When a density model is near to a classical model then information aggregation will require similar outcomes in the
two models: each candidate i must be elected with probability near πi when n is large. Equilibrium behavior in the density
model can be quite different however. Since a density model (gt

0, gt
1) near to (q0,q1) can have arbitrary values or slopes

for the gt
i in any small interval, we may construct a sequence of density models 〈(gt

0, gt
1)〉 that converges to (q0,q1) such

that each (gt
0, gt

1) has a I0,1 intersection q∗t and where q∗t converges to 1. So, for any large t , there will be a sequence of
equilibria where the probability that 0 is elected will converge to a value near 1 as n → ∞. We can build the sequence
of models so that at the same time each (gt

0, gt
1) has another I0,1 intersection q∗∗t where q∗∗t converges to 0 as t → ∞,

leading there to be, for any large t , a second sequence of equilibria where the probability 1 is elected will also converge to
a value near 1 as n → ∞. Hence, letting P t

n denote probabilities for the model (gt
0, gt

1), we have

Theorem 1. For any classical model of signals (q0,q1), there is a sequence of density models 〈(gt
0, gt

1)〉 that converges to (q0,q1)

where for candidate i = 0 or i = 1, any ε > 0, and for all t sufficiently large, there is a sequence of equilibria such that

lim
n→∞ P t

n(i wins) > 1 − ε.

We omit a formal proof which would add little to the explanation we have already given; see Mandler (2011) for an
explicit construction.

We may in fact choose the (gt
0, gt

1) so that each gt
i is single-peaked and has full support, gt

i (q) > 0 for all q ∈ [0,1].
Theorem 1 holds for any (π0,π1). So for example π1 could be near 1 but still 0 can be elected with high probability
when t and n are large, the polar opposite of what information aggregation requires.

We can resurrect a version of information aggregation if we suppose that (g0, g1) has exactly one intersection point q∗ .
Recall from Proposition 2 that if a sequence of equilibria has a critical signal bias at a I0,1 intersection point q∗ then
q > q∗ ⇒ (the probability that 1 wins converges to 1 (as n → ∞)) and q < q∗ ⇒ (the probability that 0 wins converges
to 1). Moreover, if q∗ is a I0,1 intersection and is the sole intersection point, and if the realization q is greater than q∗ ,
then 1 is more likely to be the correct candidate (since g1(q) > g0(q) for any q > q∗). Similarly, if the realization q is less
than q∗ then 0 is more likely to be the correct candidate. The I1,0 case is of course parallel, and the more-likely-to-be-
correct candidate given q will again be elected with probability near 1 in a large electorate. Thus we have,

Proposition 3. If (g0, g1) has exactly one intersection point q∗ and a sequence of equilibria has a critical signal bias at q∗ , then
information aggregation obtains: for all realizations of q the probability that a candidate that is more likely to be correct is elected
converges to 1 as n → ∞.

Proposition 3 gives little reassurance however: it is hard to see why a (g0, g1) should have just one intersection point.
Even if each gi is single-peaked and leads to a distribution function that approximates the step function of a classical model

9 That is, that, for any ε > 0, limt→∞
∫
|q−qi |<ε(1/πi)gt

i (q)dq = 1. We could allow the sequence of approximating models to have distributions of q that
have atoms at q0 and q1 without sacrificing the conclusion of Theorem 1.
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of signals, (g0, g1) can have arbitrarily many intersection points. So, while a (g0, g1) that satisfies a monotone likelihood
ratio property cannot have multiple intersections, a (g0, g1) can be arbitrarily near a classical model and yet fail to satisfy
the MLRP.

Theorem 1 and Proposition 3 taken together deliver the message that information aggregation does not hinge on (g0, g1)

being near to a classical model: Theorem 1 says that if (g0, g1) is near a classical model then information aggregation can
fail to obtain while Proposition 3 shows that information aggregation does not require proximity to a classical model. Since
a (g0, g1) with a single intersection need not satisfy the MLRP, Proposition 3 also shows that information aggregation does
not depend on likelihood ratios being monotone.

