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DISTRIBUTIVE JUSTICE FOR BEHAVIOURAL WELFARE

ECONOMICS∗

Michael Mandler

The incompleteness of behavioural preferences can lead many or even all allocations to qualify as Pareto
optimal. But the incompleteness does not undercut the precision of utilitarian policy recommendations.
Utilitarian methods can be applied to groups of goods or to the multiple social welfare functions that
arise when individual preferences are incomplete, and policymakers do not need to provide the preference
comparisons that individuals are unable to make for themselves. The utilitarian orderings that result, although
also incomplete, can generate a unique optimum. Non-separabilities in consumption reduce this precision but
in all cases the dimension of the utilitarian optima drops substantially relative to the Pareto optima.

Economic models of irrational decision-making increasingly interpret an individual who fails to
choose consistently as a set of agents acting at different frames. An individual whose value for a
good depends on his endowment is seen as a set of preference relations, one for each endowment
(Tversky and Kahneman, 1991). A hyperbolic discounter becomes a set of agents that apply
discount rates that depend on the date they choose (Laibson, 1997). But when individuals are
viewed as sets of agents, it is no longer clear how to define their welfare. The most popular
approach has been to narrow the set of welfare judgements for an individual to a behavioural
preference that all versions of the individual agree on (Bernheim and Rangel, 2007; 2009,
Mandler, 2004; 2005, Salant and Rubinstein, 2008). When the frame-based versions of individual
i disagree about how to order x and y then i is declared to not have a preference between x
and y: the behavioural preference for individual i is incomplete. This incompleteness can lead
Pareto optimality to become highly indecisive. In an economy of individuals with incomplete
behavioural preferences, the Pareto optima can form a vast set of the same dimension as the entire
set of allocations (Mandler, 2014). Every allocation in the neighbourhood of an optimum will be
another optimum and the characteristic lessons of policy analysis break down: if an economy’s
initial allocation is Pareto optimal and a small externality is introduced the allocation will remain
optimal. In some cases every allocation will be Pareto optimal.

This article argues that maximising the sum of utilities—the second-most popular welfare
criterion—can close the decisiveness gap. Standard utilitarian models cannot make this case, since
they require completeness, but the construction offered here shows how to make interpersonal
comparisons of utility when preferences are incomplete. Utilitarianism’s dependence on complete
preferences has in any event left it in a precarious position: preferences presumably display
incompleteness in at least a corner of their domain.

Individuals will have utilities for groups of goods though these utilities can take the con-
sumption of goods in other groups as arguments. Individuals however do not take a decisive
stand on how to aggregate these group utilities: their attitudes to aggregation can depend on
their decision-making frames, leaving their behavioural preferences incomplete. For example, an

∗ Corresponding author: Michael Mandler, Department of Economics, Royal Holloway College, University of London,
Egham, Surrey, TW20 0EX, UK. Email: m.mandler@rhul.ac.uk

This paper was received on 19 December 2017 and accepted on 7 January 2019. The Editor was Martin Cripps.

Let me thank Martin Cripps and the four thoughtful referees who led me to rethink the foundations of this article.

[ 1140 ]

mailto:journals.permissions@oup.com
mailto:m.mandler@rhul.ac.uk


2020] behavioural welfare economics 1141

individual might have von Neumann-Morgenstern utilities for the goods delivered at particular
states but use different probabilities to weight these utilities as the decision-making frame varies.

The planner meanwhile follows classical utilitarian guidelines: for each group of goods,
the planner judges how the utility functions of different individuals for that group should be
aggregated. The planner can, but does not have to, fill in individuals’ incomplete preferences: a
solution to the decisiveness problem would be vacuous if a planner has to impose the preference
judgements individuals themselves are unable to supply.

If the planner comes equipped with a full set of judgements, both across individuals and across
groups for single individuals, then as in classical utilitarianism a single objective function will rule.
Less dictatorial planners can make interpersonal comparisons of utility for each group of goods via
a utilitarian objective function and judge allocation x to be superior to y only if all of these objective
functions recommend x over y. The resulting ‘utilitarian superiority’ ordering will be incomplete
but it does not lead to a large set of optima. I first show that when the individuals’ utilities for
any group depend only on the consumption of the goods in that group —‘separability’—and
are strictly concave, there is a unique utilitarian optimal allocation. In practice, advocates and
policymakers presume separability when they debate policy questions; arguments about, say,
public health expenditures are rarely conditioned on individuals’ consumption of other goods.

When separability is not satisfied, there can be multiple utilitarian optima but the set of optima
has measure 0 and a dimension that never rises above the number of goods minus 1. Utilitarianism
thus escapes the extreme dimensional expansion of the Pareto optima that behavioural preferences
induce. The dimension of the utilitarian optima in fact compares favourably with the dimension
of the Pareto optima in a complete preference model.

These results illustrate the broader principle that Pareto optimality delivers sharp advice only
in artificial settings—such as a general equilibrium model where the policymaker has certain
knowledge of the economy’s primitives—while utilitarian methods remain decisive in a wide
array of modelling environments. Even a little preference incompleteness is enough of a wedge
for this usefulness disparity to appear.

The utilitarian project is hardly trouble-free. A utilitarian planner must compare the utilities of
different individuals and come to a normative judgement as to who gains the most from an extra
increment of a good. But the difficulty of making these comparisons is made neither harder nor
easier by preference incompleteness.

Though formal models of utilitarianism assume complete preferences, the classical utilitarians
from the beginning recognised the difficulty individuals face in comparing different types of
satisfaction. John Stuart Mill (1863) famously acknowledged the diversity of kinds of pleasure
and the early neoclassical economists recognised that individuals waver in their appraisal of
present versus future consumption and the costs of uncertainty. The presence of conflict within
individuals did not however undermine the utilitarians’ confidence that marginal utility diminishes
and is interpersonally comparable. This article models exactly this combination of positions:
individuals who do not weight groups of goods consistently and planners that can nevertheless
judge how goods should be distributed across individuals.

The present reformulation of utilitarianism clarifies the Sen (1979; 1986) charges against ‘wel-
farism’, the doctrine that social decisions should be a function only of individual welfare levels
rather than the social and psychological content of the policy options. For a welfarist, the details
of content matter only insofar as they feed into individual utility levels. Incomplete preferences
fit with Sen’s view since then there are no utility numbers that represent the whole of an indi-
vidual’s welfare: the raw material of welfarism is missing. The present version of utilitarianism
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lets deliberation about interpersonal comparisons proceed autonomously in different domains;
decisions about, say, education can draw on the particulars of how schooling affects individual
lives while decisions about the environment can depend on the specifics of that sphere. Though
Sen suggests that utilitarianism must rely on welfarist foundations, the present version does not.

The final part of the article addresses the fact that utilitarian optimal allocations will sometimes
fail to be Pareto optimal. From a strict utilitarian perspective, Pareto suboptimality does not
present a problem: utilitarian judgements should trump individual judgements. More helpfully,
I will show that as the extent of individual preference incompleteness increases, the potential
for conflict between utilitarian and Pareto optimality disappears. For sufficiently incomplete
preferences, utilitarian optima are sure to be Pareto optimal.

When utility is non-separable—the utility for one group of goods is potentially affected by
consumption of all of society’s goods—calculation of the dimension of the optima presents
technical challenges. By interpreting each of the sums-of-utilities that the planner takes as goals
as the utility function of a hypothetical agent, the utilitarian optima can be understood as the
Pareto efficient allocations of an economy composed of these hypothetical agents. Smale’s (1974)
concept of an isolated community, which I will adapt to groups of goods rather than individuals,
then provides just the right mathematical tool. Though some hurdles must be cleared, due to the
twist that each of the hypothetical agents can experience an externality from the consumption
levels of the other hypothetical agents, one message of this article is that this old general
equilibrium machinery is fruitful for a topic as far-flung as utilitarianism with behavioural
preferences.

Several papers address the problem of how to make welfare decisions in the presence of
behavioural preferences. Like this article, Kahneman et al. (1997) applies a utilitarian rather
than a Paretian approach. Fleurbaey and Schokkaert ([FB] 2013) and Apesteguia and Ballester
([AB] 2015) both recognise the danger of indecisiveness that accompanies a Paretian ban on any
policy that overrules the observable choice of any individual. FS offers methods for distributive
decision-making compatible with incomplete preferences while AB proposes brokering among
the conflicting preferences that individual behaviour reveals. List (2004) provides a general social-
choice setting that incorporates individuals with incomplete (‘multidimensional’) preferences.
Danan et al. (2015) and Argenziano and Gilboa (2019) propose versions of utilitarianism when
preferences are incomplete. In most of the above work, social welfare judgements are posited,
whereas in this article they are built from comparisons of individual satisfaction, as in Edgeworth
and Marshall. Moreover our main target is the size of the set of optima, which has not been the
focus of preceding research.

