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Abstract
To minimize the cost of making decisions, an agent should use criteria to sort alternatives and each
criterion should sort coarsely. To decide on a movie, for example, an agent could use one criterion
that orders movies by genre categories, another by director categories, and so on, with a small number
of categories in each case. The agent then needs to aggregate the criterion orderings, possibly by a
weighted vote, to arrive at choices. As criteria become coarser (each criterion has fewer categories)
decision-making costs fall, even though an agent must then use more criteria. The most efficient
option is consequently to select the binary criteria with two categories each. This result holds even
when the marginal cost of using additional categories diminishes to 0. The extensive use of coarse
criteria in practice may therefore be a result of optimization rather than cognitive limitations. Binary
criteria also generate choice functions that maximize rational preferences: decision-making efficiency
implies rational choice. (JEL: D01)

1. Introduction

Suppose an agent wants to determine a preference ordering over a set of movies. One
method, which I call direct evaluation, considers every pair of movies, deciding for
each pair which movie is more desirable. If each pair needs a separate judgment, a
preference over n movies would require

�
n
2

� D n.n�1/
2

comparisons, a number that
grows quickly as a function of n.1 Direct evaluation is how economists usually think
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Gilboa, Raphaël Giraud, Kim Kaivanto, Todd Kaplan, David Kelsey, Michel De Lara, Christian List, Itai
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1. If an agent knows that these judgments will form a rational preference, the number of judgments
required, n log

2
n, will still increase at a rate greater than n. Although the cost of constructing a preference

or choice function is distinct from the complexity of representing one, Apesteguia and Ballester (2010)
provide consonant results.
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of preference formation, but if each comparison is costly this method will become
prohibitively expensive even for reasonably small n.

Consider the alternative of employing a set of criteria where each criterion divides
the domain of movies into categories. One criterion might partition movies into genre
categories (dramas, comedies, documentaries, all others), a second might partition
movies into types of directors (commercial, arty, all others), a third into actor categories
(famous, not famous), and so forth. Each criterion “orders” its categories—the genre
criterion could declare that comedies are superior to documentaries, and so forth—but
these orderings do not have to be rational, they might, for example, be intransitive.
To arrive at choice decisions, the agent needs to aggregate the criterion orderings, for
example, by a weighted vote. For each pair of movies, the agent could award a score
!i to the movie that wins the criterion i comparison and then select the movie with the
greatest sum across criteria of these scores. Although criteria need not be rational, it
turns out that if agents choose criteria efficiently then their choices will maximize a
rational preference.

The main advantage of criteria over direct evaluation is that a criterion can
discriminate within each set of alternatives that other criteria fail to rank, thus expanding
the potential number of choice distinctions. An actor criterion, for example, can
distinguish between a pair of movies that are in the same genre and director categories.
The number of preference or choice distinctions that criteria can generate will therefore
equal the product of the number of criterion categories. In our movie example, the genre
criterion has 4 categories, the director criterion has 3 categories, and the actor criterion
has 2 categories. If for each selection of one category from each criterion there is a
movie with that combination of features then the three criteria can make 4 � 3 � 2 D
24 choice distinctions.

The discriminatory power of criteria will lower decision-making costs. For each
pair of categories in a criterion, the agent must judge which category is superior and,
as in direct evaluation, each comparison judgment is costly. But with criteria each
judgment is more productive. The 24 choice distinctions in the movie example require
an agent to compare only a small number of pairs of categories:

�
4
2

� D 4�3
2

D 6 pairs
of genre categories,

�
3
2

� D 3 pairs of director categories, and
�

2
2

� D 1 pair of actors
categories, for a total of 10. With direct evaluation, the number of judgments needed
to order 24 types of movies equals

�
24
2

� D 276, the number of pairs of 24 types. If
the cost of making comparisons is roughly comparable in the two methods, the gap
between these numbers illustrates the savings that criteria lead to. Criteria will incur
additional costs, which I discuss presently, but the size of the reduction in the numbers
of comparisons required—10 versus 276—suggests that the advantages of criteria will
be difficult to overturn.

Adding a new criterion or a new category to an existing criterion will bring the
benefit that an agent can make more precisely tuned decisions from more choice
sets. A new scriptwriter criterion or the partitioning of the drama genre into thrillers
and nonthrillers will let an agent discriminate among movies that previously were
indistinguishable. At the same time, adding a new criterion or making an existing
criterion finer incurs costs, and not just the comparison costs already mentioned.
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Mandler Coarse, Efficient Decision-Making 3

Criteria and their categories have to be identified and criteria must be aggregated. To use
a director criterion or make it finer, the agent needs to do the research that sorts movies
into director categories: checking out previous works, discovering whose movies show
at Cannes and who has won the awards. To introduce a new criterion, the agent has to
find a further dimension of the alternatives and decide on its weight. Agents therefore
do not and should not aim for criteria that maximally discriminate or use as many
criteria as possible: the benefits must be weighed against the decision-making cost.

Since increases in the number of choice distinctions and reductions in cost are both
benefits, an efficient arrangement consists of a set of criteria and corresponding choice
function that are undominated with respect to these two goals.

An agent that decides to create more choice distinctions seems to face a trade-off:
should the agent use a small list of fine criteria or a large list of coarse criteria? If an
agent wants more distinctions among movies and is initially using a director criterion
and a genre criterion, should the agent add new categories to these criteria or add a
new criterion? Making existing criteria finer raises their cost but lets the agent save on
the number of criteria.

The answer will be that the trade-off should be resolved in favor of coarse criteria,
even when agents aim for a large number of choice distinctions. In the paper’s initial
model, optimality is reached in the “coarseness limit” where agents deploy only binary
criteria, which partition alternatives into two categories (Theorem 1). Binary criteria
defeat the finer criteria with more than two categories even when the marginal decision-
making cost of using an additional category diminishes to 0 as the number of categories
increases: the additional categories of fine criteria could become asymptotically free
and still it will be more efficient to use the expensive categories of binary criteria.

The costliest method of all is to use a single criterion with a large number of
categories, which amounts to direct evaluation. The only judgments the agent then
makes are preference comparisons between categories, which become the agent’s
indifference classes. Our earlier calculation comparing a set of three criteria for movies
with direct evaluation assumed implicitly that all judgments are equally costly. One
upshot of Theorem 1 is that the poor performance of direct evaluation will persist even
when the marginal cost of making further direct preference comparisons declines to 0.

The marginal cost of additional categories cannot decline too rapidly however.
When the expense of identifying or weighting a new criterion is sufficiently large, the
cost of binary criteria—the coarsest criteria that actually make discriminations—will
spike. Adding further categories to existing criteria can then provide a better way to gen-
erate more choice distinctions. Coarse criteria will still have the advantage in these cases
but that advantage need not reach the extreme that only binary criteria are efficient.

Binary criteria lead to choices that maximize a rational preference when criteria are
aggregated in standard ways, for example, through a weighted vote of criteria or when
criteria form a serial dictatorship.2 The latter result was shown in Mandler, Manzini,

2. In a serial dictatorship, the agent consults the criteria in sequence and at each stage eliminates from
consideration any alternative that is defeated by some alternative still in contention.
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and Mariotti (2012) but these authors failed to understand that the link between
binary criteria and rational choice holds for a vast range of criterion-based choice
procedures. I will show here that rational choice functions arise whenever criteria are
binary and decisions satisfy axioms that generalize both weighted votes of criteria
and serial dictatorships. Since criterion-based choice is a version of multicriterion
decision-making,3 our results offer a reply to Arrow and Raynaud’s (1986) concern
that aggregating criteria with ordinal voting rules will lead to irrational decisions.
Multicriterion decision-making takes criteria to be exogenous, but if criteria are chosen
to minimize decision-making cost then the problem of irrationality recedes.

To incorporate expensive binary criteria and test the robustness of the conclusion
that criteria should be coarse even when additional categories are nearly free, an
extension of the paper’s initial model will let criteria have diverse values and require
only that the marginal cost of categories does not fall too quickly as the number of
categories increases. Classical utility maximization then qualifies as a special case of
criterion-based choice. Optimality will no longer imply that criteria must be binary in
this broader setting, but they must still be coarse. Even a high-value criterion with a
marginal cost of categories that descends to 0 should not become too fine: it would be
more efficient to use many low-value coarse criteria even if they require an agent to
pay a greater marginal cost for categories. It is of course possible to lay out a choice
problem that is well-suited to fine criteria. If you care only about acting then you
should devote all your research into building a criterion with a fine classification of
actors. But instances where it is optimal to let a criterion become unboundedly fine
are more singular than they at first appear: if there are other valuable attributes, even
attributes with arbitrarily small utility, these cases disappear.

The efficiency of coarse criteria fits with the psychological research showing that
people can readily manipulate only a small number of categories. Agents may find that
even four categories, which require six category comparisons, are unwieldy. But rather
than an unfortunate limitation, this feature of human information-processing may be
an outgrowth of optimization. Since our inability to handle more than a few categories
forces us into efficiency, it may not have been vital to learn or evolve a capacity to
manipulate many categories at once. More broadly, I hope to show that optimization
in choice theory applies to the psychology of preference discovery and construction
and does not have to take preferences as given.

1.1. Coarser is Better

As the movie example illustrated, the maximum number of choice distinctions that can
be generated given the number of categories in each criterion will equal the product of
the number of categories in the criteria deployed. If criterion j uses ej > 2 categories
and we replace it with a criterion that uses ej � 1 categories (and the other criteria
remain unchanged) then, to avoid a drop in the number of choice distinctions, the agent

3. See Figueira, Greco, and Ehrgott (2005) and Bouyssou et al. (2006) for overviews.
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Mandler Coarse, Efficient Decision-Making 5

must add a new criterion. If the added criterion uses the minimum nontrivial number
of categories, 2, then the difference between the number of choice distinctions created
by the new set of criteria and the original set is0@Y

i¤j

ei

1A �
ej � 1

�
2 �

0@Y
i¤j

ei

1A ej D
0@Y

i¤j

ei

1A .ej � 2/ > 0.

So the new set of criteria can produce more choice distinctions than the original set.
What is the cost of the new, coarser set of criteria? Since criteria with a single

category make no choice distinctions and are presumably costless, the total number
of discriminating or costly categories in the new set of criteria is the same as in the
original set. So if the marginal cost of this class of categories is increasing, the shift to
the coarser set of criteria will reduce costs. The presence of substantial fixed criterion
costs, on the other hand, works in the opposite direction and discourages the use of
large numbers of criteria.

Coarser criteria can thus deliver two distinct benefits: they increase the number of
choice distinctions and it is plausible that they reduce costs. The argument given here
for the cost reduction assumes that the marginal cost of using additional categories
is increasing, but we will see that coarse criteria still deliver cost savings when the
marginal cost of categories is diminishing.

1.2. The Binariness-Rationality Connection

The Condorcet paradox provides a familiar example of how rational criteria can lead
to irrational choices. Each of the following three criteria judges a higher option to be
superior to a lower option:

C1 C2 C3

x y z

y z x

z x y

:

If the choice function c decides by a simple majority vote of the criteria then choices
will cycle on the pairs: c(fx, yg) D fxg, c(fx, zg) D fzg, c(fy, zg) D fyg. Thus c cannot
represent the decisions of an agent with rational preferences. But suppose instead that
criteria are binary: each criterion ranks two of the alternatives above the remaining
option, or ranks one alternative above the other two. Given a choice set of alternatives,
the option that lies in the greatest number of top categories will now defeat any other
alternative in a majority vote. Moreover, since the ordering that ranks each alternative
a by the number of criteria that place a in the top category is complete and transitive,
choices based on majority vote will maximize a rational preference.4 I will generalize
considerably in Section 5.

4. This result, but not the generalizations in Section 5, arises in the voting literature on dichotomous
preferences. See Inada (1964), Vorsatz (2007), Ju (2011), and Maniquet and Mongin (2015).
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1.3. Related Work on Decision-Making Capacity and Criteria

The “coarser is better” conclusion connects to the psychological literature on
information processing, which finds that the number of categories that people can
retain in working memory is small. In our setting, an agent who deploys a criterion has
to hold in mind the category comparisons that the criterion prescribes. Miller (1956)
famously concluded that the number of “chunks” that an agent can hold in mind is
roughly seven and since Miller the number has been steadily whittled down. Herbert
Simon (1974) argued that five is more accurate. A binary comparison of categories
qualifies as an object-file in the model of Kahneman, Treisman and Gibbs (1992),
and Treisman (2006) judges that subjects can hold only three or four object-files in
memory. An encyclopedic overview of the evidence, Cowan (2000), concludes that the
“magic number” that bounds working memory is four.5 Since, for a criterion with e
categories, the number of pairwise category comparisons is e(e � 1)=2, a bound of four
on the number of comparisons would place a bound of three on e. The psychological
literature therefore suggests that a criterion that needs to be manipulated in working
memory could have at most three or four categories. Consider the movie example: if
an agent wants to choose a movie with a genre criterion that divides movies into 5
categories then he or she would have to keep 10 category comparisons in mind, which
indeed seems unwieldy.