Proposition 3 always applies locally in the sense that, for any intersection q∗ – even if it is not the sole intersection –
there is a neighborhood of q∗ such that for any sequence of equilibria that has a critical signal bias at q∗ and any realization
of q in this neighborhood, the more-likely-to-be-correct candidate will be elected with high probability when n is large.
When we add a global assumption that (g0, g1) has only one intersection, this local optimality extends globally.

5. Conclusion

In those classical models of elections where voters take independent actions and expected vote shares are unequal,
ties become extraordinary unlikely when the population is sufficiently large. As a consequence, if we introduce parameters
where expected vote shares are equal when the population size is large, the new parameters will rule the roost: no matter
how small the likelihood of the new parameters, a voter who conditions on being pivotal will consider the new parameters
to be much more likely than the original parameters when the population is large.

The Bayesian-exchangeability approach to large elections weakens independence by allowing agents’ actions to be condi-
tionally independent, given the outcome of some random variable. One structural advantage of this approach is that voters,
when they care about their vote only when they are pivotal, do not have to consider mind-bogglingly unlikely events. In a
society of 100,000 i.i.d. voters, where the difference between the probabilities of voting for 0 and 1 is a mere 0.05, the odds
of a tie are less than a decillion (1033) to one. Such extreme odds are a consequence of the fact that, unless the difference
in voting probabilities is exactly 0, the probability of tie in an electorate of independent voters will converge to 0 at an
exponential rate as the population size increases. In contrast, in the equilibria given in Proposition 1 where voters’ actions
are only conditionally i.i.d., the probability of a tie will converge to 0 at the more sedate rate of 1/n.
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Appendix A

Throughout the appendix (as in the text), Pn(T |Q ) is defined relative to a specification of strategies, (v0
i (n), v1

i (n))i=α,β ,
and gives the probability of a tie when n (not n + 1) agents vote.

Definition 6. Given a subsequence 〈(v0
i (n), v1

i (n))i=α,β 〉 of (possibly nonequilibrium) strategies, candidates j and k, and
signal i, we write j �i k (resp. j �i k) if and only if there exists a n such that, for all n in the subsequence with n > n,
the type i agent weakly (resp. strictly) prefers voting for j to voting for k when the probabilities of ties are determined by
(v0

i (n), v1
i (n))i=α,β .

Lemma 1. Suppose 〈(v0
i (n), v1

i (n))i=α,β 〉 is a convergent subsequence with limn→∞ v0
α(n) �= limn→∞ v0

β(n) that leads to a poten-
tially close election at some intersection point q∗ . If q∗ is a I0,1 intersection then

0 �α 1 ⇒ 0 �β 1, 1 �β 0 ⇒ 1 �α 0,

while if q∗ is a I1,0 intersection then

1 �α 0 ⇒ 1 �β 0, 0 �β 1 ⇒ 0 �α 1,

Proof. All four implications have essentially the same proof; we prove only the first. So assume q∗ is of a I0,1 intersection
and 0 �α 1. Then, for all n in the subsequence sufficiently large,∫

[0,1]
qPn(T |q)

(
g0(q) − g1(q)

)
dq � 0. (A.1)

The fact that the subsequence leads to a potentially close election at q∗ implies there is a n̂ such that, for all q and
n > n̂, Pn(T |q) > 0. (We can have Pn(T |q) = 0 early in the subsequence since both types might then vote for the same
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candidate with certainty.) Let I denote an interval containing q∗ such that, for all q ∈ I , (q < q∗ ⇒ g0(q) > g1(q)) and
(q > q∗ ⇒ g1(q) > g0(q)).

We begin with some preliminary facts. Fix n > n̂. If q ∈ I and q > q∗ then q(1−q∗)
q∗ > 1 − q and, by assumption, g1(q) >

g0(q). Hence∫
{q∈I: q>q∗}

q
(1 − q∗)

q∗ Pn(T |q)
(

g1(q) − g0(q)
)

dq >

∫
{q∈I: q>q∗}

(1 − q)Pn(T |q)
(

g1(q) − g0(q)
)

dq.