1. Behavioural Preferences and Pareto Optima

An individual has preferences that depend on how decision-making is framed, for example by
the date the individual chooses or the individual’s endowment. Let f denote a frame, drawn from
a set of frames F , let X be the domain of alternatives, and let �f be the preference that rules at f
which we assume is transitive and weakly increasing.1

DEFINITION 1. The behavioural preference �, a binary relation on X, is the unanimity
ordering of the frame-based preferences: x � y if and only if x � f y for all f ∈ F .

1 A preference � is weakly increasing if x � y implies x � y and not y � x.
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Fig. 1. A Behavioural Preference with Multiple Supporting Prices.

As usual strict preferences � are defined by x � y ⇔ (x � y and not y � x). So x � y obtains
if at every frame x is weakly preferred to y and for at least one frame x is strictly preferred to y:
x is a Pareto improvement over y for the individual’s frame-based selves.

The status quo, the most common frame, can induce an endowment effect or status quo bias
where individuals agree to move away from their ex ante allocation only if offered a substantial
reward. An individual that begins with the status quo endowment e in Figure 1 has a frame-based
preference �e that judges a drop in good 1 consumption to the level at x to require a large
increase in good 2 as compensation. If instead the individual has the status quo endowment e′

then a drop in good 2 consumption to the level at x requires a large increase in good 1.2 As
the figure illustrates, the individual will then exhibit indifference curves at different frames that
cross.

However the diversity of frames behind Figure 1 arises, the behavioural preference � labels
the bundles to the northeast of both indifference curves to be �-superior to x and the bundles to
the southwest of both indifference curves to be �-inferior to x. The remaining bundles such as z
are unranked relative to x: the preference is incomplete. The kink in the set of �-superior bundles
that results is characteristic.

Beyond the Pareto rationale that no frame-based preference should be overruled, behavioural
preferences can be given positive explanations. If the state of nature determines the benefits
delivered by goods the individual is not sure how to value then the individual’s decision-making
frame can be viewed as a probability distribution and the Aumann (1962) and Bewley (1986)
theory of multiple priors becomes a model of multiple frames. The operative prior can vary with
the individual’s endowment or mood or other factors, and the preference judgements backed
by all of an individual’s priors determine a � that can display phenomena like status quo
bias.

2 See Kahneman et al. (1990), Knetsch (1989), Samuelson and Zeckhauser (1988), and Thaler (1980).
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A multiple priors model of behavioural preferences. An individual consumes a bundle of
goods xs ≥ 0 at state s and x = (xs)s∈S overall, whereS is a finite set of states. Each xs is evaluated
by the von Neumann-Morgenstern utility us and a frame f ∈ F is a probability distribution π f

over S . The agent at frame π f therefore has a preference �f defined by:

x � f y if and only if
∑
s∈S

π f
s us(xs) ≥

∑
s∈S

π f
s us(ys).

The behavioural preference � that results is then given by Definition 1 and its upper contours
will be kinked.3

For status quo bias, let the first of two goods at state s have uncertain value and suppose utility
at state s equals:

us(xs(1), xs(2)) = γsv1(xs(1)) + v2(xs(2)),

where γ s is the realisation of the uncertain good’s benefit at state s. If when the endowment of
good 1 is large the agent’s frame π f assigns high probability to the states s where γ s is large then
the agent will display endowment-driven status quo bias. For the two-dimensional domain where
consumption is state-independent, the kinked upper contours will resemble those in Figure 1.
The overlap of the indifference curves that hold at different frames/priors indicates that � is
incomplete.

In Aumann (1962) or Bewley (1986), the individual entertains all priors in F simultaneously
and x � y holds only if x defeats y at every prior. Here each prior is interpreted as a decision-
making frame. �

With a judicious definition of states, the multiple priors model can cover many different
behavioural influences on preferences, for example, mood-driven variations in the extent of
diminishing marginal utility or risk aversion. These influences are embedded in an individual’s
cardinal vNM utilities while the frame affects only the probability weights on the utilities.

The weights that vary by frame need not be probabilities and individuals do not, even hy-
pothetically, have to foresee the possible frames. With hyperbolic discounting, the utilities are
defined on dated goods and the weights are the discount rates that agents apply to future utility.

Hyperbolic discounting. An individual consumes at several time periods, dates 1 through 3
for concreteness. A consumption bundle is then a x = (x1, x2, x3) ≥ 0 where each xi consists
of � goods. The frame is the date t = 1, 2, 3 at which decisions are made. Under hyperbolic
discounting, for each t the preference �t of the date-t decision-maker can be represented by the

3 So x � y if and only if:

∑
s∈S

π f
s us (xs ) ≥

∑
s∈S

π f
s us (ys )

for all f ∈ F , or, equivalently,

∑
s∈S

π̃sus (xs ) ≥
∑
s∈S

π̃sus (ys )

for all π̃ = ∑
f ∈F α f π f with (α f ) f ∈F ≥ 0 and

∑
f ∈F α f = 1 (assuming F is finite). We can therefore think of the

individual as having a decision-making frame for each convex combination of the π f.
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utility function ut : R(4−t)�
+ → R defined by:

u1(x) = u(x1) + β
(
δu(x2) + δ2u(x3)

)
,

u2(x) = u(x2) + βδu(x3),

u3(x) = u(x3),

where u : R�
+ → R is the agent’s concave within-period utility and β and δ lie in [0, 1].

Consumption prior to t has already occurred for the date t agent and that agent consequently
chooses only among bundles that specify the same consumption from 1 to t − 1. Since almost
every pair of bundles specifies different values of x1 and only the date 1 agent can reveal a
preference between such pairs, there is virtually no conflict among the dated versions of the
individual.

To give the model some bite, we restrict the domain by letting one time period pass with
x1 consumed and consider the individual’s preferences over the remaining two goods yet to
be consumed, i.e., over the set X = {x : x1 = x1}. The dates 1 and 2 agents have complete
preferences over X represented by the utilities u1(x1, ·, ·) and u2 respectively. For x and y in X
with x2 �= y2, the preferences of the date 3 agent are irrelevant (since again that agent does not
choose from such pairs). Following Bernheim and Rangel (2009), the behavioural preference �
consists of the preference judgements that the individual’s multiple selves agree on: setF = {1, 2}
and, for the pairs x, y ∈ X such that x2 �= y2, define � by Definition 1.

As in the multiple priors model, � will be incomplete and its upper contour sets will display
kinks. Figure 1 pictures the case where � = 1. �

In a society where a typical individual i has one of the behavioural preference relations �i we
have considered, the set of Pareto optima will expand markedly relative to a classical economy.
The kinks in the sets of bundles �i-superior to an arbitrary reference bundle imply that an
interval of prices supports the reference bundle: for x in Figure 1, the boundaries of this interval
are p and p′. Given a Pareto optimal allocation (x1, ..., xI) for a society of I individuals, the
second welfare theorem implies there will be a common supporting price vector: the individuals’
price intervals intersect. If moreover the intersection is robust in that one of these supporting
price vectors, for example p in Figure 1, does not lie on the boundary of any individual i’s
interval and if the boundaries of each i’s interval varies continuously with xi then, as (x1, ..., xI)
changes slightly, the intervals of supporting prices will continue to intersect. By the first welfare
theorem, the new allocation must be Pareto optimal too. The Pareto optimal allocations with
these properties therefore have the same dimension as the entire set of allocations and hence have
positive (Lebesgue) measure.4

THEOREM 1 (MANDLER 2014). If the Pareto optimum (x1, ..., xI) has a common supporting
price vector p such that, for each individual i, p lies in the interior of the set of prices that support
xi and i’s set of supporting prices varies continuously in the allocation then any allocation
sufficiently near x is Pareto optimal.

The expansion of the Pareto optima is the problem this article addresses.