Unlike the psychological literature, I will stress the efficiency advantage of coarse
criteria. Since decision-making becomes more efficient as the number of categories
per criterion shrinks, the cognitive constraints that limit the number of categories
in decision-making might be the outcome of optimization or adaptation. The binary
criteria that use two categories are especially prevalent in everyday decision-making,
and their efficiency may help to explain this fact. This conclusion aligns closely with
Gigerenzer et al.’s (1999) view on the superiority of frugal heuristics.

My exclusion of ex ante preferences and emphasis on the costs of decision-making
owe a great debt to Herbert Simon (e.g., Simon 1972). But one conclusion deviates
from the Simon program: paying attention to the costs of decision-making leads
agents to rationality. This message complements Mandler (2015), where agents proceed
lexicographically through criteria and it is only rational preferences that can always be
the outcome of quick sequences of criteria, no matter how the numbers of categories
per criterion are fixed. Agents in this paper choose their own categorization levels to
minimize decision-making cost (and lexicography is dropped) and again rationality
enjoys an efficiency advantage. Despite the common conclusion, the arguments used
have no overlap.

Choice functions generated from a set of criteria have been extensively researched.
See Apesteguia and Ballester (2010, 2013) (AB), Houy and Tadenuma (2009), Mandler,
Manzini, and Mariotti (2012), Mandler (2015), and Manzini and Mariotti (2007, 2012).
The emphasis in AB (2010) on the cost of rational choice relates the most closely to

5. See Luck and Vogel (1997) for a characteristic example of the research surveyed.
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Mandler Coarse, Efficient Decision-Making 7

the present paper. Some of this research has a precedent in the lexicographic utility
theory of Chipman (1960, 1971) and Fishburn (1974). Tversky and Simonson (1993)
and Salant (2009) also link efficiency to rational decision-making.

The advantages of coarse criteria in decision-making parallel the benefits of sorting
information coarsely, which in turn helps explain why devices that store information
use bits (Mandler 2019).

2. Choice Via Criteria

Let X be a domain of alternatives with at least two elements. A criterion Ci is an
asymmetric binary relation on X where x Ci y means that Ci classifies x as superior
to y.6 Criteria need not be rational, for example, they can fail to be transitive. A set
of criteria C D fC1; : : : ; CN g will have finitely many criteria, typically N. Criterion
indices do not indicate the order in which criteria are consulted.

To analyze the efficiency of criteria, we need measurement units for both criteria
and choices. Alternatives x and y are in the same Ci-category if Ci never treats x
and y differently: alternatives that are Ci-superior to x are also Ci-superior to y and
alternatives Ci-inferior to x are also Ci-inferior to y.

DEFINITION 1. The set E � X is a Ci-category if it consists of all alternatives that
share the same upper contour sets and the same lower contour sets: for all x 2 E,

y 2 E if and only if�fz 2 X W z Ci xg D fz 2 X W z Ci yg and fz 2 X W x Ci zg D fz 2 X W y Ci zg�:7
I will use ei or e(Ci) to denote the number of categories in a criterion Ci and consider
Ci to be coarser than Cj if ei < ej. As the formation of categories is costly, I require
each ei to be finite.

Criteria will typically divide X into fewer categories than the number of indifference
classes of a preference or, in the language I will introduce, the number of choice
classes of a choice function. For a variation on the movie example, X could be a set of
vacation destinations described by a list of attributes—for example, climate, amenities
available—with each attribute ordered by a criterion. Criteria can be “incomplete” as
well as intransitive: a Ci might not rank every pair of Ci-categories.8 Even criteria that
are complete and transitive need not lead to rationally ordered choices, as seen in the
Condorcet example in the introduction.

6. A C
i
is asymmetric if, for all x and y, x C

i
y implies not y C

i
x.

7 The binary relation I defined by x I y iff x and y are in the same C
i
-category is an equivalence relation

on X. When C
i
is transitive, see Fishburn (1970) and Mandler (2009) for discussions.

8. Since counts of the number of categories in an incomplete binary relation can be controversial, readers
are free to assume that each C

i
ranks every pair of its categories; no changes in the paper would be

introduced.
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An agent’s construction of criteria will be an easier task when alternatives can be
described by exogenously given attributes. For each attribute i, let Xi be the set of
possibilities for that attribute and let the entire domain of alternatives be the product
of these possibilities, X D Q

iXi. For example, a domain of newly constructed houses
might allow the size and number of rooms, architectural style, heating system, and
so forth, to be specified independently. Assuming the attributes are known, the agent
does not have to bear the cost of figuring out what factors are relevant to a decision
problem. The domain X need not literally equal a product of attributes to deliver this
benefit: what matters is that there are alternatives in X that match every combination
of criterion categories that an agent might employ.

Although the categories of a criterion Ci and the criterion’s ranking of those
categories are formally intertwined, the categories would normally come first in the
mind of a decision-maker. As with attributes, criterion categories and knowledge of
how alternatives are sorted into categories can sometimes be provided exogenously—
though even in this case agents might still want to avoid fine criteria to save on the
cost of ordering categories. More frequently, agents must expend effort to determine
categories. If for example the climate of vacation destinations is an attribute, the agent
must decide whether to distinguish between hot and sweltering destinations or between
destinations liable to rain and liable to pour, and then do research to find out which
locations land in which categories. For an attribute i, a xi 2 Xi serves only as an index:
information about the meaning of xi can require effort. For example, xi could be the
name of the director of movie x but provide no substantive information; to partition Xi
into director categories the agent must find out who has won the awards, whose films
show at the prestige festivals, and so on.9

The environment becomes more complex if the agent has to find or construct the
attributes that determine the component spaces Xi. If the social understanding of the
choice environment is sufficiently rich—if, after a little research, one can discover the
factors that others have deemed important in comparable problems—this task need not
be onerous. The job becomes harder if agents have to build novel attributes on their
own.

The presence of attributes will play no formal role outside of Section 6: the agent
simply selects criteria that partition X in various ways. For criteria to be a practical
way to make decisions, however, agents must either order prespecified attributes (the
less expensive option) or invent attributes for themselves.

However criteria are assembled, an agent must apply the criteria to form choice
decisions. The agent will face a family of choice sets F , where each A 2 F is
a nonempty subset of X. Let c be a choice function defined on F : for every
A 2 F , c(A) is the agent’s nonempty set of selections from A. I assume that F
includes the two-element sets and let x 2 c(A) mean both that x is in c(A) and that
A 2 F . The choice classes of c are defined analogously to criterion categories: two

9. Formally, a category is not a subset Y
i
of X

i
: a category has the form Y

i
� Q

j 6D i
X

j
. But we may without

confusion identify the category with Y
i
.
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Mandler Coarse, Efficient Decision-Making 9

alternatives are in the same choice class if c treats them as interchangeable in every
sense.10

DEFINITION 2. Given a choice function c, alternatives x and y are elements of the
same choice class if and only if for all A � X,

(i) if fx, yg � A then x 2 c(A) , y 2 c(A),

(ii) if fx, yg does not intersect A then

x 2 c.A [ fxg/ , y 2 c.A [ fyg/,
z 2 c.A [ fxg/ , z 2 c.A [ fyg/, for all z 2 A.

So x and y are in the same choice class if (i) when x is chosen and y is available then
y is chosen too and (ii) when x is substituted for y then x is chosen if y was chosen
previously with no effect on whatever other alternatives are chosen. When choices are
determined by preferences, each choice class will be an indifference class. The choice
classes always form a partition of X (see the Appendix).

When a choice function is determined by criteria, selections must depend only
on the distinctions the criteria make: if alternatives x and y are in the same criterion
category for every Ci then the agent has no way to distinguish x and y and the agent’s
choice function should deem x and y to be indistinguishable, that is, in the same choice
class.

DEFINITION 3. A choice function c uses the set of criteria C, which we indicate by
the notation .C; c/, if whenever x, y 2 X are contained in the same Ci-category for each
Ci 2 C there is a choice class of c that contains x and y.

In the movie example with three criteria, two movies that fall into the same genre,
director, and acting categories must be in the same choice class when the agent’s choice
function uses these criteria.

The choice classes permitted by a set of criteria are merely the units of choice
decisions: the agent must also adopt an aggregation method that determines a specific
choice function. The leading method is to compare alternatives via a weighted vote of
the criteria, one version of which is given in Example 1.

EXAMPLE 1. Given a set of criteria C D .C1; : : : ; CN /, for any pair x, y 2 X, set

si .x; y/ D
8<:

1 if x Ci y

�1 if y Ci x

0 otherwise
;

and let the weight assigned to the criterion Ci be !i. The sum of the weighted votes
for alternative x, when x 2 A, is given by v(x, A) � P

y2A

P
i2f1, . . . , Ng!isi(x, y) . If

10. I initially assumed that the concept of “choice class” must already exist in the literature but I have
not been able to find a precedent.
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x, y 2 A and x and y are contained in the same Ci-category for each Ci 2 C then
v(x, A) D v(y, A). Consequently the choice function c defined by

x 2 c.A/ , .v.x; A/ � v.y; A/ for all y 2 A/

uses C . The majority vote of criteria in the introduction amounts to a special case of
this c in which all of the !i are equal; here some criteria can be more important than
others and have larger weights. �

I have treated criteria and the aggregation method as fixed as the choice sets vary.
They need not be. If an agent uses criteria to decide what to eat in restaurants—say
using criteria that order meals by their meat content and cuisine—then the agent could
on each outing vary his ranking of categories: one day the agent opts for fish and the
next day the agent opts for meat. An agent could also vary the weights assigned to
criteria over time. Although we will not further pursue these modeling possibilities,
they enjoy the advantage of repeatedly using the same attributes and categories, thus
saving on the cost of identifying or building these tools.

3. The Optimization Problem

When an agent adopts a finer criterion or a criterion for an additional attribute,
he or she can then make more precise choice distinctions. If an agent has “true”
underlying preferences then a choice function with more choice classes can more
closely reflect those preferences: choice classes can better approximate the agent’s
indifference classes and the agent can make better decisions from more choice sets.11

When for example an agent faces fx, yg, some criterion must distinguish x and y in
order for the agent to place the items in different choice classes and select the better
option. Agents therefore seek to increase the number of their choice classes, all else
being equal, a goal that I will link to classical utility maximization in Section 6.1.

As the criteria that order some attribute become finer—ei becomes larger—the
corresponding partitions of X into categories will normally become finer: an agent
increases ei by subdividing existing categories. For example, if initially an agent
partitions movie genres into comedies and noncomedies then a finer genre criterion
might subdivide comedies into slapstick comedies and the remainder. The partition of
X into choice classes that results can then also become finer: each choice class that
previously fused all comedies can now be subdivided.12

Agents have a second goal of decreasing their decision-making costs. Let �(Ci)
denote the cost of criterion Ci. I assume throughout that, for any criterion Ci, �(Ci)

11. We could define an agent’s true preferences by the ordering the agent would form if he or she had
access to every feasible criterion.

12. If an increase in the number of choice classes qualifies as beneficial only if the partition of X into
choice classes becomes finer, results comparable to Proposition 1 and Theorem 1 would continue to hold.
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Mandler Coarse, Efficient Decision-Making 11

� 0. Until Section 6, costs will be determined by the number of Ci-categories: for all
criteria Ci and bC i , e.Ci / D e.bC i / ) �.Ci / D �.bC i /. I therefore write �(e), defined
for integers e � 1, when convenient. The cost of a set of criteria C D fC1; : : : ; CN g
is the sum �ŒC� D PN

iD1 �.Ci /. The costs of criteria could aggregate nonadditively
if criterion construction displays economies of scale, a possibility I will discuss in
Section 4.