Similarly, ∫
{q∈I: q<q∗}

q
(1 − q∗)

q∗ Pn(T |q)
(

g0(q) − g1(q)
)

dq <

∫
{q∈I: q<q∗}

(1 − q)Pn(T |q)
(

g0(q) − g1(q)
)

dq.

Hence∫
I

q
(1 − q∗)

q∗ Pn(T |q)
(

g0(q) − g1(q)
)

dq <

∫
I

(1 − q)Pn(T |q)
(

g0(q) − g1(q)
)

dq. (A.2)

We can write potential closeness at q∗ as

(
v0
α(n)q∗ − v0

β(n)q∗) − (
v1
α(n)q∗ − v1

β(n)q∗) + (
v0

β(n) − v1
β(n)

)q∗

q
→ (

v0
β(n) − v1

β(n)
)q∗

q
− (

v0
β(n) − v1

β(n)
)
,

and multiplying by q
q∗ gives

(
v0
α(n)q + v0

β(n)(1 − q)
) − (

v1
α(n)q + v1

β(n)(1 − q)
) → (

v0
β(n) − v1

β(n)
)(

1 − q

q∗

)
. (A.3)

Since if limn→∞(v0
β(n) − v1

β(n)) = 0 were to obtain then limn→∞ v0
β(n) = limn→∞ v1

β(n) = 1
2 , potential closeness would

imply limn→∞ v0
α(n) = limn→∞ v1

α(n) = 1
2 , violating the assumption that limn→∞ v0

α(n) �= limn→∞ v0
β(n). Hence

q �= q∗ �⇒ lim
n→∞

(
v0

β(n) − v1
β(n)

)(
1 − q

q∗

)
�= 0. (A.4)

We now use these preliminaries to show that there is a c > 0 such that

ecn
∫
I

Pn(T |q)dq → ∞ and ecn
∫

[0,1]\I

Pn(T |q)dq → 0. (A.5)

To address the first part of (A.5), let Pn,v(n′)(T |Q ) indicate the conditional probability of a tie in a population of n
agents when agents play v(n′) ≡ (v0

i (n
′), v1

i (n
′))i=α,β , given that q ∈ Q . Since the left-hand side of (A.3) converges to 0

when q = q∗ , Mandler (2010, proof of Theorem 7) shows that if Q is an interval with q∗ ∈ int Q and we fix n′ at a
sufficiently large value then nPn,v(n′)(T |Q ) converges to a strictly positive constant as n → ∞. We must set n′ to be
large enough that Q contains the q such that v(n′) leads to a potentially close election at q, which is possible since
limn→∞ v0

α(n) �= limn→∞ v0
β(n) implies there is a unique such q when n′ is large and that this q converges to q∗ as n′ → ∞.

Since v(n′) converges as n′ → ∞ and since the convergence of nPn,v(n′)(T |Q ) as n → ∞ is uniform across all sufficiently
large n′ , limn→∞ nPn(T |Q ) is also well defined and strictly positive for any interval Q with q∗ ∈ int Q . Hence, for any c > 0,
ecn Pn(T |I) = ecn

∫
I Pn(T |q)dq → ∞.

For the second part of (A.5), define Y1, . . . , Yn to be i.i.d. random variables that equal 1 with probability p and −1 with
probability 1 − p, define Sn ≡ Y1 + · · · + Yn , and let Pr(·) denote the resulting probabilities. The Hoeffding (1963) inequality
states that for any t > 0 there is a k(t) > 0 such that, for any p ∈ [0,1],

Pr

(∣∣∣∣ Sn

n
− EYi

∣∣∣∣ > t

)
� e−k(t)n,

and, in addition, limt→0 k(t) = 0. Now let q̃ be an element of the closure of [0,1]\I , which we denote by cl Ic . Letting vi
j

denote limn→∞ vi
j(n), we have

vi
α(n)q̃ + vi

β(n)(1 − q̃) → vi
αq̃ + vi

β(1 − q̃)

for i = 0,1 and convergence is uniform across q̃ ∈ cl Ic . Given (A.4), (v0
β(n) − v1

β(n))(1 − q̃
q∗ ) �= 0 for q̃ ∈ cl Ic . So (A.3) then

implies that there is a n and a ε > 0 such that, for all n > n and q̃ ∈ cl Ic ,
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∣∣(v0
α(n)q̃ + v0

β(n)(1 − q̃)
) − (

v1
α(n)q̃ + v1

β(n)(1 − q̃)
)∣∣ > ε.