4 To qualify as an allocation, there can be no disposal of goods. Throughout the article, ‘dimension’ refers to the
dimension of C0-manifolds with boundary.
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2. Classical Utilitarianism

Classical utilitarianism, most importantly Edgeworth (1881), argued that the incremental or
marginal value of resources to individuals should be equalised: a shift of a resource from agents
with low marginal values for the resource to agents with high marginal values leads to an
improvement. Though their discussions of measurement were casual, the classicals understood
that a rescaling of units of pleasure or utility would not (and should not) change any ranking of
allocations.

We use the following measurement terminology throughout the article.5 If u : Y → R is a
function and a and b are real numbers, let au + b denote the function h : Y → R defined by
h(y) = au(y) + b for all y ∈ Y. Define Û to be a cardinal selection from a Cartesian product of
sets of real-valued functions U = U 1 × ... × U n if there is a u = (u1, ..., un) ∈ U such that, for
all û ∈ U ,

û ∈ Û ⇐⇒ there exist real numbers a > 0, b1, ..., bn such that û i = aui + bi for i = 1, ..., n.

If both u and û lie in the same cardinal selection then the ‘units’ of the functions in û share
a common rescaling relative to the functions in u: each û i is rescaled from ui using the same
constant a. Viewing each ui as a utility, the ratios of utility increments (or marginal utilities) are
consequently preserved across u and û drawn from the same cardinal selection:

û i (x) − û i (y)

û j (w) − û j (z)
= ui (x) − ui (y)

u j (w) − u j (z)

for all i and j and bundles x, y, w, and z. The constancy of this ratio implies two different types
of decisiveness, both of which will be important. If i and j represent individuals, a utilitarian
planner with a cardinal selection can decide which individual’s utility change is greater. If i and j
denote groups of consumption goods for a single individual then that individual or a planner can
decide which of the group utility changes is greater. As we will see, a planner can be decisive in
the first sense even when an individual or planner fails to be decisive in the second sense.

Individuals will be endowed with one or more sets of utilities. A set of utility functions Ui is
cardinal if there is a ui : Y → R such that Ui equals ui and its increasing affine transformations:
for all û i : Y → R,

û i ∈ U i ⇐⇒ there exist real numbers a > 0 and b such that û i = aui + b.

Throughout the article, individuals will be indexed by the finite set I = {1, ..., I } and goods
by the finite set L = {1, ..., L}, a consumption for individual i is a xi = (xi(1), ..., xi(L)), and an
allocation is a profile x = (x1, ..., x I ) ∈ RI L

+ of consumptions for each individual. A superscript
attached to an object will now indicate the individual associated with that object, e.g., �i for
individual i’s behavioural preference.

In the usual complete preferences understanding of classical utilitarianism, an individual i ∈ I
is described by a cardinal set of utilities Ui, where each ui ∈ Ui is a utility function on bundles
of L goods. A classical utilitarian planner decides on a cardinal selection Û from U1 × ... × UI

and judges allocation x to be weakly superior to y if, for any (and therefore all) (u1, ..., un) ∈ Û ,∑
i∈I ui (xi ) ≥ ∑

i∈I ui (yi ). This ‘weak superiority relation’ is complete: for any pair x, y ∈ RI L
+

either x is weakly superior to y or y is weakly superior to x. If we specify a feasible set of

5 The following account follows the tradition of modelling measurement via sets of utilities. See Sen (1970),
d’Aspremont and Gevers (1977), Roberts (1980), Bossert and Weymark (2004).
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allocations {x ∈ RI L
+ :

∑
i∈I xi (k) ≤ e(k) for k ∈ L}, where e(k) is society’s endowment of good

k, and if, for each individual i, some and therefore every ui in Ui is strictly concave and continuous
there will be exactly one utilitarian optimum.

When individual preferences are even a ‘little’ incomplete, the starting point of this stan-
dard model of utilitarianism, the Ui, will be missing. One task ahead is to fill this void.
As it happens, the classical utilitarians did not suppose that individuals had a global util-
ity assessment of all possible alternatives and so the overhaul applies to their theories
too.

3. Utilitarianism with Behavioural Preferences

To extend utilitarianism to behavioural or other forms of incomplete preferences, we begin
with individuals who derive satisfaction separably from disjoint groups of goods. For the early
neoclassical economists, each good formed a group while in expected utility theory and in
most intertemporal models, the goods delivered at a particular state or date form separable
groups.

Suppose each individual can specify a set of utility functions for each group—in most appli-
cations a cardinal set of utilities. In expected utility theory these functions would consist of the
increasing affine transformations of the vNM utility us that holds at a particular state s. As in a
complete preferences model, the planner takes these sets as data but now for every individual
there is one set for each group of goods. If an individual i weights the utilities of groups differently
at the various frames then the behavioural preference �i that results will be incomplete: i cannot
pin down a cardinal selection from the utilities of the different groups. But since individuals are
endowed with utilities for any group g, a utilitarian planner can compare the utilities of different
individuals for group g and make a cardinal selection from these utilities. If anything, it should
be easier to compare the utilities of individuals for a group of goods than for all goods. Insofar
as the individual utilities for groups are cardinal, the planner will be following the classical
playbook.

The planner can in addition, but does not have to, make comparisons of an individual’s utilities
for different groups. With or without these further comparisons, there will be a unique utilitarian
optimum. For dictatorial planners ready to make utility comparisons across all individuals and
groups, this result reproduces Edgeworth’s conclusions and his reasoning. For more cautious
planners, the result shows that decisive policymaking does not require an imposition of the
inter-group comparisons that individuals find problematic.

3.1. Individual Utilities and Preferences

Formally, a group g is a subset of the set of goods L and the set of groups G is a partition of L
with G cells. Each individual i is endowed with a set of utility functions V i

g for each group g ∈ G,
where each vi

g ∈ V i
g maps RL

+ to R and indicates i’s utility for goods in g. Expected utility theory
furnishes the canonical example: if we associate a state s with the group g of contingent goods
delivered at s then the functions in V i

g are the von Neumann-Morgenstern cardinal utilities for

these goods (or equivalently vNM utilities multiplied by a probability of state s). Let xi
g ∈ R|g|

+
denote i’s consumption of the goods in g and xi (k) ∈ R+ denote i’s consumption of good k.

The utilities of individual i for the groups are aggregated into a behavioural preference by a
(not necessarily cardinal) selection V i ⊂ V i

1 × ... × V i
G with typical element vi = (vi

1, ..., vi
G).
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Any vi ∈ V i defines a utility function
∑

g∈G vi
g on RL

+ that weights i’s utilities for groups and
represents one of i’s complete frame-based preferences �i

f .6

Each
∑

g∈G vi
g formed from a vi ∈ V i or the �i

f it represents is an equally legitimate way for
i to evaluate bundles and i therefore prefers xi to yi only when all of these objective functions
concur. Define V i to generate the behavioural preference �i on RL

+ when:

xi �i yi ⇐⇒
∑
g∈G

vi
g(xi ) ≥

∑
g∈G

vi
g(yi ) for all vi ∈ V i .

If V i is a cardinal selection from V i
1 × ... × V i

G , then {∑g∈G vi
g : vi ∈ V i } forms a cardinal set

of functions and the �i that V i generates will be complete. But when V i consists of a larger set of
functions (in the extreme, all of V i

1 × ... × V i
G), individual i backs conflicting ways of weighting

the group utilities. The frame-based preferences then conflict and the �i that V i generates will
be incomplete. For example, if �i is a behavioural preference for the multiple priors model then,
as vi ∈ V i varies, the probabilities implicit in the expected utility function

∑
g∈G vi

g will vary as
well. In all cases, �i will be transitive.

Though it plays no formal role, it is natural to associate each decision-making frame f with a
cardinal selectionV i

f ⊂ V i
1 × ... × V i

G interpreted as a representation of the complete preferences
�i

f that hold for the individual at f: xi �i
f yi ⇔ ∑

g∈G vi
g(xi ) ≥ ∑

g∈G vi
g(yi ) for all vi ∈ V i

f .
Each V i would then equal a union of cardinal selections from V i

1 × ... × V i
G and xi � iyi obtains

if and only if the utilities that can be constructed from the V i
f ’s all judge xi to be superior to yi.7

Utilities satisfy separability relative to G when each vi
g ∈ V i

g can vary only with respect to

i’s consumption of the goods in g: for any g ∈ G and xi
g ∈ R|g|

+ , vi
g ∈ V i

g must be constant on
{yi ∈ RL

+ : yi
g = xi

g}.8 In the absence of separability, the consumption levels of the goods in non-g
groups can be complements or substitutes for the g goods.