To assess which cost functions are plausible, recall that to form a criterion an
agent must normally find an appropriate attribute, determine a partition that defines
the criterion’s categories, and order these categories. Criteria with one category do
not require any of these steps. So if e is the number of categories in the criterion, the
partitioning cost might be a linear function of the number of categories that actually
discriminate, e � 1. Ordering will require an agent to decide, for any pair of categories,
if they are ranked and if so, which is superior:

�
e
2

� D e.e�1/
2

decisions must be made.
There may also be a fixed discovery cost ı of finding a reasonable attribute for a
criterion to order and deciding how that attribute should be weighted when the criteria
are aggregated. Putting these factors together, one reasonable specification is for the
cost of e > 1 categories to equal

�.e/ D ˛.e � 1/ C ˇ
e.e � 1/

2
C ı,

where ˛, ˇ, ı > 0. The strict convexity of this function suggests that the marginal cost
of categories will be strictly increasing in e. This function serves only as an example.
Our results will not impose parametric forms.

The case for increasing marginal costs does not apply, however, to the additional
costs incurred by binary (two-category) criteria. Since single-category criteria do not
require partitioning, ordering, or even selection of an attribute, they should have a
0 cost (though we will not impose this assumption outside of Section 4.2). And if
single-category criteria were costly no agent would use them: they make no choice
distinctions. The fixed discovery cost of identifying and weighting a suitable attribute
therefore forms part of the cost of using a binary criterion. A large discovery cost
(ı in the previous paragraph) can therefore make a move from no criterion for
an attribute to a 2-category criterion more expensive than a move from 2 to 3
categories. Increasing marginal costs would then not kick in until we reach the third
category.

Given a choice function c, let n(c) be the number of choice classes in c. Remember
that the notation .C; c/ means that c uses C.

DEFINITION 4. The pair .C; c/ is more efficient than the pair .C0; c0/ if

n.c/ � n.c0/ and �ŒC� � �ŒC0�,

and one of the inequalities is strict. The set of criteria C is more efficient than C0 if
there exists a c that uses C such that .C; c/ is more efficient than .C0; c0/ for any c0 that
uses C0. A set of criteria C (resp. pair .C; c/) is efficient if there does not exist a more
efficient C0 (resp. .C0; c0/).
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The advantage of criteria is that each criterion can discriminate within the sets
of alternatives that the other criteria fail to rank, for example, the genre criterion
for movies will discriminate within each director category. The number of choice
distinctions can therefore equal the product of the number of categories in the criteria
as long as that product does not outstrip the cardinality of X.

DEFINITION 5. The pair .C; c/ maximally discriminates if the number of choice
classes of c equals minŒ

QN
iD1 e.Ci /; jX j�.

PROPOSITION 1. If .C; c/ is efficient then .C; c/ maximally discriminates.13

If .C; c/ is efficient then n(c) � n(c0) must hold for any .C0; c0/ that satisfies the
constraints that C0 has the same number of criteria as C and e.C 0

i / D e.Ci / for all
i (since then �ŒC0� D �ŒC�). To see when n(c) reaches a maximum subject to these
constraints, fix some .C; c/. Since alternatives in different choice classes must be
distinguished by at least one criterion, n(c) cannot exceed the number of intersectionsTN

iD1 Ei , where each Ei is a Ci-category. The number of these intersections is in turn
bounded by the product

QN
iD1 e.Ci /. Criteria moreover can always be chosen to reach

this bound, and the bound is necessarily achieved when X is a product of attributes
and each Ci orders a distinct attribute. Our examples all enjoy this product feature.
Recall that in the movie case, three criteria with 4, 3, and 2 categories can distinguish
24 D 4 � 3 � 2 types of movies: each type equals the intersection of one genre
category, one director category, and one actor category.14 A choice function does not
have to designate each intersection of Ci-categories to be a choice class—an agent
might decide to ignore a criterion that, say, categorizes foods by color when the agent
cares only about taste—but each intersection will form a distinct choice class when
decisions are made by generic weighted-voting choice functions.

An efficient .C; c/ must maximally discriminate regardless of what assumptions
are placed on the cost of criteria. Costs do come into play in the determination of the
optimal number of criteria and their optimal coarseness, which we consider next.

4. The Efficiency of Coarse Criteria

Under relatively mild assumptions, efficiency will be enhanced by letting coarse
criteria—criteria with fewer categories—replace fine criteria. Maximum efficiency
is achieved by the binary criteria that have just two categories each, the minimum
nontrivial number, and for this result the needed assumptions are milder still.

Increasing the number of categories e in a criterion seems to present a trade-
off. Although the affected criterion presumably becomes more expensive to form,

13. Proofs omitted from the text are in the Appendix.

14. Products of attributes in fact form the prototype of all cases of maximal discrimination: when criteria
maximally discriminate, the alternatives can always redescribed as a product of attributes.
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Mandler Coarse, Efficient Decision-Making 13

the creation of a given number of choice classes will require fewer criteria. Under
conditions I will lay out, the first effect dominates the second: the cost of a larger e
outweighs the advantage of using fewer criteria.

EXAMPLE 2. To illustrate, consider choice functions with 9 choice classes. The
minimal set of binary criteria that could lead to such a choice function must consist of
4 criteria: the maximum number of choice classes that N binary criteria can generate
is 2N (Proposition 1) and the minimum integer N such that 2N is greater than or equal
to 9 is 4, that is, dlog29e D 4. The cost of using four binary criteria is therefore 4�(2).
Ternary criteria with 3 categories each would seem to be a better fit with 9 choice
classes given that 9 is an exact multiple of 3. Generating a choice function with 9 choice
classes requires 2 ternary criteria, which have a cost of 2�(3). Since a single-category
criterion makes no discriminations and should be costless (�(1) D 0), the binary and
ternary sets each employ the same number of discriminating categories, namely 4.
So if the marginal cost of discriminating categories is increasing the binary set will
be cheaper. Formally, increasing marginal costs imply �(3) � �(2) > �(2) � �(1) D
�(2) and hence 2�(3) > 4�(2). Since this inequality is strict it will continue to hold if
criteria incur a small discovery cost ı but it could be overturned by a large ı. If the
marginal cost of categories is constant, the costs of the binary and ternary sets would
tie but the binary set can generate an additional 7 D 24 � 9 choice classes. So under
mild assumptions binary criteria will enjoy both a cost and a number-of-choice-classes
advantage over ternary criteria.

Both the binary and the ternary sets of criteria we have defined employ markedly
fewer categories than the 9 categories that a single criterion (in effect, a preference
relation) would need to generate a choice function with 9 choice classes. Building
choice distinctions from a nontrivial set of criteria, whether or not the set is efficient,
requires much less decision-making effort than the direct evaluation method of making
a separate decision for each pair of choice classes. �

Although Example 2 might seem to suggest that the advantage of binary criteria
relies on marginal costs of categories that are at least weakly increasing, the scope of
binary optimality extends much further.

Let X denote a set of domains, with each X 2 X associated with its own family
of choice sets. We say that C has a domain in X if there is a X 2 X such that each Ci
in C is a binary relation on X. Since single-category criteria make no discriminations,
we assume in this section that they are excluded from sets of criteria.

THEOREM 1. Suppose that the set of domains X contains a X with m alternatives for
all m > 1. The following two statements are then equivalent:

(1) any efficient C that has a domain in X contains only binary criteria,

(2) �(e) > �(2)dlog2 ee for all integers e > 2.
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The log cost condition (2) is a weak assumption: the marginal cost of additional
categories can fall as e increases and even fall to 0. For the reasoning behind half of
Theorem 1, suppose (2) is satisfied: costs will then fall if any criterion Cj with e >

2 categories is replaced by dlog2ee binary criteria and, since 2dlog
2

ee � e, the binary
criteria will contribute at least as much to the product of the ei (the potential number
of choice classes) as Cj did.

If the marginal cost of criterion categories is in reality increasing, the optimality
of binary criteria will withstand sizable adjustments to our framework. Suppose that
using a criterion with e > 1 categories imposes a fixed discovery cost ı (as in Section
3) as well as a cost �(e) that satisfies the log cost condition. Then, consistently with
Theorem 1, it will be optimal to use only binary criteria if ı is small. As ı increases,
a point will come where total criterion costs fail to satisfy the log cost condition and
it will be efficient to use a nonbinary criterion.15 But when �(e) displays increasing
marginal costs that point will come later: discovery costs can vary more widely without
threatening binary optimality.

We have assumed that costs are additive across criteria, which is open to question
since the costs of forming categories may have spillovers across criteria: an agent’s
identification of the genre of romantic comedies may make it easier for the agent
to recognize cognate types of directors. Condition (2) in Theorem 1 continues to
imply condition (1) in such cases if we read �(e) and �(2) as the additional costs of
using criteria with e and 2 categories respectively given any array of other criteria
in use.16

We turn to an application and an extension of Theorem 1.

4.1. The Costs of Fine Criteria and Direct Preference Evaluation

Theorem 1 implies that the penalty for using fine criteria can be formidable. If every
criterion is constrained to have e categories, the minimum cost of a set of criteria that
generates a choice function with n choice classes is dloge ne�(e) (since dloge ne is the
minimum integer N such that eN � n). For approximation purposes, we ignore the
difference between dloge ne and loge n. The ratio of the minimum costs of a set of
e-ary criteria and a set of binary criteria, when both generate n choice classes, is then

�.e/ loge n

�.2/ log2 n
D �.e/

�.2/ log2 e
.

Recalling that the linear-quadratic cost functions are plausible, suppose � is linear
or superlinear in e. Then, due to the slow-increasing log2e term in the denominator,
the stated ratio will grow rapidly as a function of e: the losses incurred by using fine
criteria become substantial as fineness increases. The costliest method of all lies at the

15. Fixing some e > 2, �(e) C ı � (�(2) C ı)dlog
2
ee if ı is sufficiently large.

16. Condition (1) will imply condition (2) (with the proof unchanged) if �(e) and �(2) are the costs of
using a single criterion with e and 2 categories, respectively, and no other criteria are in use.
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Mandler Coarse, Efficient Decision-Making 15

extreme where a single criterion by itself determines all choice classes (e D n), which
is the traditional account where agents make direct preference evaluations. The penalty
exacted by direct evaluation would become unsustainable as n increases: agents would
be forced to turn to some cost-reduction strategy.

This estimate of the cost of fineness casts economic light on the empirical
observation of psychologists that agents have only a limited ability to retain and
manipulate concepts in working memory. These limitations seem to be a cognitive
defect. But since these information-processing constraints force us into making choice
discriminations more efficiently, there may never have been a pressing need for a
capacity to handle many categories. Our limitations might even be the outcome of
optimizing adaptations.

Binary criteria do not carry a special status in a contest between coarse and fine
criteria. Had we, for example, compared e-ary criteria with k-ary rather than binary
criteria, the cost ratio of the former to the latter would equal �(e)=�(k)logk e and
we would conclude that as e increases k-ary criteria enjoy a rapidly increasing cost
advantage.

Comparisons aside, the cost of using binary criteria, �(2)dlog2 ne, increases slowly
as a function of n as does the cost of using k-ary criteria. The problem introduced at the
beginning of the paper, where the cost of preference construction increases on the order
of n2 (or on the order of n log n for rational preferences) evaporates for criterion-based
decision-making: the cost of a set of criteria of fixed coarseness k that makes n choice
distinctions increases only on the order of log n.

4.2. Coarser is Better

If the log cost condition holds, first-best efficiency requires criteria to be binary. If we
impose the stronger assumption that the marginal cost of categories is increasing then
any move from finer to coarser criteria brings an efficiency gain.

In a comparison of the coarseness of two sets of criteria, single-category criteria
should have no impact. They are presumptively costless and make no discriminations.
The economically relevant number of categories of a criterion Ci is given by the
number of discriminating categories e�

i � ei � 1, where as usual ei D e(Ci). Call the
vector of positive integers (e1, . . . , eN) the discrimination vector of C DfC1; : : :CN g.
Following the analogy of first-order stochastic dominance, we consider C to be coarser
than C0 if the proportions of discriminating categories that are smaller than any given
level is greater for the discrimination vector of C than for the discrimination vector of
C0. Given a discrimination vector e D .e1; : : : ; eN / with some ei > 1, and given an
integer k � 1, let pk.e/ denote the proportion of

P
i2f1;:::;N g e�

i consisting of terms
that satisfy e�

j � k:

pk.e/ D
P

i2fj We�
j

�kg e�
iP

i2f1;:::;N g e�
i

.
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The set of criteria C with the discrimination vector e is coarser than the set C0 with the
discrimination vector e0 if, for each integer k � 1, pk.e/ � pk.e0/ and strict inequality
obtains for some k � 1.17

Greater coarseness cannot by itself imply an increase in efficiency. First, coarseness
measures the distribution of categories not their aggregate quantity: C could be coarser
than C0 but �.C/ and n(c) (for the c paired with C) could be so large that C and C0
are not efficiency ranked. A pure advantage of coarseness can therefore appear only
when the number of discriminating categories in C and C0 is the same. Second, the
potential advantages of coarseness need to find traction. As Example 2 illustrated,
either marginal costs must be strictly increasing or there must be an opportunity to
make more choice distinctions.