Hence there is a t such that, for all n > n and q̃ ∈ cl Ic , and defining the Yi using p = v0
α(n)q̃ + v0

β(n)(1 − q̃) and 1 − p =
v1
α(n)q̃ + v1

β(n)(1 − q̃), we have 0 < t < |EYi |. Then, for the same Yi , Pr(Sn = 0) � Pr(| Sn
n − EYi | > t). Since Pn(T |q̃) =

Pr(Sn = 0), Hoeffding gives Pn(T |q̃) � e−k(t)n for n > n and q̃ ∈ cl Ic . Setting c ∈ (0,k(t)), we then have both parts of (A.5).
Given (A.5), (A.2), our no-tangency assumption on intersection points, and the slower convergence of Pn(T |q) to 0 for q

near q∗ than for q �≡ I , we have

ecn
[ ∫

[0,1]
(1 − q)Pn(T |q)

(
g0(q) − g1(q)

)
dq −

∫
[0,1]

q
(1 − q∗)

q∗ Pn(T |q)
(

g0(q) − g1(q)
)

dq

]
→ ∞.

Since (A.1) implies ecn
∫
[0,1] q (1−q∗)

q∗ Pn(T |q)(g0(q) − g1(q))dq � 0 for all large n,∫
[0,1]

(1 − q)Pn(T |q)
(

g0(q) − g1(q)
)

dq > 0

for all n sufficiently large, i.e., 0 �β 1. �
Proof of Proposition 1. Since agents can play mixed strategies, it is routine to show that the model has an equilibrium for
any n. So we need only show that there are equilibria 〈(v0

i (n), v1
i (n))i=α,β 〉 for all n sufficiently large that converge to a

(v 0
i , v 1

i )i=α,β that leads to a potentially close election at q∗ and with v 0
α �= v 0

β .

There are six cases depending on whether q∗ < 1
2 , q∗ = 1

2 , q∗ > 1
2 , and on whether q∗ is a I0,1 or I1,0 intersection. Since

the proofs for the six cases are quite similar, we cover only the case where q∗ > 1
2 and q∗ is a I0,1 intersection.

Define the variables θα ≡ v0
α − v1

α , θβ ≡ v0
β − v1

β , and the constant θ∗
α ≡ (q∗−1)

q∗ and note that, since q∗ > 1
2 , θ∗

α ∈ (−1,0).
If the signal bias equals q then the two candidates receive equal vote shares in expectation if

qθα + (1 − q)θβ = 0. (A.6)

For θα in a sufficiently small open neighborhood of θ∗
α and for θβ in a sufficiently small open neighborhood of 1, let

q̃(θα, θβ) denote the unique q that satisfies (A.6). Specifically, q̃(θ∗
α,1) = q∗ . Differentiation shows that, for θα near θ∗

α and
for θβ near 1, the function q̃ is strictly increasing in both θα and θβ . We may therefore pick δ > 0 and ε > 0 such that (i) for
any θβ ∈ [1 − δ,1], q̃(θ∗

α − ε, θβ) < q∗ and q̃(θ∗
α + ε, θβ) > q∗ , (ii) if q ∈ {q̃(θα, θβ): θα ∈ [θ∗

α − ε, θ∗
α + ε], θβ ∈ [1 − δ,1]} and

q �= q∗ then g0(q) �= g1(q), and (iii) [θ∗
α − ε, θ∗

α + ε] ⊂ (−1,0). Observe that if a 〈(v0
i (n), v1

i (n))i=α,β 〉 has v0
α(n) − v1

α(n) ∈
[θ∗

α − ε, θ∗
α + ε] and v0

β(n) − v1
β(n) ∈ [1 − δ,1] for all n sufficiently large then, for small enough δ and ε, v0