To illustrate how the V i
g sets of utilities, the frame-based preferences �i

f , and �i interrelate and
to see how the V i

g can be inferred from behaviour, we return to the multiple-priors and hyperbolic
discounting models. The utilities in both satisfy separability.

Multiple priors redux. An agent with von Neumann-Morgenstern utility ui
s(xs) at state s ∈

S = {1, ..., S} chooses at various frames f where each f ∈ F i is a probability π f on S .
Each group g ∈ G consists of the goods delivered at some state s ∈ S and so we identify G

with S . To adjust the domain of the utilities to equal the entire set of goods, define vi
s : RL

+ → R
by vi

s(x) = ui
s(xs) for each s. A V i

s then equals the cardinal set of functions that contains vi
s .

Separability is satisfied. Since a decision-making frame f is a probability π f, the individual’s

6 I have assumed that the �i
f are represented by sums of vi

g’s to fit with the expected utility and intertemporal
preference models and with the Jevons-Marshall tradition. The assumption brings only a modest loss of generality in
terms of the �i’s that can be generated: for example any �i with a utility representation, whether additive or not, can be
generated by some V i . See Appendix A.

7 A V i that does not equal a union of cardinal selections
⋃

f V i
f would weaken the frame interpretation but otherwise

have no effect. Such a V i deletes some vi’s from some V i
f ’s without changing the �i that

⋃
f V i

f represents.
8 Although I call this assumption ‘separability’ for brevity, it is a restriction on the operative domain of each vi

g .

The link to standard usage is that the assumption implies that the
∑

g∈G vi
g functions, which collectively represent �i,

will satisfy ‘additive separability’ in Gorman (1959) or ‘groupwise separability’ in Jorgenson and Lau (1975). Since �i

might not have a utility representation, however, none of the preference definitions of separability apply to �i. I reserve
‘additive’ for functions equal to a sum of group utilities that do represent a preference.
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frame-based preference �i
f is represented by the cardinal selection from V i

1 × ... × V i
S given by:

V i
π f =

{(
aπ

f
1 vi

1 + b1, ..., aπ
f

S vi
S + bS

)
: a ∈ R++ and b1, ..., bS ∈ R

}
.

The multiple-priors behavioural preference �i is then generated by the selection V i =⋃
π f ∈F i V i

π f .
The V i

s can be inferred from individual i’s preferences over lotteries with objective probabilities.
Alternatively, each vi

s and hence each V i
s can be deduced from the expected utility representations

of the �i
f that holds at one of the frames π f. �

Hyperbolic discounting redux. At dates 1 and 2, which are the frames, an individual i has
preferences �i

1 and �i
2 on the domain X (defined in Section 1) that are represented by the

utilities ui
1(x) = ui (x2) + δui (x3) and ui

2(x) = ui (x2) + βδui (x3). The two groups are the goods
that appear at dates 2 and 3 respectively.

Let a group t utility for t = 2, 3, vi
t : X → R, be defined by vi

t (x
i ) = ui (xi

t ) and set V i
t to equal

the cardinal set of functions that contains vi
t . Separability is again satisfied. The frame-based

preferences �i
1 and �i

2 are represented by the cardinal selections:

V i
1 = {(

avi
2 + b2, a

(
δvi

3

) + b3
)

: a ∈ R++ and b2, b3 ∈ R
}

and

V i
2 = {(

avi
2 + b2, a

(
βδvi

3

) + b3
)

: a ∈ R++ and b2, b3 ∈ R
}

,

and V i = V i
1 ∪ V i

2 generates the hyperbolic behavioural preference �i.
Both V i

2 and V i
3 can be inferred from the additive representations of either �i

1 or �i
2. �

Finally, in the less formal early neoclassical model each group consists of a single good and
utilities again satisfy separability: for each good k, the utilities in V i

{k} vary only with respect to
xi

{k} = xi (k). Individuals may not know how to weight the utilities of goods, a difficulty recognised
by J.S. Mill, and may therefore adopt different weights on the vi

{k} and thus different cardinal
selections as circumstances vary. Each selection in effect defines a frame-based preference.

3.2. Social Welfare

Our utilitarian planner takes as data a set of utilities V i
g for each individual i and group g.

Just as a classical utilitarian selects interpersonally comparable utilities for individuals, the
planner selects interpersonally comparable utilities for individuals for each group g. These
utilities form a cardinal selection from V 1

g × ... × V I
g , denoted Wg . A typical element of Wg

is a vector vg = (v1
g, ..., v I

g ), a group g utility for every individual i. Each Wg defines a group
g utilitarian ordering that deems allocation x weakly superior to y if, for any and hence
all vg ∈ Wg ,

∑
i∈I vi

g(xi ) ≥ ∑
i∈I vi

g(yi ). Each
∑

i∈I vi
g is substantively and mathematically a

classical utilitarian objective function.
The planner may also compare an individual’s utilities across groups. All of the planner’s

judgements taken together are given by a selection W ⊂∏
(g,i)∈G×I V i

g that places individual and
group comparisons on the same footing: a vector of functions in W , denoted v = (vi

g)(g,i)∈G×I ,
lists a utility vi

g for each group-individual pair (g, i). The selection W must be compatible with the
Wg: we require for each g that the projection of W onto V 1

g × ... × V I
g equals Wg . Comparisons

of individual utilities across groups thus do not dilute the planner’s within-group comparisons
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of individual utilities, in line with the classical utilitarian position that individuals’ vacillations
about the worth of goods do not undermine interpersonal comparisons.

The model gives the planner wide latitude to embrace or abstain from comparisons of an
individual’s utilities for groups. At the abstention end of the spectrum, a planner refrains from all
across-group comparisons when, for every v ∈ W and (λ1, ..., λG) � 0, there is a v ∈ W such that
vg = λgvg for all g, and we then say the planner or W is group agnostic. At the opposite pole, a
W is dictatorial if it is a cardinal selection: W then imposes a single relative weighting of each
individual’s utilities for groups. If there is just one group, planners are necessarily dictatorial.
But when there is more than one group, planners have good reason not to go to the dictatorial
extreme: they may be stymied by the same decisions that individuals cannot resolve consistently
for themselves. A planner’s judgement that the marginal utility of a group of goods is higher
for the poor than for the rich need not make it any easier to decide which types of goods and
pleasures deserve priority. Planners may also want to respect individuals’ equivocations about
how groups of goods should be weighed. 9

Each v ∈ W defines a welfare function
∑

(g,i)∈G×I vi
g which can also be written as∑

i∈I
∑

g∈G vi
g , the sum across individuals i of one of the utilities that W assigns to i.10 For

the early neoclassical economists, adding individual utilities to form social welfare functions
was an assumption; for choice under uncertainty, the Harsanyi (1955) aggregation theorem and
specifically Hammond (1981) provide rationales.11

Each of the
∑

(g,i)∈G×I vi
g objective functions represents a complete ordering and thus can

compare any pair of allocations. And each
∑

(g,i)∈G×I vi
g gives classical utilitarian advice: welfare

increases when the goods in some group g′ are transferred from an agent i with low marginal
utility for these goods to an agent j with high marginal utility. But when the planner’s W inherits
the inability of the �i to rank alternatives the various welfare functions to which W leads can
rank allocations differently. For example if x is an improvement over y with respect to the group
g utilitarian ordering but a worsening with respect to the g′ ordering and W is group agnostic
then the welfare functions for v ∈ W that assign large weight to the group g utilities will approve
a move from y to x while the welfare functions for v ∈ W that heavily weight g′ will reject the
move. Due to this diversity, we require unanimous consent before declaring an allocation to be
an improvement. Letting e = (e1, ..., eG) ≥ 0 be the economy’s endowment of groups of goods,
an allocation x is feasible if it lies in {x ∈ RI L

+ :
∑

i∈I xi ≤ e}.
DEFINITION 2. Allocation x is utilitarian superior to y if

∑
(g,i)∈G×I vi

g(xi ) ≥∑
(g,i)∈G×I vi

g(yi ) for all v ∈ W and strict inequality holds for at least one v ∈ W , and is a
utilitarian optimum if x is feasible and there is no feasible y that is utilitarian superior to x.