To deal with these points, define marginal costs to be (strictly) increasing if
�(1) D 0 and �(e C 1) � �(e) is (strictly) increasing in e. Significant discovery
costs (see Section 3) can prevent marginal costs from being increasing. Let C and
C0 form a tight comparison if

PN
iD1 e�

i D PN 0

iD1 e0�
i and either marginal costs are

increasing and minŒ
QN

iD1 ei ;
QN

iD1 e0
i � < jX j or marginal costs are strictly increasing.

THEOREM 2 (“Coarser is better”). If C and C0 form a tight comparison and C is
coarser than C0 then C is more efficient than C0.

Although Theorem 2 implicitly provides sufficient conditions for an efficient set
of criteria to be all-binary, the log cost condition of Theorem 1 is a much weaker
requirement.

The heart of the proof of Theorem 2 is simple. WithC andC0 as given in the theorem,
we can append enough single-category criteria to C0 to equalize the number of criteria
in C and C0 without affecting the cost of C0 or the number of choice classes that C0
can generate. Figure 1 illustrates with a finer (solid, blue) set C0 of three criteria and a
coarser (dashed, red) set C of six criteria, with criteria arranged so that the number of
categories increases from left to right. The bottom graph adds single-category criteria
to C0 to equalize the number of criteria. Now compare the criteria in C and the amended
version of C0 with the greatest number of categories, then compare the criteria with the
second greatest number of categories, and so on, that is, move from right to left in the
figure. The greater coarseness of the criteria in C and the fact that C and C0 have the
same number of discriminating categories imply that at the first point where C and C0
differ, it will be the criterion in C0—call it C 0

more—that has more categories. Reduce the
number of categories in this criterion by 1 and increase by 1 the number of categories
in some other criterion C 0

k
in C0 that has at least two fewer categories than C 0

more to
create a new set C00. In the bottom graph, this change would be a move of a category
leftward from the rightmost point where the height of a solid column exceeds that of a

17. If coarseness were defined using the distribution of the e
i

rather than the e�
i

, one could take any
discrimination vector, append a large number of 1s to it, and thereby make it appear to be highly coarse
even though its cost and discriminatory power would not have changed.
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ei

2
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fine coarse

FIGURE 1. The move from a fine to a coarse distribution of categories.
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dashed column. The change reduces costs, and strictly reduces costs if marginal costs
are strictly increasing. Moreover, by a calculation similar to the one in the introduction,
the product of the e0

i will increase. Hence the number of choice classes in some c00
that uses C00 can weakly increase and can strictly increase if

QN
iD1 e0

i < jX j. Due to
the tight-comparison assumption, C00 is strictly more efficient than C0 (though it need
not be coarser). Since the number of discriminating categories is the same in C and C0,
there is a sequence of such steps that terminate in the set of criteria C; in the figure,
there is just enough mass where the solids exceed the dashes to fill in the locations
where the dashes exceed the solids. Since each step is an efficiency increase, C must
be more efficient than C0.

5. Efficiency Leads to Rationality

Binary criteria will under mild conditions lead to choice functions that maximize
a rational preference. Subject to these conditions, rational choice is therefore a
consequence of efficient decision-making. I begin with a direct and intuitive argument
that shows that weighted voting, introduced in Section 2, will generate a rational choice
function when criteria are binary. Binariness is crucial: recall from the introduction
that if three criteria rank three alternatives as voters do in the Condorcet paradox,
then an equal-weight vote will cycle. Given the possibility results in voting models
with dichotomous preferences (see footnote 4), one would expect binary criteria to
aggregate well.

DEFINITION 6. Let C be a set of criteria and ! the criterion weights (!1, . . . , !N).
Then c is a !-weighted-voting choice function that uses C if c uses C and, for all
A 2 F , c(A) equals (

x 2 A W
NX

iD1

!isi .x; y/ � 0 for all y 2 A

)
when this set is nonempty.18

This definition encompasses Example 1 in Section 2 but generalizes by remaining
agnostic about what alternative is chosen when no alternative defeats all of its
competitors in A in pairwise weighted votes.

A choice function c is rational if there is a complete and transitive preference
relation % on X such that, for all A 2 F , c(A) D fx 2 A: x % y for all y 2 Ag.

18. Recall from Section 2 that, for any pair x, y,

s
i
.x; y/ D

8<:
1 if x C

i
y

�1 if y C
i

x

0 otherwise
:
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Mandler Coarse, Efficient Decision-Making 19

PROPOSITION 2. For any criterion weights !, if each criterion in the set C is binary
then the !-weighted-voting choice c function that uses C is rational.

Proof. For C D fC1; : : : ; CN g, define ui W X ! R by ui(x) D !i if x is in the
top category of Ci and ui(x) D 0 otherwise. Since ui(x) � ui(y) D !isi(x, y) for
any x, y 2 X,

m.A/ �
(

x 2 A W
NX

iD1

ui .x/ �
NX

iD1

ui .y/ for all y 2 A

)

D
(

x 2 A W
NX

iD1

!isi .x; y/ � 0 for all y 2 A

)

for all A 2 F . Since fPN
iD1 ui .x/ W x 2 Ag is finite (it has at most 2N elements),PN

iD1 ui .x/ must reach a maximum as x varies in A and therefore m(A) is nonempty.
Given Definition 6, m(A) D c(A) and, since the binary relation % on X defined by x % y
if and only if

PN
iD1 ui .x/ � PN

iD1 ui .y/ is complete and transitive, c is rational. �

The reach of Proposition 2 is fairly broad; for example, when criteria are binary a
seemingly unrelated choice procedure, the lexicographic rule of Manzini and Mariotti
(2007), leads to a weighted-voting choice function. The emphasis in Mandler, Manzini,
and Mariotti (2012) that lexicographic compositions of binary criteria lead to rational
choice functions therefore misleads a little: the key ingredient is that criteria are binary,
not the lexicography.

For the general result, we continue to assume that any alternative that bests every
other element of a choice set A is selected from A. Given the choice function c, call
x 2 A a “Condorcet winner in A” if x 2 c(fx, yg) for all y 2 A and define c to satisfy
the Condorcet rule if, for any A 2 F , whenever there is a Condorcet winner in A then
c(A) equals the entire set of these winners.

We generalize weighted voting by requiring there to be a binary relation on sets
of criteria that represents which sets are more powerful or “decisive” than others. Let
U x;y D fCi 2 C W x Ci yg denote the set of criteria that rank x over y.

DEFINITION 7. A choice function c satisfies the weighting axioms with respect to the
set of criteria C if there is a binary relation D on subsets of criteria such that, for all x,
y 2 X with x 6D y and all subsets of criteria U, V, U0, V0, and W in C,

� x 2 c(fx, yg) , Ux, y D Uy, x (decisiveness),

� U D V, U0 D V0, and U \ U 0 D ¿ ) .U [ U 0/ D (V [ V0) (union),

� U D V and W � (U \ V) ) (U n W) D (V n W) (subtraction).

Decisiveness implies that when one alternative is chosen over another then the
criteria that back the first alternative are decisive against the criteria that back the
second: the victorious set of criteria has greater “weight” than the defeated set.
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Accordingly when the agent faces a different pair of alternatives backed by the same sets
of criteria the alternative backed by the victorious set should again win. Union states
that if two sets of disjoint criteria defeat other sets of criteria separately then the union
of winners is decisive against the union of the losers. The disjointness is important: the
union of overlapping sets of criteria might be no larger (or not much larger) than the
sets of winners taken separately and it would not be reasonable to require such a union
to defeat a more formidable set of criteria than each faced separately. Subtraction says
that if we take away the same set of criteria from the winners and the losers then the
winners remain decisive.

It is easy to confirm that a weighted-voting choice function that uses C satisfies the
weighting axioms with respect to C. More complex choice functions can also satisfy the
voting axioms. For example, suppose C is partitioned into progressively less powerful
“oligarchies” C1; C2; : : : ; Cn each of which conducts a weighted vote of criteria. Let
oligarchy C1 select all alternatives from the choice set A that C1 awards its highest
score, as calculated in Example 1. Then present these selections to oligarchy C2 which
will further narrow the selections using its highest score, and so on. The advantage of
the weighting axioms is that it is easy to confirm that a rule like this satisfies the axioms
(if a and b replicate the votes that x and y receive then a will defeat b if x defeats y, a
union of victorious criteria will win at least as many oligarchy votes, and a subtraction
of criteria will not change the outcome of any oligarchy vote). There are limits of
course to what the weighting axioms can accomplish. Consider a liberalism rule akin
to those in Sen (1970). Suppose each oligarchy Ck “owns” the right to decide between
some pair of alternatives: the Ck scores determine the agent’s choice from this pair.
Then if oligarchy 1 is the determiner for x and y and oligarchy 2 is the determiner for
a and b and the two oligarchies have opposite rankings for both pairs the decisiveness
axiom cannot be satisfied.

THEOREM 3. If a choice function c satisfies the weighting axioms with respect to a
set of binary criteria and satisfies the Condorcet rule then c is rational.

Subject to the stated provisos—the weighting axioms, the Condorcet rule, and
the log cost condition—Theorems 1 and 3 together show that efficiency in decision-
making implies that choices will be rationally ordered.

6. Diverse Criteria

Criteria will now vary by how costly their categories are and by the value of their
distinctions. With movies, genre distinctions are presumably cheaper to discover
than director distinctions and, depending on the individual, have greater or lesser
value. Criteria can also be worth more if they distinguish attribute differences that
are more likely to occur in the choice sets an agent encounters. If most menus of
movies contain both comedies and thrillers but no documentaries then a criterion
that distinguishes comedies from noncomedies is more valuable than a criterion that
distinguishes documentaries than nondocumentaries.
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Mandler Coarse, Efficient Decision-Making 21

When criteria are diverse, it might seem that an agent should add choice classes by
refining the high-value criteria that display diminishing marginal costs for categories.
In fact the coarse criteria continue to prevail: even when the marginal cost of categories
is diminishing and no matter how many choice distinctions an agent wants to make,
the agent should use only criteria with fewer categories than some fixed ceiling. This
conclusion holds whether or not new criteria incur a large discovery cost, which as we
have seen can undermine the efficiency of binary criteria.

The model of diverse criteria will serve as a bridge between the goal that agents have
pursued so far, maximizing the number of choice classes, and utility maximization:
both will be special cases of diverse criteria.

Each criterion index i will now identify a fixed attribute of the domain, for example,
genre or the type of director. A set of criteria C will, for each attribute i, contain either
one or no criterion that orders that attribute. Let fCig denote the feasible criteria for
attribute i. To make sure that the conclusion that criteria should be coarser than a fixed
ceiling is nontrivial, criteria must have the potential to be arbitrarily fine. Accordingly,
I assume that there is at least one criterion in fCig with e categories for each e > 1. To
give agents the option to replace fine with coarse criteria no matter how many criteria
are in use, I assume there is an attribute i for each integer i > 1.

The value of a criterion v(Ci) will incorporate both the importance of attribute i and
the benefits of the number of categories in Ci. Our earlier model took the value v(Ci)
of a category Ci to equal its number of categories e(Ci) and measured the productivity
of a set of criteria by the number of choice classes the set could generate, namely, the
product

QN
iD1 e.Ci /. The new model retains the multiplication of the v(Ci) but lets

those values be modified by the significance of the distinctions that a Ci can make.
Criterion values are multiplied to incorporate their interactive benefits: an increase
in the distinctions of one criterion Ci can allow the other criteria to become more
productive since they can distinguish within more Ci-categories. Setting the value of
a set of criteria to equal the product of the v(Ci) also sets a common framework:
both the number of choice classes and utility can be admitted as agent objectives.
The optimality-of-coarse-criteria result, Theorem 4, will therefore imply that utility
maximization requires criteria to be coarse.

Formally, I assume that the values of criteria satisfy the following admissibility
requirement: each v(Ci) lies in the interval Œv; Nve.Ci /� when e(Ci) > 1, where
1 < v < Nv, and v(Ci) D 1 when e(Ci) D 1. Though I will not need to impose a
formal assumption, for fixed i the value v(Ci) would normally increase as e(Ci) grows.