α(n) �= v0
β(n) for

the same values of n.
Let Δ ≡ {y ∈ R

2+: y1 + y2 = 1} and define the best response correspondence for a population of size n + 1, Bn : Δ×Δ →
Δ × Δ, by

Bn
i

((
ṽ0

l , ṽ1
l

)
l=α,β

) = {(
v0

i , v1
i

) ∈ Δ: v j
i > 0 ⇒ C j(i) � C− j(i), j = 0,1

}
,

for i = α,β, where the Pn(·|q) that define the C j(i) are calculated using (̃v0
l , ṽ1

l )l=α,β .
Next, define a correspondence ξn with domain and range equal to the convex, compact set Δα × Δβ ≡ {(v0

α, v1
α) ∈

Δ: θα ∈ [θ∗
α − ε, θ∗

α + ε]} × {(v0
β, v1

β) ∈ Δ: θβ ∈ [1 − δ,1]}. Let ξn
i ((v0

l , v1
l )l=α,β), i = α,β , equal Bn

i ((v0
l , v1

l )l=α,β) if

Bn
i ((v0

l , v1
l )l=α,β) ∩ Δi �= ∅ and otherwise equal the point in Δi nearest in Euclidean distance to Bn

i ((v0
l , v1

l )l=α,β). Since
ξn is convex-valued and upper hemicontinuous, ξn has a fixed point (v0

i (n), v1
i (n))i=α,β .

Given the compactness of Δα ×Δβ , 〈(v0
i (n), v1

i (n))i=α,β 〉 has a convergent subsequence. To see that 〈(v0
i (n), v1

i (n))i=α,β 〉
has only one accumulation point and that, for any large n, (v0

i (n), v1
i (n))i=α,β is an equilibrium, define a (v0

i , v1
i )i=α,β to

be interior if it satisfies v0
α − v1

α ∈ (θ∗
α − ε, θ∗

α + ε) and v0
β − v1

β ∈ (1 − δ,1]. Since any interior (v0
i (n), v1

i (n))i=α,β is an

equilibrium, it is sufficient to show that if (v0
i , v1

i )i=α,β is an accumulation point of 〈(v0
i (n), v1

i (n))i=α,β 〉 then it is interior
and satisfies v0

αq∗ + v0
β(1 − q∗) = v1

αq∗ + v1
β(1 − q∗) and v0

β − v1
β = 1, in which case 〈(v0

i (n), v1
i (n))i=α,β 〉 will have just one

accumulation point. Observe first that if there is a subsequence that converges to an interior (v0
i , v1

i )i=α,β then v0
β − v1

β = 1:

if v0
β − v1

β < 1 then 1 �β 0 for the subsequence and hence by the Lemma v0
α = 0, violating interiority. Next suppose that

(v0
i , v1

i )i=α,β is interior and satisfies v0
αq∗ + v0

β(1 − q∗) �= v1
αq∗ + v1

β(1 − q∗). Let q denote q̃(v0
α − v1

α, v0
β − v1

β) and let N(q)

be an arbitrary open neighborhood of q such that N(q) ⊂ {q̃(θα, θβ): θα ∈ [θ∗
α − ε, θ∗

α + ε], θβ ∈ [1 − δ,1]}. Then, for any
subsequence that converges to (v0

i , v1
i )i=α,β ,

lim inf
n→∞ n

∫
Pn(T |q)dq > 0 and n

∫
Pn(T |q)dq → 0 (A.7)
N(q) [0,1]\N(q)
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(see Mandler, 2010, proof of Theorem 7, and the proof of the Lemma). Hence, for large n, Bn
α((v0

i (n), v1
i (n))i=α,β) = {(0,1)} if

q > q∗ (since then g1(q) > g0(q)) or Bn
α((v0

i (n), v1
i (n))i=α,β) = {(1,0)} if q < q∗ (since then g0(q) > g1(q)). In either case, we