9 While I have described planners as beginning with individual welfare comparisons—theWg—they can also construct
W’s in one integrated step. The sequential view more closely resembles Edgeworth (1881) where the case for redistributing
resources to high marginal utility individuals applies to any resource or ‘means’ that can generate pleasure. There is no
fiction of an aggregate consumption good in Edgeworth nor any claim that a single all-encompassing utility function
covers all sources of pleasure at all dates. Moreover the utilitarian optima are determined solely by the Wg when
separability holds rather than by all of W .

10 As in individual decision-making, it is natural to associate each frame f with a cardinal selection W f ⊂∏
(g,i)∈G×I V i

g and to assume that W equals the union
⋃

f ∈F W f . Any two v’s drawn from the same W f will then
lead to the same welfare function, up to affine transformation.

11 The probabilities in the utility representations in Hammond coincide across individuals. Since individual utilities in
this article are state-dependent (as in Hammond), we may let probabilities vary by individual, as we must when a change
in the vector of utilities drawn from W indicates only a change in the probability frames of the individuals.
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Though the caution of the unanimity requirement in Definition 2 will typically lead utilitarian
superiority to be incomplete, utilitarian optimality discriminates with precision. We put aside
optima that deliver the same utility levels by assuming that for each g the vi

g ∈ V i
g are strictly

concave on the goods in g.12

THEOREM 2. If separability is satisfied and, for each group g and individual i, each vi
g ∈ V i

g

is strictly concave on g and continuous then there is a unique utilitarian optimum.

PROOF. Fix some g ∈ G, y−g = (yi
g′)i∈I,g′∈G\{g}, and v ∈ W . For any i:∑

g′∈G
vi

g′(xi
g, yi

−g) = vi
g(xi

g, yi
−g) +

∑
g′ �=g

vi
g′(xi

g, yi
−g)

and, due to separability,
∑

g′ �=g vi
g′(xi

g, yi
−g) equals the same constant for all xi

g ≥ 0. Thus x′

solves maxx≥0
∑

i∈I
∑

g′∈G vi
g′(xi

g, yi
−g) s.t.

∑
i∈I xi ≤ e if and only if, for each g, x ′

g solves
maxxg≥0

∑
i∈I vi

g(xi
g, yi

−g) s.t.
∑

i∈I xi
g ≤ eg .

Due to continuity, there is a xg = (x1
g, ..., x I

g) that solves the latter problem and, due to strict
concavity on g, this solution xg is unique. Due to separability the solution does not depend
on the choice of y−g and, since the projection of W onto V 1

g × ... × V I
g equals a cardinal

selection, the solution does not depend on the choice of v ∈ W . Hence (x1, ..., xG) is the unique
optimum. �

If the planner is dictatorial, the proof above repeats the uniqueness reasoning of a standard
model of utilitarianism. Theorem 2 however places no restrictions on W beyond each Wg being
a cardinal selection: the planner can fall anywhere between the group agnostic and dictatorial
extremes. With group agnosticism, planners impose no comparisons of group utilities and utili-
tarian superiority reduces to the unanimity ordering of the group-by-group utilitarian orderings
(whether or not separability holds). Define allocation x to be group-unanimously superior to
y when

∑
i∈I vi

g(xi ) ≥ ∑
i∈I vi

g(yi ) for all g ∈ G and vg ∈ Wg with at least one strict inequality
and a group-unanimity optimum if x is feasible and no feasible y is group-unanimously superior
to x.

PROPOSITION 1. If W is group agnostic then the group-unanimity and utilitarian superiority
orderings coincide. For any W, any utilitarian optimum is a group-unanimity optimum.13

Proposition 1 underscores just how cautious the utilitarian superiority relation can be: when
W is group agnostic, a change in allocations must be recommended by every group utilitarian
ordering. In the multiple-priors model, for example, a change must deliver an improvement
for the group g utilitarian ordering even when the group g goods are associated with a highly
unlikely state. While cautious orderings ordinarily make it easier to declare allocations optimal
and therefore invite indecisiveness, Theorem 2 shows that under separability there is a unique
utilitarian optimum. Moreover any across-group comparisons that W does make end up being
irrelevant: the utilitarian optimum is the unique group-unanimity optimum.

Hyperbolic discounting continued. A society of individuals with the hyperbolic preferences
of Section 1 will have a large set of Pareto optima. Suppose for concreteness that there is one

12 Formally, vi
g : RL+ → R is strictly concave on g if, for all xi ∈ RL+, vi

g is strictly concave on {yi ∈ RL+ : yi (k) =
xi (k) for all k /∈ g}.

13 Omitted proofs are in Appendix B.
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good per time period, � = 1, which implies that each good is a group. If the feasible set F is

{x ∈ X
I

:
∑

i∈I xi
t ≤ et for t = 2, 3}, the dimension of the Pareto optima will equal 2(I − 1),

which is also the dimension of the frontier of F (the non-disposal points where the inequalities
that define F hold with equality). As explained in Section 1, each upper contour set for each �i

has a continuum of supporting prices, at a Pareto optimum these individual continua will intersect,
and the intersection will typically persist following any small adjustment in the allocation. By
the first welfare theorem, the new allocation must then also be Pareto optimal.

A utilitarian planner specifies for each t = 2, 3 a cardinal selection Wt from V 1
t × ... × V I

t ,
possibly supplemented by further intrapersonal comparisons of utility across goods. Assuming
each ui is strictly concave, there will be a unique distribution of each date-t good that is utili-
tarian optimal, found by maximising

∑
i∈I ui (xi

t ) subject to
∑

i∈I xi
t ≤ et and (x1

t , ..., x I
t ) ≥ 0.

Specifying the cardinal selection may present a normative challenge, but the difficulties should
be no more formidable than with complete preferences. �

3.3. Social Welfare: Non-separable Utilities

So far utilities have satisfied separability: each vi
g has varied only with respect to goods in group

g. Without this assumption there need not be a unique utilitarian optimum. For example, suppose
each good is a singleton group and that the utility of good 1 depends on the consumption of good
2 and vice versa while the utilities for other goods are functions only of their own consumption
levels. AssumingW is group agnostic, the utilitarian optima will coincide with the Pareto efficient
allocations of a society of hypothetical agents with the group g utilitarian orderings, one for each
g ∈ G (Proposition 1). Consequently there will typically be a one-dimensional set of utilitarian
optima for the economy that consists of just goods 1 and 2: given a pair

∑
i∈I vi

1 and
∑

i∈I vi
2 that

defines the groups 1 and 2 utilitarian orderings, the utility possibility frontier will normally be
one-dimensional just as the utility possibility frontier of a standard two-agent economic model
is one-dimensional. As there remains a unique optimum for the distribution of goods 3, ..., L, the
utilitarian optima for the economy of all L goods will also be one-dimensional.

As we will see, however, even in worst cases the size of the set of utilitarian optima compares
favourably with the size of the set of Pareto optima (as classically defined by the �i not by the
hypothetical agents above) both in terms of dimension and measure. Since the utilitarian optima
form a subset of the group unanimity optima (Proposition 1), we can use the group-unanimity
optima to bound the set of utilitarian optima. The above example lies far from the worst case: it
displays the minimum extent of non-separability in consumption and accordingly the dimension
of the group-unanimity optima expands modestly, from 0 to 1. The greatest expansion occurs
when, for each group g, the

∑
i∈I vi

g that represent the group g utilitarian ordering are non-trivial
functions of all L goods in the model and each good is its own group: the dimension of the
group-unanimity optima can then rise to G − 1 = L − 1. This case is similar but not identical
to a standard general equilibrium model where the dimension of the Pareto efficient allocations
would normally equal the number of individuals I minus 1. In our setting, the role of an individual
is played by a group g with the associated ‘utility’

∑
i∈I vi

g . The planner thus has G objective
functions which suggests that the dimension of the group-unanimity optima will be G − 1. But
while standard utilities are functions of different variables (the agents’ private consumptions) each∑

i∈I vi
g is potentially a function of all LI of the model’s consumption variables. Externalities in

effect appear since the goods that affect the ‘utility’
∑

i∈I vi
g can also affect the ‘utility’

∑
i∈I vi

g′ ,
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where g′ �= g. These externalities can reduce the dimension of the set of optima or even lead the
set to not have a well-defined dimension (to not be a manifold). Consequently Theorem 3 below
will provide only an upper bound on the dimension of the utilitarian optima.14 ‘Upper’ is the
bound of interest since we are interested in worst-case scenarios.