The v(Ci) define a discrimination value function V on sets of criteria given by

V.C/ D
Y

C
i
2C

v.Ci /.

This function replaces the number of choice classes as the agent’s discrimination
objective. The original model is the special case where v(Ci) D e(Ci) for all Ci.
Admissibility allows the value of a criterion to grow without bound as its number
of categories increases, a potential advantage for fine criteria (and a contrast to the
utility-maximization model to come, which will conclude that criteria have bounded
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value). Coarse criteria in the present model can have negligible value since v(Ci) can
be near 1. Despite these biases that can favor fine criteria, the optimal decision will be
to select coarse criteria.

An individual criterion’s value v(Ci) mixes together the value per category of Ci
and the number of categories in Ci. Some special cases disentangle these two effects.
Suppose, for example, that the value per category, say wi, is a function only of the
number of categories: v(Ci) D wi(e(Ci))e(Ci) where wi(e(Ci)) must lie in an interval
Œw; xw� such that .1=2/ < w < xw and xw > 1. On the grounds of diminishing marginal
utility, it would be natural to let wi(e) diminish in e, unlike our original model which
in effect had wi(e) D 1 for all e.

The spillover of benefits, where the distinctions of one Ci make other criteria more
productive, can magnify when criteria have diverse values. To illustrate, consider a
two-criteria world where C1 always has greater value per category than C2, which in
the special case of the previous paragraph would mean w1(e) > w2(e0) for all integers
e, e0 > 1. An expansion of e2 would allow C1 to distinguish more finely: each of
the larger set of C2-categories can be partitioned by C1 into e(C1) distinct subsets. If,
say, C1 and C2 are both initially binary an expansion of e2 from 2 to 3 would allow
C1 to make its more valuable, binary distinction within 3 rather than 2 subsets of X.
The greater value of C1 therefore does not imply that an agent who decides to use a
larger budget of categories should devote all of the increase to C1; an increase in the
number of C2-categories could be more advantageous. Theorem 4 accordingly shows
that using additional coarse criteria, even if they have small value, will be superior to
making a highly valuable fine criterion yet more fine.

Our structural assumption that the value of a criterion v(Ci) is bounded above by
a linear function of e(Ci) places an upper limit on how advantageous each additional
category can be. If those incremental benefits had no bound then fine criteria could
trump coarse criteria—and they may well do so sometimes. The bound will serve two
goals. First, it identifies the dividing line where coarse criteria can lose their advantage.
Second, it is generous enough to permit the benefits that fine criteria enjoy in the model
of Section 3 and is more than generous enough to encompass utility maximization,
which places a ceiling on the value of the criteria that order an attribute regardless of
their fineness (see Section 6.1).

I retain our notation for the cost of criteria but drop the assumption that the
cost of a Ci is determined solely by e(Ci). The set of criteria C is efficient if there
does not exist a C0 such that V.C0/ � V.C/ and �ŒC0� � �ŒC� with at least one strict
inequality.

The set of feasible criteria needs to be well-behaved for our coarseness result. Each
sequence of criteria hC k

i i1
kD1

for attribute i such that e.C k
i / D k for each k defines a

cost function � i on the natural numbers by setting �i .k/ D �.C k
i /. The feasible criteria

for i thus define a set of feasible cost functions for i, denoted f� ig, one function for
each possible hC k

i i1
kD1

and the entire set of feasible cost functions is
S1

iD1f�ig. The
set of feasible cost functions is compact if every sequence of feasible cost functions has
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Mandler Coarse, Efficient Decision-Making 23

a subsequence that converges to a feasible cost function.19 This assumption ensures
that the set of feasible cost functions has no “holes” but does not rule out any cost
functions.

Define � i to dominate fractional power functions if there exists a 0 < a < 1 such
that, for any � > 0, � i(e) > �ea for all e sufficiently large. This condition weakens
somewhat the log cost condition used earlier, but the marginal cost of categories can
still descend to 0 as e increases. For example, �i .e/ D p

e satisfies the condition (set
a D 1=4).

THEOREM 4. If the feasible cost functions dominate fractional power functions and
form a compact set then there is a ceiling b such that any efficient and feasible C
contains only criteria with fewer than b categories.

The thrust of Theorem 4 is that, even if some criteria have value that grows without
bound as the number of their categories increases, it is better to use more low-value
coarse criteria than to let the high-value criteria become perpetually finer.

Though binary criteria are not singled out in the assumptions of Theorem 4, the
proof proceeds by showing that any criterion that is excessively fine can be efficiently
replaced by binary criteria. Binary criteria moreover continue to enjoy a special status.
If many attributes share the same values and cost functions for categories then to
achieve efficiency the criteria for these attributes must all be binary, assuming that the
log cost condition holds. When there are only a few attributes with shared values and
costs the binary criteria need not dominate. But if in addition assumptions comparable
to those imposed by Theorem 2 hold then it will be optimal to smooth the numbers of
categories across criteria: the numbers of categories for these criteria should differ by
at most one.

6.1. Utility-Maximizing Criteria

I now derive utility functions for sets of criteria from a more classical decision-theory
starting point and show that utility and discrimination value are compatible goals:
the utilities will satisfy our assumptions on discrimination value with room to spare.
Theorem 4 therefore applies to utility-maximizing agents.

A criterion implicitly tells an agent how to distinguish among alternatives by the
categories to which they belong. Without that information, the agent would not know
which categories contain which alternatives. To show that discrimination value can
order sets of criteria as utility maximizers would, I model this information explicitly.

Let X equal a product of n attributes X D Qn
iD1 Xi where n is large enough to

accommodate Theorem 4 or counts only those attributes ordered by some criterion
in use. Each criterion orders only one attribute and agents again choose at most one

19. The distance between two cost functions � and �0 is defined to equal the supremum over e � 1 of the
distance between �(e) and �0(e), that is, sup

e2N
j�.e/ � �0.e/j.
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criterion per attribute. As before, for each attribute i and e > 1 there is a feasible
criterion for i that contains e categories.

The agent will select alternatives from finite choice sets A � X drawn from a finite
family of possible choice sets A. For each A 2 A, the attribute possibilities can be
chosen independently and therefore A will be a product

Qn
iD1 Ai where Ai � Xi for

each i. This assumption ensures that the criteria that order a specific attribute can be
evaluated separately from the criteria for other attributes; it will fit the house example
of Section 2 if a house’s architecture, heating system, and so forth, can be chosen
independently.

The agent ex ante does not know the attribute levels of an alternative
x D (x1, . . . , xn) or the criterion categories that contain x and therefore does not
know the utility x will deliver. This uncertainty is consistent with knowing the labels
of the alternatives and attributes. Prior to consulting a criterion i that categorizes by
director, the agent may know the director’s name xi of a movie x but not the category or
utility implications of that name. An agent also might not know ex ante which choice
set in A he or she will face.

Each state s will specify all of the criterion categories that contain each x 2 X, the
utility of each x, and the A 2 A the agent faces. The utility that each x can deliver is
the random variable u.x/ D Pn

iD1 ui .xi /; which I assume is an integrable function
of s. The agent seeks to maximize Eu.x/.20 Let A(s) D fx1(s), . . . , xT(s)(s)g denote the
choice set in A the agent faces at state s where T(s) > 1.

The agent when using the set of criteria C discovers, for each Ci 2 C and x 2
X, the Ci-category that contains x and the conditional expectation of ui(xi) given this
information, which is a random variable that I denote by uC

i
Œxi �. I assume that uC

i
Œxi �

is determined by Ci alone: the same random variable uC
i
Œxi � obtains if a new C0 is

chosen that also contains Ci. This assumption amounts to an independence condition:
the criteria in use for other attributes do not affect the distribution of uC

i
Œxi �. I do not

assume however that the draws that make up any of the choice sets are independently
(or identically) distributed. Since a criterion Ci with ei categories partitions X into
ei subsets, uC

i
Œxi � can assume at most ei values. When ei D 1 the criterion Ci

makes no discriminations. Since in this case the Ci-category that contains x equals
X, the agent does not revise his ex ante expectation of the attribute i utility of x:
uC

i
Œxi �.s/ D EŒui .xi /� for every state s.
To give fine criteria an edge, I do not suppose, as one normally would in expected

utility theory, that the values that each ui can attain are bounded. The model thus
permits fine criteria that with positive probability can inform an agent that ui(xi) has
surpassed any given threshold, no matter how large.

I assume that there is a nonnegligible expected gain to letting a criterion Ci
distinguish categories. For any attribute i let there be a probability bounded away
from 0 that, for each available alternative, a criterion with more than one category will
report that some other available alternative lies in a nontrivially superior attribute i

20. P.E/ will be the probability of an event E and E.Y / will be the expectation of a random variable Y.
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category. Formally, we require there to be a " > 0 and, for each attribute i, A 2 A, xk

2 A, and Ci with e(Ci) > 1, a x j 2 A such that

P

h
uC

i

h
x

j
i

i
� uC

i

h
xk

i

i
> "

i
> ".

This assumption, which is mild, rules out only cases where a criterion will nearly
always recommend the same alternative from some choice set (which would render
the criterion almost useless).

Since the agent will select the available attribute levels with the highest conditional
expected utility, the expected utility for attribute i provided by Ci when facing the choice
set A(s) is given by

UC
i
.s/ D E

h
max

h
uC

i

�
x1

i .s/
�
; : : : ; uC

i

h
x

T .s/
i .s/

iii21

:

Consequently the ex ante expected utility for attribute i provided by a criterion Ci when
A is unknown is EUC

i
. Since the attributes levels can be chosen independently, the

expected utility of a set of criteria C is U.C/ D P
C

i
2C EUC

i
.

The model incorporates the advantage that a criterion Ci enjoys if it distinguishes
between attribute levels that are frequently in the same choice set. The expected utility
for attribute i delivered by the alternative chosen from A can then differ substantially
from the ex ante expected utility for attribute i offered by an arbitrary alternative in A:
EUC

i
can be significantly greater than EŒui .xi /�.

A utility maximization model specifies, for each Ci, a EUC
i

that can obtain when
our assumptions on the ui are satisfied and thus a function U. A utility maximization
model qualifies as a discrimination value model if there are values for criteria that
satisfy the admissibility requirement such that (1) for each attribute i, EUC

i
and v(Ci),

seen as functions of Ci, represent the same ordering and (2) U and the discrimination
value function that results from the values for criteria represent the same ordering over
sets of criteria.22

PROPOSITION 3. Any utility maximization model qualifies as a discrimination value
model.

Although the diverse criterion model allows v(Ci) to grow without bound as e(Ci)
increases, the proof of Proposition 3 shows that the values for criteria that stem from
utility maximization are bounded: utility maximization fits the model with ease.

EXAMPLE 3. To get a feel for actual numbers, suppose (1) the agent chooses from
the choice set A1 � 	 	 	 � An where each Ai consists of two attribute levels (2) for
each alternative x and attribute i, ui(xi) is uniformly distributed over the interval

21 To dispel a possible confusion, the state s is fixed in this expression and serves only to identify the
alternatives in the choice set A(s) the agent faces.

22. Representation has its standard meaning: a function w W Y ! R represents the binary relation % if
w(y) � w(y0) , y % y0.
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[�1=2, 1=2], and (3) for each Ci and Ci-category, the conditional distribution of ui(xi)
given the Ci-category that contains x is uniform over a subinterval of [�1=2, 1=2] of
length 1=e(Ci). So the agent believes initially that ui(xi) lies in [�1=2, 1=2] and after
consulting Ci learns that ui(xi) lies in one of e(Ci) subintervals of common length.
A finer criterion always provides a greater expected benefit than a coarse criterion
(costs aside) as it is more likely to distinguish between the utilities of the attribute
levels on offer. Easy calculations show the following relationship between the number
of Ci-categories and the expected utility of Ci:

e.Ci / EUC
i

1 0

2 0:125

3 0:148

4 0:156

1 0:167

where the bottom row lists a perfectly discriminating criterion. Two or three categories
deliver the lion’s share of a criterion’s potential value. �

7. Conclusion

To end with practical advice, suppose you want to use criteria to order in restaurants
with the goal of discriminating sufficiently among meals and making the fewest
decisions. Theorem 1 instructs you to use binary criteria and, to satisfy maximal
discrimination, you should set the binary distinction of each criterion to “cut across”
the distinctions made by the other criteria. To achieve these goals, you should view
the set of meals as a product of attributes, with one attribute for each criterion, and
let each criterion partition its attribute levels into two subsets, one better and one
worse.