have a violation of interiority. To finish, we show that 〈(v0
i (n), v1

i (n))i=α,β 〉 cannot have an accumulation point (v0
i , v1

i )i=α,β

that is not interior. First if (v0
i , v1

i )i=α,β were to satisfy v0
α − v1

α = θ∗
α −ε then, letting q denote q̃(v0

α − v1
α, v0

β − v1
β), property

(i) implies that q < q∗ . But then, since (A.7) again obtains and since g0(q) > g1(q), Bn
α((v0

i (n), v1
i (n))i=α,β) = {(1,0)} for n

sufficiently large, contradicting the assumption that v0
α − v1

α = θ∗
α − ε. The case where v0

α − v1
α = θ∗

α + ε proceeds similarly.
Finally if v0

α − v1
α ∈ (θ∗

α − ε, θ∗
α + ε) and v0

β − v1
β = 1 − δ, then 1 �β 0 for the relevant subsequence. Hence, by the Lemma,

1 �α 0, violating the assumption that v0
α − v1

α ∈ (θ∗
α − ε, θ∗

α + ε). �
Proof of Proposition 2. Let 〈(v0

i (n), v1
i (n))i=α,β 〉 be the assumed sequence.

(I) We first show that (i) if q∗ is a I0,1 intersection then v1
α(n) > v1

β(n) and v0
β(n) > v0

α(n) for all large n and (ii) if q∗ is

a I1,0 intersection then v0
α(n) > v0

β(n) and v1
β(n) > v1

α(n) for all large n. We prove (i) and leave (ii) to the reader.
Partition the sequence into subsequences for which 1 �β 0 obtains or for which 0 �β 1 obtains. In the first case then, by

the Lemma, 1 �α 0, and so v1
α(n) = 1 for all large n. But since q∗ is a critical signal bias for the sequence, limn→∞ v1

α(n) �=
limn→∞ v1

β(n), and so v1
β(n) < 1 for large n. So, for large n, v1

β(n) < v1
α(n) and hence v0

β(n) > v0
α(n). If 0 �β 1 obtains then

v1
β(n) = 0 for large n and, since limn→∞ v1

α(n) �= limn→∞ v1
β(n), we have v1

α(n) > 0 for large n. Thus v1
β(n) < v1

α(n) and

hence v0
β(n) > v0

α(n) for large n.

(II) As shown in the proof of the Lemma, the fact that v0
α(n)q∗ + v0

β(n)(1 − q∗) → v1
α(n)q∗ + v1

β(n)(1 − q∗) implies

(
v0
α(n)q + v0

β(n)(1 − q)
) − (

v1
α(n)q + v1

β(n)(1 − q)
) → (

v0
β(n) − v1

β(n)
)(

1 − q

q∗

)
.

So, given q and ε > 0, the law of large numbers implies that the probability that the difference between the proportion of
the population that votes for 0 and the proportion that votes for 1 is within ε of limn→∞(v0

β(n) − v1
β(n))(1 − q

q∗ ) converges

to 1 as n increases. With a q∗ that is a I0,1 intersection, (I) showed that v1
β(n) < v1

α(n) and v0
β(n) > v0

α(n) for all large n.

So if limn→∞(v1
β(n) − v0

β(n)) � 0 then limn→∞(v1
α(n) − v0

α(n)) � 0; since if either statement holds with strict inequality we

have a violation of potential closeness at q∗ and if equality holds for both then limn→∞ v0
α(n) = limn→∞ v0

β(n) implying that

q∗ would not be a critical signal bias, it must be that limn→∞(v0
β(n)− v1

β(n)) > 0. Since therefore limn→∞(v0
β(n)− v1

β(n))×
(1 − q

q∗ ) is decreasing in q and equals 0 only when q = q∗ , the probability that 1 wins approaches 1 when q > q∗ and the

probability that 0 wins approaches 1 when q < q∗ . Similarly if q∗ is a I1,0 intersection then limn→∞(v0
β(n) − v1

β(n))(1 − q
q∗ )

is increasing in q. And so the probability 0 wins approaches 1 when q > q∗ and the probability 1 wins approaches 1 when
q < q∗ . �
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