Dimension is neither the sole nor indisputable way to gauge the size of a set. Our result on
dimension, Theorem 3, will imply that the utilitarian optima also form a 0 (Lebesgue) measure
subset of society’s allocations. The Pareto optima in contrast can have positive measure as we
saw in Section 1. There are other yardsticks, however, for example the diameter of the set of
optima, that Theorem 3 will not address.

To bound the dimension of the group-unanimity optima and hence the utilitarian optima as
well, we will adapt the concept of an ‘isolated community’ from the general equilibrium theory of
Pareto efficiency (Smale, 1974). A classical isolated community is a minimal subset of individuals
that consumes only goods that individuals outside the community do not consume, for example
when community members and non-members have utilities that are increasing on disjoint sets
of goods. An ‘isolated basket’ will be a minimal set of groups of goods where for each group g
in the basket the vi

g can be non-trivial functions only of goods in the groups the basket contains.
Define h : RL

+ → R to be variable on good k if there is a pair x, y ∈ RL
+ such that x(l) = y(l) for

each l �= k and h(x) �= h(y). To avoid trivialities, we assume in this section that for every good k
there is an agent i and a group g such that each vi

g ∈ V i
g is variable on k.

DEFINITION. The non-empty pairwise-disjoint subsets of groups B1, ...,Bn ⊂ G form isolated
baskets if, for each B j , (i) any vi

g ∈ V i
g , where g ∈ B j and i ∈ I, is variable only on a non-empty

set of goods in the groups in B j and (ii) no non-trivial partition of B j has cells that satisfy (i).

A model
(
V i

g

)
(i,g)∈I×G has a unique family of isolated baskets, which may consist of just one

basket. Each basket B j in a family defines a corresponding set of objective functions, the
∑

i∈I vi
g

such that g ∈ B j and vg ∈ Wg , that are variable only on goods in groups drawn from the same
basket. Separability is the prominent example. Each

∑
i∈I vi

g then varies only as a function of
x1

g, ..., x I
g while the remaining

∑
i∈I vi

g′ , g′ �= g, are constant on these variables: each group g by
itself forms an isolated basket. As the extent of non-separabilities in consumption increase from
the floor given by separability, the sizes of the isolated baskets increase in tandem.

In general equilibrium theory, non-trivial isolated communities cause the dimension of the
Pareto efficient allocations to fall below the number of individuals minus 1. The individuals in
each isolated community form a free-standing economic model and the dimension of the Pareto
efficient allocations for this community equals the number of individuals in the community minus
1. The dimension of the optima for the unified model then equals the sum of the community-
specific dimensions, which must be less than the total number of individuals minus 1. For
example, with two communities of I1 and I2 individuals, where I1 + I2 = I, the dimension of
the optima will equal I1 − 1 + I2 − 1 < I − 1. In our model, where groups play the role of
individuals, this accounting continues to hold: the dimension of the group-unanimity optima will
fall below G − 1 as the number of isolated baskets increases. Theorem 2 is a case in point.

14 For a simple case of the complications introduced by these externalities, notice that it is possible to have
∑

i∈I vi
g =∑

i∈I vi
g′ for distinct groups g and g′. There are then effectively fewer than G objective functions in the model and the

dimension of the group-unanimity optima accordingly falls.
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Define vi
g : RL

+ → R to be strictly concave and increasing on its variable goods if, for all
xi ∈ RL

+, vi
g is strictly concave and strictly increasing on {yi ∈ RL

+ : yi (k) = xi (k) for k /∈ K}
where K is the set of goods on which vi

g is variable.15

THEOREM 3. Suppose that, for any group g and individual i, each vi
g ∈ V i

g is continuous and
strictly concave and increasing on its variable goods, there are n isolated baskets with d1, ...,
dn groups, and the set of group-unanimity optima has dimension d. Then d ≤ ∑n

j=1(d j − 1) ≤
G − 1.

The dimensional expansion of the group-unanimity optima thus depends on the number of
isolated baskets, which in turn depend on the extent of the non-separabilities in consumption, and
on the number of groups. The worst case, where the dimension of the optima reaches L − 1, occurs
when the entire set of goods forms the sole isolated basket and each good is a singleton group.
But even here the utilitarian optima have not undergone the L(I − 1) explosion of dimensionality
that occurs for the Pareto optima when preferences are incomplete (see Section 1). If, as one
presumes in market settings, the number of individuals is larger than the number of goods, I >

L, then with incomplete preferences the dimension of the utilitarian optima will be less than the
dimension of the Pareto optima that obtains when preferences are complete, I − 1. Moreover
with incomplete preferences the measure of the Pareto optima will normally be positive while
the measure of the utilitarian optima will typically be 0.

Theorem 3, unlike Theorem 2, does not offer a uniqueness result when each dj = 1: it then
states that the optima form a discrete set of points (a 0-dimensional set), not a single point.

4. Utilitarian Versus Pareto Optimality

Utilitarian optima can fail to be Pareto optimal when individuals are modelled by their �i be-
havioural preferences. A utilitarian planner weights an individual i’s utility for group g according
to the planner’s judgement about the satisfaction i derives from g and that weighting might not
be compatible with the weightings implicit in �i. For example, suppose there are two goods,
each of which forms a group, and two individuals a and b with identical vi

k’s that are separable,
strictly concave, and differentiable. (When in this section a group consists of a single good, I
ignore the notational difference between a good and a group.) Letting W1 place equal weight on
va

1 and vb
1 and W2 place equal weight on va

2 and vb
2 , the utilitarian optimum will satisfy xa = xb.

Depending on the �i, Pareto improvements may be possible. If, at some frame f, va ∈ Va
f assigns

weights 2 and 1 respectively to va
1 and va

2 while vb ∈ Vb
f assigns weights 1 and 2 to vb

1 and vb
2

then the marginal rates of substitution of the agents at f cannot align at the utilitarian optimum.16

Some transfer between the individuals will therefore deliver a Pareto improvement for �a
f and

�b
f . Whether each individual i is �i-better off with this transfer will depend on the diversity

the individuals display across frames. But if at every frame each individual places nearly the
same relative weights on the utilities for goods then both individuals’ behavioural preferences

15 The function vi
g is strictly increasing if x i ≥ y i and x i �= y i imply vi

g(xi ) > vi
g(yi ).

16 If Dva
1 (xa

1 ) = Dvb
1 (xb

1 ) and Dva
2 (xa

2 ) = Dvb
2 (xb

2 ) (letting D indicate derivatives w.r.t. variable goods) then
2Dva

1 (xa
1 )

Dva
2 (xa

2 ) �= Dvb
1 (xb

1 )

2Dvb
2 (xb

2 )
.
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will back the transfer.17 As this example suggests, both the compatibility and incompatibility of
utilitarian and Pareto optimality are robust possibilities.

For an orthodox utilitarian, a failure of utilitarian optimality to achieve Pareto optimality
is not a problem: the planner’s judgements take precedence. For example, in the pre-WWII
heyday of utilitarianism, it was common to hold that impatience and discounting amounted to
failures of rationality—an offence ‘against the rules of economic reason’ in Schumpeter’s words
(1912, p. 35). A utilitarian planner therefore might well ignore individuals’ time preferences
altogether. In the hyperbolic discounting example in Section 3, such a planner would, at every
date t, use the same cardinal selection Wt from V 1

t × ... × V I
t .

Whether or not utilitarian-Pareto conflicts are problematic, planners might want to avoid them.
A liberal planner could deliberately choose weights on an individual’s utility for groups to match
the individual’s weights. Or the planner could just choose W and a utilitarian optimum x such that
x is Pareto optimal. Since this choice would impose an additional restriction beyond utilitarian
optimality, it will not expand the set of optima.

More productively, I will show that the potential for a clash between utilitarian and Pareto
optimality diminishes as preference incompleteness increases. We begin by defining what it
means for a liberal planner to match an individual’s weights on group utilities.

DEFINITION 3. Given V i for i ∈ I, preference compatibility is satisfied for W if there exists
v ∈ W such that vi ∈ V i for i ∈ I.

Suppose that we now adjust the preferences, letting them get progressively more incomplete
by expanding the selections V i that define the �i while keeping the sets V i

g and the selection W
fixed. If each selection V i is large enough—there is enough incompleteness—then preference
compatibility must be satisfied. In particular, when V i = V i

1 × ... × V i
L for each i, any W is

preference compatible: with sufficient incompleteness, every planner becomes a liberal. As we
will see, if incompleteness is in this sense sufficiently substantial and separability holds then any
utilitarian optimum will be Pareto optimal.