If an agent uses monotone attributes—in the case of meals, say, calorie count or
cost—then building the needed criteria requires only that the agent choose a cutoff
that divides each attribute into two parts with more and less, respectively, of the
attribute. Some attributes that need not be monotone—meat versus vegetarian—may
also happen to divide the domain of alternatives easily into two parts. The upshot
of Theorem 1 is that a binary structure such as this, although it seems crude,
is the most efficient way to partition alternatives into a given number of choice
classes.

This binary method may offer a good description of how people sometimes decide.
Our analysis pushes Rubinstein (1996) one step further: not only do rational binary
relations stand out in their usefulness but those binary relations that stem from binary
categories end up being the cheapest way to make decisions.
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Appendix: Remaining Results and Proofs

PROPOSITION A.1. For any choice function c, the choice classes of c form a partition
of X.

Proof. It is sufficient to show that the binary relation xRy defined by “x and y are
elements of the same choice class” is an equivalence relation. Reflexivity and symmetry
are immediate. For transitivity assume that xRyRz. I show that xRz.

Given B � X and a 2 X, let B � a denote B n fag and B C a denote B [ fag.
Assume x 2 c(B) and z 2 B. Suppose by way of contradiction that z 62 c(B). Since

yRz, y 62 c(B). Since xRy, y 62 B. Letting B � x play the role of A in Definition 2, the
assumption that x 2 c(B) implies y 2 c(B � x C y) and hence, since yRz, z 2 c(B � x
C y). But, letting B � x again play the role of A, the assumption that z 62 c(B) implies
z 62 c(B � x C y). So x 2 c(B) and z 2 B imply z 2 c(B).

Next assume B \ fx; zg D ¿ and x 2 c(B C x). Suppose y 2 B. Then, since xRy,
y 2 c(B C x) and so, since yRz and letting B C x � y play the role of A, z 2 c(B C x
� y C z). Hence, since xRy and letting B C z � y play the role of A, z 2 c(B C z).
Alternatively suppose y 62 B. Then, since xRy, y 2 c(B C y). Hence, given yRz,
z 2 c(B C z). So B \ fx; zg D ¿ and x 2 c(B C x) imply z 2 c(B C z).

Finally, assume B \ fx; zg D ¿, w 2 B, and w 2 c(B C x). If y 2 B then yRz
implies w 2 c(B C x � y C z). Hence, letting B � y C z play the role of A and given
that xRy, w 2 c(B C z). If y 62 B then, letting B C x play the role of A, xRy implies
w 2 c(B C y) and hence, letting B play the role of A and given that yRz, w 2 c(B C z).
So B \ fx; zg D ¿, w 2 B, and w 2 c(B C x) imply w 2 c(B C z). �

DEFINITION A.1. Given a set of criteria C, the discrimination partition P is the
partition of X that, for any pair x, y 2 X, places x and y in the same P 2 P if and only
if, for each Ci 2 C, x and y are contained in the same Ci-category.

Proof of Proposition 1

Suppose .C; c/ is efficient. Since c uses C, n.c/ � jPj. Moreover, given C and hence
P , there exists a yc that uses C such that n. Oc / D jPj. For example, assign a distinct
number r(P) to each P 2 P , set R(x) D r(P) where P 2 P satisfies x 2 P, and
let Oc select from any choice set A only those alternatives x 2 A with the largest
R(x): Oc .A/ D fx 2 A W R.x/ � R.y/ for all y 2 Ag. It is easy to confirm that Oc
uses C, that is, if x and y are elements of the same cell of P then x and y are
elements of the same choice class. Conversely if x and y are elements of the same
choice class then, since fx; yg 2 F , Oc .fx; yg/ D fx; yg. Therefore R(x) D R(y) and
hence x and y are in the same cell of P . Since therefore n. Oc / D jPj, we must have
n.c/ D jPj.

Let ei indicate e(Ci), i D 1, . . . , N, for the remainder of the proof. We now
show that jPj � minŒ

QN
iD1 ei ; jX j�. If

QN
iD1 ei � jX j there is a partition Q of X withQN

iD1 ei (nonempty) cells and a bijection f from Q onto
QN

iD1f0; : : : ; ei � 1g, which
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we will view as the set of mixed-radix representations (see Knuth (1997)) with bases
e1, . . . , eN of the integers 0; : : : ;

QN
iD1 ei � 1. If

QN
iD1 ei > jX j let f be a one-to-one

map from the partition Q of singletons of X to
QN

iD1f0; : : : ; ei � 1g that contains in
its range the points

.0; : : : ; 0/; .minŒe1 � 1; 1�; : : : ; minŒeN � 1; 1�/; : : : ;

.minŒe1 � 1; Ne � 1�; : : : ; minŒeN �1; Ne�1�/;

where Ne D maxfe1; : : : ; eN g. Since Ne � jX j, such a f exists. Whether
QN

iD1 ei is � or
> than jXj, let fi(Q) denote the ith coordinate of f(Q). For i D 1, . . . , N, define bC i by
xbC iy iff fi(Q(x)) � fi(Q(y)), where Q(z) denotes the cell of Q that contains z. The
ei categories of bC i are then the nonempty sets E � X such that, for all x 2 E, y 2 E

iff fi(Q(x)) D fi(Q(y)). Due to the fact that f is onto (when
QN

iD1 ei � jX j) and our
selection of the image of f (when

QN
iD1 ei > jX j), each bC i has ei categories. For every

Q; Q0 2 Qwith Q 6D Q0 there is a i 2 f1, . . . , Ng such that fi(Q) 6D fi(Q
0). Consequently,

x, y 2 X are in the same cell ofQ iff x and y are contained in the same bC i -category for all

i. Hence, as in the preceding paragraph, there is a Oc that uses bC D fbC 1; : : : ; bC N g such

that n. Oc/ D jQj. Since .C; c/ is efficient, n.c/ D jPj, and bC has the same cost as C,
jPj � jQj D minŒ

QN
iD1 ei ; jX j�.

Next we show that jPj � minŒ
QN

iD1 ei ; jX j�. Since P is a partition of X,
jPj � jX j and therefore jX j <

QN
iD1 ei implies jPj � minŒ

QN
iD1 ei ; jX j�. So assumeQN

iD1 ei � jX j. To show that jPj � QN
iD1 ei , for any 1 � t � N, apply Definition

A.1 to fC1, . . . , Ctg to determine a partition Pt of X. Then jP1j � e1. Suppose for
t 2 f1, . . . , N � 1g that jPt j � Qt

iD1 ei . Fix some Pt 2 Pt . Then .PtC1 2 PtC1 and
PtC1 � Pt) if and only if there is a CtC1-category EtC1 such that PtC1 D Pt \ EtC1.
Since there are at most etC1 CtC1-categories, Pt contains at most etC1 cells of PtC1.

Hence jPtC1j � etC1.
Qt

iD1 ei / and we conclude that jPj D jPN j � QN
iD1 ei .

Since therefore jPj D minŒ
QN

iD1 ei ; jX j�, we have n.c/ D minŒ
QN

iD1 ei ; jX j�.

Proof of Theorem 1

Assume that �(e) > �(2)dlog2ee for all e > 2 and suppose that, for some X 2 X ,
there is an efficient set C of N criteria defined on X that contains a Ci with e > 2
categories. Let C0 be a set of N � 1 C dlog2 ee criteria such that, for j 2 f1, . . . ,
Ng n fig, e.C 0

j / D e.Cj / and where the remaining dlog2 ee criteria are binary. The
proof of Proposition 1 shows that we may construct .C0; c0/ so that the discrimination

partition P 0 of C0 satisfies jP 0j D minŒ
QN �1Cdlog

2
ee

j D1 e0
j ; jX j� and n.c0/ D jP 0j. Since

�ŒC� D PN
j D1 �.Cj / and �ŒC0� D P

j 2f1;:::;N gnfig �.Cj / C �.2/dlog2 ee,

�ŒC� � �ŒC0� D �.e/ � �.2/
˙

log2 e
�

> 0.

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/advance-article-abstract/doi/10.1093/jeea/jvaa002/5837456 by R

oyal H
ollow

ay, U
niversity of London user on 16 M

ay 2020



Mandler Coarse, Efficient Decision-Making 29

Let c use C. By Proposition 1, n.c/ � minŒ
QN

j D1 ej ; jX j� whereas n.c0/ D
minŒ

QN �1Cdlog
2

ee
j D1 e0

j ; jX j�. Since 2dlog
2

ee � 2log
2

e D e,0@N �1Cdlog
2

eeY
j D1

e0
j

1A �
0@ NY

j D1

ej

1A D
0@ NY

j 2f1;:::;N gnfig
ej

1A �
2dlog

2
ee � e

�
� 0,

and therefore n(c0) � n(c). Hence .C0; c0/ is more efficient than .C; c/ for any c that
uses C, a contradiction.

Conversely, assume that any efficient C on a domain in X contains only binary
criteria and suppose that, for some e > 2, �(e) � �(2)dlog2 ee. Set X 2 X so that
jXj D e.

We show first that there exists an efficient bC. Define the family S of sets of criteria
by NC 2 S iff (i) there is a Nc that uses NC such that n. Nc / D e and (ii) for each 2 � h � e,
NC contains at most dlog hee criteria with h categories. Since jXj D e, each criterion

Ci must satisfy e(Ci) � e and hence S is finite. If C00 is a set of criteria outside of S

then, for some 2 � h0 � e, C00 contains more than dlogh0 ee criteria with h0 categories.
Letting C000 have dlogh0 ee criteria, each with h0 categories, we have �ŒC000� � �ŒC00�.
Since

QN
j D1 e000

j � e, the proof of Proposition 1 implies that there is a . QC; Qc / such that
QC has dlogh0 ee criteria, each with h0 categories, �Œ QC � D �ŒC000�, and n. Qc / D e. Thus,

for each C00 not in S, there is a QC 2 S and a Qc that uses QC such that �Œ QC � � �ŒC00� and
n. Qc/ D e. Since S is finite, there exists an efficient bC in S.

By assumption, bC contains only binary criteria and, given the proof of
Proposition 1, jbC j D dlog2 ee. So �ŒbC � D �.2/dlog2 ee. But any .C0; c0/ such that
C0 consists of a single criterion with e categories and n(c0) D e satisfies �ŒC0� D �(e)
� �(2)dlog2 ee. The set C0 is therefore efficient, giving a contradiction.

Terminology for Lemmas A.1–A.4 and Proof of Theorem 2

Given a cost function � and a vector of positive integers e D .e1; : : : ; eN /, define �Œe�

to equal
PN

iD1 �.ei /. If e and e0 are, respectively, N- and N0-vectors of positive integers,

e is weakly more efficient than e0 if
QN

iD1 ei � QN 0

iD1 e0
i and �Œe� � �Œe0� for all cost

functions � with increasing marginal costs, and is more efficient than e0 if (i) �Œe� < �Œe0�
for all � with strictly increasing marginal costs, and (ii)

QN
iD1 ei >

QN 0

iD1 e0
i . The vector

e is coarser than e0 if, for each integer k � 1, pk.e/ � pk.e0/ and strict inequality
obtains for some k � 1. We will follow the convention that, for any N-vector of
integers e, coordinate labels are chosen so that ei increases in i: eiC1 � ei for i D 1,
. . . , N � 1.