It is worth pausing to consider the other extreme: if each V i is a cardinal selection from V i
1 ×

... × V i
L , which implies that the �i generated by V i is complete, then preference compatibility

effectively eliminates a planner’s ability to specify the Wg independently. Given V i
g for i ∈ I

and g ∈ G, define group g′ to be non-trivial if each V i
g′ contains non-constant functions.

PROPOSITION 2. If each V i is a cardinal selection then, given Wg′ for some nontrivial group
g′, there is only one Wg for each g �= g′ such that W can then satisfy preference compatibility.

As one would expect, the combination of preference compatibility and complete preferences
will stifle a planner’s latitude to impose interpersonal comparisons.

The Pareto optimality of an allocation x has the standard definition: x must be feasible and
there cannot exist a feasible y such that yi �i x i for all i ∈ I and y j � j x j for some j ∈ I, where
each �i is generated by V i .

Whether preference compatibility holds due to preferences being substantially incomplete or
the careful choice of a liberal planner, the assumption is not quite enough to guarantee that
utilitarian optima are Pareto optimal. The following example, driven by a failure of separability,
illustrates.

17 This argument bears some similarity to the difficulties of implementing Pareto efficient outcomes with separable
preferences identified by Le Breton and Sen (1999).

C© 2020 Royal Economic Society.



1156 the economic journal [may

Example. Suppose there are two individuals a and b and two goods, each of which is a group,
and define

va
1(xa

1 , xa
2 ) = ln xa

1 + 2 ln xa
2 , va

2(xa
1 , xa

2 ) = 2 ln xa
1 + ln xa

2 ,

vb
1(xb

1 , xb
2 ) = 2 ln xb

1 + ln xb
2 , vb

2(xb
1 , xb

2 ) = ln xb
1 + 2 ln xb

2 .

Let these four functions be the profile given by preference compatibility. For each i, one of the
vi

1 + vi
2 formed by the vi ∈ V i is then 3 ln xi

1 + 3 ln xi
2. So, if V i is a cardinal selection the �i

it generates is the complete preference represented by ln xi
1 + ln xi

2. If e1 = e2 (the Edgeworth
box is square), the Pareto optima satisfy xi

1 = xi
2 for i = a, b (the 45◦ line). On the other hand,

the planner’s good 1 objective function is ln xa
1 + 2 ln xa

2 + 2 ln xb
1 + ln xb

2 which is maximised
subject to the resource constraints at the allocation xa = ( 1

3 e1,
2
3 e2), xb = ( 2

3 e1,
1
3 e2). Since this

allocation is the unique global optimum for the good 1 objective function, it must be a utilitarian
optimum when W is group-agnostic. �

The difficulty in the Example is that each individual i’s utility for one good is affected by i’s
consumption of the other good and though this ‘side effect’ is cancelled in the construction of �i

by i’s utility for the other good, the cancellation does not enter into the planner’s maximisation
of the good 1 objective function. Separability blocks this path for trouble.

THEOREM 4. If separability is satisfied, W is preference compatible, and each vi
g ∈ V i

g is
strictly concave on g for all g and i, then any utilitarian optimum is Pareto optimal.

PROOF. Suppose x Pareto dominates y: xi �i yi for all i ∈ I and x j � j y j for some j ∈ I,
where each �i is generated by V i . Then for the (vi

1, ..., vi
G) ∈ V i , i ∈ I, given by prefer-

ence compatibility,
∑

g∈G vi
g(xi ) ≥ ∑

g∈G vi
g(yi ) for all i ∈ I. Due to strict concavity, the z

defined by zi = 1
2 xi + 1

2 yi for each i ∈ I satisfies
∑

g∈G vi
g(zi ) ≥ ∑

g∈G vi
g(yi ) for all i and∑

g∈G v j
g(z j ) >

∑
g∈G v j

g(y j ). Hence
∑

i∈I
∑

g∈G vi
g(zi ) >

∑
i∈I

∑
g∈G vi

g(yi ). Now suppose x is
feasible and that y is a utilitarian optimum. Then y and hence z would be feasible and therefore,
by Proposition 1, separability would imply

∑
i∈I vi

g(yi ) ≥ ∑
i∈I vi

g(zi ) for each g ∈ G. Hence∑
g∈G

∑
i∈I vi

g(yi ) ≥ ∑
g∈G

∑
i∈I vi

g(zi ), a contradiction. Any utilitarian optimum is therefore
Pareto optimal. �

In the absence of separability, utilitarian-Pareto disagreements will still typically disappear as
preference incompleteness increases. Call y a maximum for v̂ if y is feasible and:

∑
(g,i)∈G×I

v̂ i
g(yi ) ≥

∑
(g,i)∈G×I

v̂ i
g(xi )

for any feasible x. Proposition 3 in Appendix A shows that it will normally be the case that
a utilitarian optimum is a maximum for some v̂ ∈ W if W is group agnostic. Comparably
to utilitarian-Pareto clashes under separability, it may well be that some v̂ i will fail to be in
individual i’s selection V i . But if we again let preferences become more incomplete by expanding
the selection V i then eventually V i will contain v̂ i . The following theorem implies that there will
then be no utilitarian-Pareto disagreements.

THEOREM 5. If y is a maximum for v̂, where v̂ i ∈ V i for each i, and every vi
g ∈ V i

g is strictly
concave on its variable goods for each g and i, then y is Pareto optimal.
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PROOF. Since y is a maximum for v̂ ,
∑

i∈I
∑

g∈G v̂ i
g(yi ) ≥ ∑

i∈I
∑

g∈G v̂ i
g(zi ) for any feasible

z. But, as in the proof of Theorem 4, if the feasible x Pareto dominates y then, for the feasible z
defined by zi = 1

2 xi + 1
2 yi for each i,

∑
i∈I

∑
g∈G v̂ i

g(zi ) >
∑

i∈I
∑

g∈G v̂ i
g(yi ). �

5. Conclusion

The métier of utilitarianism is the division of a resource among competing individual claims.
It is accordingly the precision of the optimal distribution of goods that is compatible with the
incompleteness of individual preferences. The theory provided here offers no help for non-
distributive decisions that individuals themselves do not know how to make. If each individual
cannot decide how much current output should be invested in the future—how much consumption
should be sacrificed to lessen carbon pollution?—then a utilitarian advisor will have little to
offer. Though the challenging decisions, such as carbon pollution, are inevitably accompanied
by incomplete preferences, distributive decision-making can still proceed: utilitarianism can
recommend how to divide up any given stock of goods.

Appendix A: Further Results

A.1. Generatable Preferences

Any �i that has a utility representation u can be generated by some V i regardless of the set
of groups G: set V i

g = {au + b : a ∈ R++, b ∈ R} for each g ∈ G and let V i be any selection
from V i

1 × ... × V i
G . At the other end of spectrum, as long as L > 1 we can admit the ex-

treme incomplete preference relation �i that orders no pair of distinct bundles: letting u sat-
isfy u(xi) = u(yi) if and only if xi = yi (see Mandler, 2020), set G = {{1}, {2, ..., L}}, V i

{1} =
{au + b : a ∈ R++, b ∈ R}, V i

{2,...,L} = {−au + b : a ∈ R++, b ∈ R} and V i = V i
{1} × V i

{2,...,L}.
Less dramatically, we can admit the �i with xi �i yi if and only if x i ≥ y i by setting
G = {{1}, ..., {L}}, V i

{k} = {ahk + b : a ∈ R++, b ∈ R} for each good k, where hk : RL
+ → R is

defined by hk(xi ) = xi
k , and V i = V i

{1} × ... × V i
{L}.

A.2. Utilitarian Optima Maximise a Social Welfare Function

We show that the assumption that a utilitarian optimum is a maximum for some
(̂
v i

g

)
(g,i)∈G×I is

mild. Call the utilitarian optimum x interior if
∑

i∈I vi
g(xi ) >

∑
i∈I vi

g(0) for each g ∈ G, where
(v1

g, ..., v I
g ) ∈ Wg for each g. The function vi

g is strictly increasing if xi ≥ yi and xi �= yi imply
vi

g(xi ) > vi
g(yi ).

PROPOSITION 3. If each vi
g ∈ V i

g is concave and strictly increasing for all i and g and if x is
an interior utilitarian optimum then there exists

(̂
v i

g

)
(g,i)∈G×I , where each v̂g ∈ Wg, such that x

is a maximum for
(̂
v i

g

)
(g,i)∈G×I .

PROOF. Let x be an interior utilitarian optimum and let
(
vi

g

)
(g,i)∈G×I ∈ W . Since Proposition 1

implies x is a group-unanimity optimum, for any g ∈ G, x is a solution to maxy
∑

i∈I vi
g(yi

g) s.t.∑
i∈I vi

g′(yi
g′) ≥ ∑

i∈I vi
g′(xi

g′) for each g′ ∈ G\{g}, ∑
i∈I yi

g′ ≤ eg′ for each g′ ∈ G, and y ≥ 0. If
we remove from the problem any good with a 0 endowment, then, due to the strict increasingness
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and interiority assumptions, there is a y′ such that each inequality constraint is slack. Hence
the Slater (1950) constraint qualification is satisfied (Boyd and Vandenberghe, 2004 [5.2.3 and
5.3.2]) and hence there exist λ

g
g′ ≥ 0 for g′ ∈ G\{g} such that

∑
i∈I

vi
g(xi

g) +
∑

g′∈G\{g}
λ

g
g′

∑
i∈I

vi
g′(xi

g′) ≥
∑
i∈I

vi
g(yi

g) +
∑

g′∈G\{g}
λ

g
g′

∑
i∈I

vi
g′(yi

g′)

for all y ≥ 0. Summing over g,∑
g∈G

∑
i∈I

vi
g(xi

g) +
∑
g∈G

∑
g′∈G\{g}

λ
g
g′

∑
i∈I

vi
g′(xi

g′) ≥
∑
g∈G

∑
i∈I

vi
g(yi

g) +
∑
g∈G

∑
g′∈G\{g}

λ
g
g′

∑
i∈I

vi
g′(yi

g′)

for all y ≥ 0. For each g ∈ G and i ∈ I, set v̂ i
g = vi

g + ∑
g′∈G\{g} λ

g′
g vi

g =
(

1 + ∑
g′∈G\{g} λ

g′
g

)
vi

g .

Since 1 + ∑
g′∈G\{g} λ

g′
g is a positive constant,

(̂
v 1

g, ..., v̂ I
g

) ∈ Wg . �

Appendix B: Remaining Proofs

Proof of Proposition 1. Fix someW which need not be group agnostic, let x be group-unanimously
superior to y, and set some (vg)g∈G ∈ W . Then

∑
i∈I vi

g(xi ) ≥ ∑
i∈I vi

g(yi ) for all g and with strict
inequality for some g. Hence

∑
i∈I

∑
g∈G vi

g(xi ) >
∑

i∈I
∑

g∈G vi
g(yi ): x is utilitarian superior to

y. Any utilitarian optimum x is therefore a group-unanimity optimum. If not there would be a
feasible y that is group-unanimously superior to x and hence utilitarian superior to x.

Conversely, let x be utilitarian superior to y and now assume in addition that W is group
agnostic. Fix v ∈ W . Suppose for some g′ that

∑
i∈I vi

g′(xi ) <
∑

i∈I vi
g′(yi ). Due to group

agnosticism, for every λg′ > 0 the v̂ that equals v except that v̂ i
g′ = λg′vi

g′ for each i is in
W . Since

∑
i∈I

∑
g∈G v̂ i

g(xi ) <
∑

i∈I
∑

g∈G v̂ i
g(yi ) for λg′ sufficiently large, x would not be

utilitarian superior to y. Hence
∑

i∈I vi
g(xi ) ≥ ∑

i∈I vi
g(yi ) for each g. We also cannot have∑

i∈I vi
g(xi ) = ∑

i∈I vi
g(yi ) for all g since then, by the assumption that each Wg is a cardinal

selection,
∑

i∈I
∑

g∈G ṽ i
g(xi ) = ∑

i∈I
∑

g∈G ṽ i
g(yi ) for all (̃vi

g)(g,i)∈G×I ∈ W . Hence x is group-
unanimously superior to y. �

Proof of Theorem 3. Let XU ⊂ RI L
+ denote the set of group-unanimity optima which, given

our continuity assumptions, is non-empty. We first show that there cannot be distinct x, x′ ∈ XU

such that
∑

i∈I vi
g(xi ) = ∑

i∈I vi
g(xi ′) for g ∈ G. Suppose to the contrary that such x and x′ exist

with x i(k) �= x i′(k) for some agent i and good k. If, for some group g, vi
g ∈ V i

g is variable on k
then the strict concavity assumption implies that x, x′ �∈ XU. If, for all groups g, each vi

g ∈ V i
g is

not variable on k then there is an agent î and group ĝ such that each vî
ĝ ∈ V î

ĝ is variable on k. A

transfer of max [x i(k), x i′(k)] from i to î will then increase
∑

i ′∈I vi ′
ĝ and not reduce

∑
i ′∈I vi ′

g for
g �= ĝ. Hence either x or x′ is not in XU.

The map f : XU → RG defined by f (x) = (
∑

i∈I vi
1(xi ), ...,

∑
i∈I vi

G(xi )) is therefore injec-
tive. Since f in addition is continuous and XU is compact, f is a homeomorphism between XU

and f(XU) and thus dim f (XU ) = d. For an isolated basket B j with dj groups, we may define the

group-unanimity optima for the model that consists of just these groups, X
B j

U ⊂ RI�
+ where � =∑

g∈B j
|g|, and the map f B j : X

B j

U → Rd j given by f B j (x) = (
∑

i∈I vi
1(xi ), ...,

∑
i∈I vi

d j
(xi )).

Then dim X
B j

U < d j : if to the contrary dim X
B j

U = d j then dim f B j (X
B j

U ) = d j and, for any

w in the nonempty interior of f B j (X
B j

U ), w + (ε, ..., ε) ∈ f B j (X
B j

U ) for some ε > 0 which

C© 2020 Royal Economic Society.
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contradicts w ∈ f B j (X
B j

U ). Since, with n isolated baskets B1, ...,Bn , XU equals XB1
U × ... × XBn

U ,

d ≤ ∑n
j=1 dim X

B j

U and hence d ≤ ∑n
j=1(d j − 1). �

Proof of Proposition 2. Suppose V i for i ∈ I are cardinal selections such that g′ is non-
trivial and let W and W ′ be preference-compatible welfare selections such that Wg′ = W ′

g′ . Let
vg = (

v1
g, ..., v I

g

) ∈ Wg and v ′
g = (

v1′
g , ..., v I ′

g

) ∈ W ′
g for g ∈ G denote the corresponding profiles

given by preference compatibility. Since vg′ and v ′
g′ are both elements of Wg′ , there exist a ∈ R++

and b ∈ RI such that vg′ = av ′
g′ + b. Defining v̂ i = a

(
vi ′

1 , ..., vi ′
G

) + (bi , ..., bi ) for i ∈ I, we
have v̂ i ∈ V i (since

(
vi ′

1 , ..., vi ′
G

) ∈ V i by preference compatibility) and v̂g ≡ (̂v 1
g, ..., v̂ I

g) ∈ W ′
g

for g ∈ G.
Fix some i ∈ I. Since vi ∈ V i and v̂ i ∈ V i there exist αi ∈ R++ and β i ∈ RG such that v̂ i =

αi v i + β i . Let x, y ∈ RL
+ satisfy vi

g′(x) �= vi
g′(y). Since v̂ i

g′ = vi
g′ , we have vi

g′(x) = αi v i
g′(x) +

β i
g′ and vi

g′(y) = αi v i
g′(y) + β i

g′ which implies (1 − αi )(vi
g′(x) − vi

g′(y)) = 0 and hence αi =
1. As this argument applies to each i ∈ I, v̂g = vg + (β1

g , ..., β
I
g ) for each g ∈ G. Given that

vg ∈ Wg for each g ∈ G, we have v̂g ∈ Wg for each g ∈ G. Since for any g ∈ G and v ′′
g ∈ W ′

g ,
v̂g ∈ W ′

g implies there exist a′′ ∈ R++ and b′′ ∈ RI such that v̂g = a′′v ′′
g + b′′, we conclude

that v ′′
g ∈ Wg . �
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