LEMMA A.1. Let e (resp. eC) be a vector of positive integers with N (resp. NC)

coordinates. If e is coarser than eC and
PN C

iD1 eC�
i D PN

iD1 e�
i then, for all integers

1 � x � min [N, NC],
PN C

iDN C�xC1 eC
i � PN

iDN �xC1 ei and, for some integer 1 � x

� min [N, NC],
PN C

iDN C�xC1 eC
i >

PN
iDN �xC1 ei .
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Proof. Suppose, contrary to the first claim, there is a smallest integer 1 � x

� min [N, NC] such that
PN C

iDN C�xC1 eC
i <

PN
iDN �xC1 ei . Since x is smallest,

eN �xC1 > eC
N C�xC1

. Since
PN C

iDN C�xC1 eC
i <

PN
iDN �xC1 ei and both are sums

of x numbers,
PN C

iDN C�xC1 eC�
i <

PN
iDN �xC1 e�

i . Since
PN C

iD1 eC�
i D PN

iD1 e�
i ,PN C

iDN C�xC1 eC�
iPN C

iD1 eC�
i

<

PN
iDN �xC1 e�

iPN
iD1 e�

i

:

Hence PN �x
iD1 e�

iPN
iD1 e�

i

<

PN C�x
iD1 eC�

iPN C

iD1 eC�
i

:

Since e�
N �xC1 > eC�

N C�xC1
,P

fi We�
i

�e
C�

N C�xC1
g e�

iPN
iD1 e�

i

�
PN �x

iD1 e�
iPN

iD1 e�
i

<

PN C�x
iD1 eC�

iPN C

iD1 eC�
i

<

P
fi WeC�

i
�e

C�

N C�xC1
g eC�

iPN C

iD1 eC�
i

,

contradicting the fact that e is coarser than eC.
For the final claim note that if, for all integers 1 � x � min [N, NC],PN C

iDN C�xC1 eC
i D PN

iDN �xC1 ei then, since
PN C

iD1 eC�
i D PN

iD1 e�
i , we would have

eC D e, which implies that e could not be coarser than eC. �

LEMMA A.2. Given the vector of positive integers Ne D . Ne1; : : : ; Ne NN /, let Qe D
. Qe1; : : : ; Qe NN / be defined by Qei D Nei � 1, Qej DNej C 1, and Qek D Nek for k 6D i, j. If

Nei � Nej C 2 then
Q NN

kD1 Qek >
Q NN

kD1 Nek .

Proof. Since ei � ej C 2 implies ei � ej � 1 > 0 (and with the convention
Q

l2I el D 1

when I D ¿),

NNY
lD1

Qel D
0@ Y

l¤i;j

Nel

1A . Nei�1/. Nej C 1/ D
0@ NNY

lD1

Nel

1A C
0@ Y

l¤i;j

Nel

1A . Nei�Nej �1/ >

NNY
lD1

Nel .

�

LEMMA A.3. Let the vector of positive integers e (resp. e0) have N (resp. N0)
coordinates. If

PN 0

iDN 0�xC1 e0
i � PN

iDN �xC1 ei for all integers x 2 f1, . . . , min [N,

N0]g and
PN 0

iD1 e0�
i D PN

iD1 e�
i , then there exists a vector of positive integers Oe with

N0 coordinates such that
PN 0

iD1 Oe�
i D PN 0

iD1 e0�
i , OeN 0�iC1 � eN �iC1 for i 2 f1, . . . ,

min [N, N0]g, and Oe is weakly more efficient than e0.

Proof. To proceed by induction, set e1 D e0. Given some k 2 f1, . . . , min [N, N0] �
1g, suppose (1)

PN 0

iD1 ek�
i D PN

iD1 e�
i , (2) ek

N 0�iC1 � eN �iC1 for i D 1, . . . , k,
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(3)
PN 0

iDN 0�xC1 ek
i � PN

iDN �xC1 ei for all x 2 f1, . . . , min [N, N0]g, and (4) ek is
weakly more efficient than e0. These properties obtain for k D 1.

If ek
N 0�k

� eN �k then set ekC1 D ek .
Assuming now that ek

N 0�k
� eN �k , let m denote the smallest positive integer such

that (i)
PN 0�kCm�1

iDN 0�k ek
i <

PN �kCm�1
iDN �k ei and (ii)

PN 0�kCm
iDN 0�k ek

i � PN �kCm
iDN �k ei . To

see that there must be such a m, observe that (ii) holds when m D k (set x D k C 1)
and, since (i) holds when m D 1, if we progressively reduce m from k there must be a
first point where (i) holds. Now set

(A) ekC1
N 0�i D eN �i for i D k � m C 1, . . . , k,

(B) ekC1
N 0�kCm

D PN 0�kCm
iDN 0�k ek

i � PN �kCm�1
iDN �k ei or, equivalently, ekC1

N 0�kCm

D eN �kCm C PN 0�kCm
iDN 0�k ek

i � PN �kCm
iDN �k ei , and

(C) ekC1
i D ek

i for i D 1, . . . , N0 � k � 1 and i D N0 � k C m C 1, . . . , N0.

In both cases, ekC1 is a N0-vector.
To conclude the induction, we show that Properties (1)–(4) are satisfied for

k C 1. When ek
N 0�k

� eN �k and therefore ekC1 D ek , this is immediate. So assume
henceforth that ek

N 0�k
� eN �k .

Property 1. Summing (A) and (B) yields

N 0�kCmX
iDN 0�k

ekC1
i D

N �kCmX
iDN �k

ei C
N 0�kCmX
iDN 0�k

ek
i �

N �kCmX
iDN �k

ei D
N 0�kCmX
iDN 0�k

ek
i :

Given (C),

N 0�k�1X
iD1

ekC1
i D

N 0�k�1X
iD1

ek
i and

N 0X
iDN 0�kCmC1

ekC1
i D

N 0X
iDN 0�kCmC1

ek
i :

Therefore,

N 0X
iD1

ekC1
i D

N 0X
iD1

ek
i (A.1)

and hence, due to (1),
PN 0

iD1 e
.kC1/�
i D PN

iD1 e�
i .

Property 2. We have ekC1
N 0�iC1 � eN �iC1 for i D k � m C 2, . . . , k C 1 by (A), for

i D k � m C 1 by (ii) and (B), and for i D 1, . . . , k � m by (2) and (C).

Property 3. Due to (C) and (3),

N 0X
iDN 0�xC1

ekC1
i �

NX
iDN �xC1

ei (A.2)
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for x D 1, . . . , k � m. Due to (B) and (ii), ekC1
N 0�kCm

� eN �kCm. So, given that (A.2)
holds for x D 1, . . . , k � m, (A.2) holds for x D k � m C 1. Similarly, due to (A) and
given that (A.2) holds for x D 1, . . . , k � m C 1, (A.2) holds for x D k � m C 2, . . . ,
k C 1. Finally, due to (C) and (A.1),

PN 0

iDj ekC1
i D PN 0

iDj ek
i holds for j D 1, . . . , N0

� k � 1. Hence
PN 0

iDN 0�xC1 ekC1
i D PN 0

iDN 0�xC1 ek
i for x > k C 1 and therefore (3)

implies that (A.2) holds for x > k C 1.

Property 4. We build recursively a sequence he.j /i of (m C 1)-vectors, each
with the coordinate labels N0 � k, . . . , N0 � k C m , and beginning with e.0/ D
.ek

N 0�k
; : : : ; ek

N 0�kCm
/. If eN 0�k.j / � eN �k and there exists a coordinate l 2 fN0 �

k C 1, . . . , N0 � k C mg with el.j / > ekC1
l

then set eN 0�k.j C 1/ D eN 0�k.j / C 1,
el(j C 1) D el(j) � 1, and er(j C 1) D er(j) for all other coordinates r. Otherwise the
sequence terminates with e.j /. Given our assumption that eN �k > ek

N 0�k
and (A),

ekC1
N 0�k

> ek
N 0�k

.

Due to (2) and (A),
ekC1

i � ek
i for i D N0 � k C 1, . . . , N0 � k C m � 1.

Combining (A) and (B) gives
N 0�kCmX
iDN 0�k

ekC1
i D

N 0�kCmX
iDN 0�k

ek
i ,

whereas combining (A) and (i) gives
XN 0�kCm�1

iDN 0�k
ek

i <
XN 0�kCm�1

iDN 0�k
ekC1

i .
Hence

ekC1
N 0�kCm

� ek
N 0�kCm

.

The preceding four indented conditions imply that, for some positive integer t,
e.t/ D .ekC1

N 0�k
; : : : ; ekC1

N 0�kCm
/, at which point he.j /i terminates.

For j D 0, . . . , t � 1, eN 0�k.j / � eN �k and, using our conclusion that (2) holds
for k C 1, el.j / > ekC1

l
� el . Since eN � k � el, we have el.j / � eN 0�k.j / C 2. By

weakly increasing marginal costs, �Œe.j C 1/� � �Œe.j /� for j D 0, . . . , t � 1 and
therefore �ŒekC1� � �Œek�.

Applying Lemma 2,0@N 0�k�1Y
lD1

ek
l

1A 0@ N 0Y
lDN 0�kCmC1

ek
l

1A 0@N 0�kCmY
lDN 0�k

el.j C 1/

1A
>

0@N 0�k�1Y
lD1

ek
l

1A 0@ N 0Y
lDN 0�kCmC1

ek
l

1A 0@N 0�kCmY
lDN 0�k

el.j /

1A
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for j D 0, . . . , t � 1. Hence
QN 0

lD1 ekC1
l

>
QN 0

lD1 ek
l

. Therefore, ekC1 is weakly more
efficient than ek and hence weakly more efficient than e0, concluding the argument for
Property 4.

With the induction complete, we conclude by setting Oe D eminŒN;N 0�. �

LEMMA A.4. If, for the N-vector e and the bN -vector Oe, (i) each ei and Oei is an
integer greater than 1, (ii) N > bN , (iii) OebN �iC1

� eN �iC1 for i D 1; : : : ; bN , and (iv)PbN
iD1 Oe�

i D PN
iD1 e�

i , then e is more efficient than Oe.

Proof. Define Qe D .1; : : : ; 1; Oe1; : : : ; OebN /, where the number of 1s equals N � bN . Note

that
PN

iD1 Qe�
i D PbN

iD1 Oe�
i D PN

iD1 e�
i and QeN �iC1 � eN �iC1 for i D 1; : : : ; bN . We

can therefore build a sequence of N-vectors he.j /i with e.1/ D Qe and terminal vector
e.t/ D e such that, for j D 1, . . . , t � 1, ek(j C 1) D ek(j) C 1 � ek for some k 2
f1; : : : ; N � bN g, ek0.j C 1/ D ek0.j / � 1 � ek0 for some k0 2 fN � bN C 1; : : : ; N g,
and el(j C 1) D el(j) for l 2 f1, . . . , Ng n fk, k0g. Suppose � has strictly increasing
marginal costs. Then, since

ek.j / < ek.j C 1/ � ek � ek0 � ek0.j C 1/ < ek0.j /,

ek0.j / > ek.j / C 1 and therefore �Œe.j C 1/� < �Œe.j /�. Due in addition to Lemma 2,
e.j C 1/ is more efficient than e.j /. Due to (ii), t � 2. Since the final yN coordinates
of Qe equal the vector Oe and the remaining coordinates equal 1, e.1/ is weakly more
efficient than Oe. Hence e is more efficient than Oe. �

Proof of Theorem 2

Without loss of generality, we may assume that the discrimination vector e of C and
e0 of C0 contain only integers greater than 1. Due to Lemma 1,

PN 0

iDN 0�xC1 e0
i �PN

iDN �xC1 ei for all x 2 f1, . . . , min [N, N0]g and therefore, by Lemma 3, there exists
a vector of positive integers Oe with N0 coordinates such that

N 0X
iD1

. Oei � 1/ D
N 0X

iD1

.e0
i � 1/;

OeN 0�iC1 � eN �iC1 for i D 1; : : : ; minŒN; N 0�; and Oe is weakly more efficient than e.
Suppose that N0 > N. Then, since OeN 0�iC1 � eN �iC1 for i D 1, . . . , min [N, N0]

and since each e0
i > 1,

PN 0

iD1. Oei � 1/ >
PN

iD1.ei � 1/. Since

N 0X
iD1

. Oei � 1/ D
N 0X

iD1

.e0
i � 1/;

XN 0

iD1
.e0

i � 1/ >
XN

iD1
.ei � 1/; which contradicts

PN 0

iD1.e0
i � 1/ D PN

iD1.ei � 1/.
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Suppose that N0 D N. Since e is coarser than e0, e ¤ e0. Since
PN 0

iDN 0�xC1 e0
i DPN

iDN �xC1 ei for all x 2 f1, . . . , Ng implies e D e0, Lemma 1 implies there is a

Ox 2 f1; : : : ; N g such that
PN 0

iDN 0� OxC1 e0
i >

PN
iDN � OxC1 ei .

Next we show that for all y 2 f1, . . . , Ng,
Py

iD1 e0
i � Py

iD1 ei . If to the
contrary there is a minimal y 2 f1, . . . , Ng such that

Py
iD1 e0

i <
Py

iD1 ei thenPy�1
iD1 e0

i � Py�1
iD1 ei and e0

y � ey . HenceP
fi We�

i
�e0�

y
g e�

iPN
iD1 e�

i

�
Py�1

iD1 e�
iPN

iD1 e�
i

�
Py�1

iD1 e0�
iPN 0

iD1 e0�
i

<

P
fi We0�

i
�e0�

y
g e0�

iPN 0

iD1 e0�
i

,

contradicting e being coarser than e0.
Using this fact, we conclude that

P Ox
iD1 e0

i � P Ox
iD1 ei , which when combined

with
PN 0

iDN 0� OxC1 e0
i >

PN
iDN � OxC1 ei , yields

PN 0

iD1 e0
i >

PN
iD1 ei . But since N D N0

implies
PN 0

iD1 e0
i D PN

iD1 ei , we have a contradiction.
We conclude that N > N0. Apply Lemma 4 to conclude that e is more efficient than

Oe and hence more efficient than e0.
Let c use C and maximally discriminate (the proof of Proposition 1 shows such

a c exists) and let c0 use C0. Proposition 1 implies n.c/ D minŒ
QN

iD1 ei ; jX j� and

n.c0/ � minŒ
QN 0

iD1 e0
i ; jX j�. Given that e is more efficient than e0,

QN
iD1 ei >

QN 0

iD1 e0
i

and therefore minŒ
QN

iD1 ei ; jX j� � minŒ
QN 0

iD1 e0
i ; jX j�. Hence n(c) � n(c0).

Since C and C0 form a tight comparison, either minŒ
QN

iD1 ei ;
QN

iD1 e0
i � < jX j or

marginal costs are strictly increasing. In the first case, the fact that
QN 0

iD1 e0
i <

QN
iD1 ei

implies

n.c0/ � min

"
NY

iD1

e0
i ; jX j

#
D

NY
iD1

e0
i < min

"
NY

iD1

ei ; jX j
#

D n.c/.

Regarding costs, since e is more efficient than e0, �Œe� < �Œe0� for all � with strictly
increasing marginal costs. If � fails to have strictly increasing marginal costs then
there is a sequence h O�ni where each O�n has strictly increasing marginal costs and
. O�n.1/; : : : ; O�n.N // ! .�.1/; : : : ; �.N //. Hence �Œe� � �Œe0� whether marginal costs
increase strictly or weakly and so .C; c/ is more efficient than .C0; c0/. In the second
case, where marginal costs are strictly increasing, �Œe� < �Œe0� since e is more efficient
than e0. Given that n(c) � n(c0) , .C; c/ is again more efficient than .C0; c0/.

Proof of Theorem 3

Let c satisfy the weighting axioms with respect to a set of binary criteria C and satisfy
the Condorcet rule. Define the binary relation R on X by x R y iff x 2 c(fx, yg). Since
F contains the two-element subsets of X, R is complete.

To show that R is transitive, suppose x R y R z and, for any B � fx, y, zg, let
C.B/ denote the set of criteria Ci such that B is contained in the top Ci-category and

D
ow

nloaded from
 https://academ

ic.oup.com
/jeea/advance-article-abstract/doi/10.1093/jeea/jvaa002/5837456 by R

oyal H
ollow

ay, U
niversity of London user on 16 M

ay 2020



Mandler Coarse, Efficient Decision-Making 35

fx, y, zg n B is contained in the bottom Ci-category.23 Since criteria are binary, if a
criterion Ci does not place x, y, and z in the same Ci-category then Ci must be an
element of one of the following six sets: C.fxg/, C.fx; zg/, C.fyg/, C.fx; yg/, C.fzg/,
and C.fy; zg/. Then

U xy D C.fxg/ [ C.fx; zg/; U yx D C.fyg/ [ C.fy; zg/;
U yz D C.fyg/ [ C.fx; yg/; U zy D C.fzg/ [ C.fx; zg/;
U xz D C.fxg/ [ C.fx; yg/; U zx D C.fzg/ [ C.fy; zg/:

Since x R y R z, the decisiveness assumption implies Uxy D Uyx and Uyz D Uzy. So, by
the union assumption,

.C.fxg/ [ C.fx; zg/ [ C.fyg/ [ C.fx; yg// D .C.fyg/ [ C.fy; zg/ [ C.fzg/
[ C.fx; zg// .

Hence, by the subtraction assumption, .C.fxg/ [ C.fx; yg//D .C.fy; zg/ [ C.fzg//,
that is, Ux,z D Uz,x. Therefore, x R z.

Next I show that R generates finitely many equivalence classes which in the present
setting we define to be maximal sets E � X such that a, b 2 E and a 6D b imply a R b
and b R a. Let x 6D y be in the same Ci-category for each Ci 2 C. Since fx; yg 2 F , we
may suppose without loss of generality that x 2 c(fx, yg) and therefore x R y. Then by
decisiveness ¿ D ¿ and hence y 2 c(fx, yg) and y R x. Consequently any

Tn
iD1 Ei such

that each Ei is a Ci-category is contained in a R equivalence class. Since the
Tn

iD1 Ei

are finite in number and partition X and the R equivalence classes also partition X,
there can be only finitely many R equivalence classes.

Since R is complete and transitive and has finitely many equivalence classes, the
set M(A) D fx 2 A: x R y for all y 2 Ag is nonempty for all A 2 F . By the Condorcet
rule, M(A) D c(A).

Proof of Theorem 4

We first show the preliminary that there is a a > 0 such that inf �.e/ > sup �.2/dea Nve
for all e sufficiently large, where inf �.e/ D inff�j .e/ W �j 2 S

k2N
f�kgg and

sup �.e/ D supf�j .e/ W �j 2 S
k2N

f�kgg. Since 2x � x C 1 � dxe for all x � 1 and
since Nv > 1, 2ea Nv � dea Nve for a > 0 and e � 1. Hence 2 sup �.2/ea Nv � sup �.2/dea Nve
for a > 0 and e � 1. For �i 2 S

k2N
f�kg there is, by assumption, an 0 < a < 1 such

that �i .e/ > 2 sup �.2/ Nvea for all e sufficiently large. Hence �i .e/ > sup �.2/dea Nve
for all e sufficiently large. (Similarly, since for �i 2 S

k2N
f�kg there is a 0 < Na < 1

such that �i .e/ > 4 sup �.2/ Nve Na for all large e, �i .e/ > 2 sup �.2/de Na Nve for all large
e, an observation we use later.) To conclude this step, suppose to the contrary that
for each n 2 N there is an increasing sequence of natural numbers hen

l
i that satisfies

23. For a binary C
i
, a C

i
-category E is top (resp. bottom) if there exists x 2 E and y 2 X such that x C

i
y

(resp. y C
i
x).
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inf �.en
l
/ � sup �.2/d.en

l
/

1
n Nve. The compactness assumption implies that for each n

and en
l

there is a �n;en
l 2 S

k2N
f�kg such that �n;en

l .en
l
/ � sup �.2/d.en

l
/

1
n Nve. Hence

there are sequences h Oeni and h�ni, where each Oe n 2 N and �n 2 S
k2N

f�kg, such

that (1) . Oe n/
1
n Nv ! 1 (and therefore Oe n ! 1) and (2) �n. Oe n/ � sup �.2/d. Oe n/

1
n Nve

for each n 2 N. Due to compactness, there is a subsequence of natural numbers hnhi
and a N� 2 S

k2N
f�kg such that �n

h ! N�. Given the parenthetical observation earlier
in the proof that, for some Na > 0, N�.e/ > 2 sup �.2/de Na Nve for all e sufficiently large
and since 1=nh < Na for all nh sufficiently large, there exist Ne > 0 and Nn > 0 such that

N�.e/ > 2 sup �.2/de
1

n
h Nve for all e > Ne and all nh > Nn. But due to (2), for each nh,

N�. Oe n
h/ � sup �.2/

l
. Oe n

h/
1

n
h Nv

m
C . N�. Oe n

h/ � �n
h. Oe n

h// ,

and hence, since �n
h. Oe n

h/ � N�. Oe n
h/ ! 0 and . Oe n

h/
1

n
h Nv ! 1, we conclude that

N�. Oe n
h/ � sup �.2/

l
. Oe n

h/
1

n
h Nv

m
C . N�. Oe n

h/ � �n
h. Oe n

h// � 2 sup �.2/
l

. Oe n
h/

1
n

h Nv
m

for all nh sufficiently large, a contradiction. Hence there exist Na > 0 and an integer
Nb > 0 such that inf �.e/ > sup �.2/de Na Nve for all e > Nb.

To prove the Theorem, suppose the set of N0 criteria C0 contains a C 0
k

with e categories. Define NC to coincide with C0 except that C 0
k

is replaced by
de Na Nve binary criteria with indices N 0 C 1; : : : ; N 0 C de Na Nve. Due to the previous
paragraph, �Œ NC� < �ŒC0� if e > Nb. As for value, V.C0/ D Q

j 2f1;:::;N 0g v.C 0
j / and

V. NC/ � vde Na Nve.
Q

j Df1;:::;N 0gnfkg v.C 0
j //. Hence

V. NC/ � V.C0/ � vde Na Nve
0@ Y

j Df1;:::;N 0gnfkg
v.C 0

j /

1A �
Y

j 2f1;:::;N 0g
v.C 0

j /

D
0@ Y

j Df1;:::;N 0gnfkg
v.C 0

j /

1A �
vde Na Nve � v.C 0

k/
�

.

Since vde Na Nve � ve Na Nv and Nve � v.C 0
k
/, if ve Na Nv > Nve for all e sufficiently large then there

is an integer b0 such that V. NC/ � V.C0/ > 0 when e > b0. To conclude that ve Na Nv > Nve for
all e sufficiently large, it is sufficient that any of the following equivalent conditions:

ve Na Nv
Nve

! 1 () ln ve Na Nv � ln Nve ! 1 () e Na Nv ln v � ln Nve ! 1

obtains. The last condition follows from ln e=e Na ! 0 and the implications

ln e

e Na ! 0 )
1

Nv ln v ln e

e Na ! 0 )
ln Nv

Nv ln v C 1
Nv ln v ln e

e Na ! 0 , ln Nv C ln e

e Na Nv ln v
! 0.

So set b in the Theorem equal to maxf Nb; b0g.
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Proof of Proposition 3

Since U is additively separable, we may add a constant to each ui without changing
the orderings that EUC

i
and U represent. Set these constants so that, for i D 1, . . . , n,

E

h
max

h
E

�
ui

�
x1

i .s/
��

; : : : ; E

h
ui

�
x

T .s/
i .s/

�i ii
D 0,

where s is fixed in each inner expectation and the outer expectation integrates over s.
This condition implies that EUC

i
D 0 when e(Ci) D 1. Define v.Ci / D exp.EUC

i
/

for any feasible Ci and V.C/ D exp.U.C// for any set of feasible criteria C.
Since exp ( 	 ) is an increasing transformation and exp.U.C// D Q

C
i
2C exp.EUC

i
/,

it suffices to show that, for each Ci, v(Ci) is an admissible value for criteria.
When e(Ci) D 1, EUC

i
D 0 and so v(Ci) D 1. Set v D inffv.Ci / W i 2

f1; : : : ; ng, Ci is feasible, and e.Ci / > 1g and define

k0.s/ D arg max
k2f1;:::;T .s/g

E

h
ui

�
xk

i .s/
� i

for each s:

By assumption, there is an " > 0 such that for all Ci with e(Ci) > 1 and all s there is

a k00(s) with PŒuC
i
Œx

k00.s/
i .s/� � uC

i
Œx

k0.s/
i .s/� > "� > ". Therefore, for any Ci with

e(Ci) > 1 and each s, UC
i
.s/ D EŒmaxŒuC

i
Œx1

i .s/�; : : : ; uC
i
Œx

T .s/
i .s/��� is greater

than and bounded away from maxŒEŒui .x
1
i .s//�; : : : ; EŒui .x

T .s/
i .s//�� and so EUC

i

is greater than and bounded away from EŒmaxŒEŒui .x
1
i .s//�; : : : ; EŒui .x

T .s/
i .s//���.

Hence v > 1.
Fix s and, given a function f W R ! R, let EŒf .xi /jCi � denote the random variable

equal to the conditional expectation of f(xi) given the Ci-category that contains xi. For
each Ci,

UC
i
.s/ � E

24T .s/X
kD1

ˇ̌̌
uC

i

�
xk

i .s/
�ˇ̌̌35

�
T .s/X
kD1

E

h
E

hˇ̌̌
ui

�
xk

i .s/
�ˇ̌̌ˇ̌̌

C i

ii

D
T .s/X
kD1

E

hˇ̌̌
ui

�
xk

i .s/
�ˇ̌̌i

,

where, since ui(xi) is integrable, for each i the constant ai .s/ D PT .s/

kD1
EŒjui .x

k
i .s//j�

is well-defined. SinceA is finite, EUC
i

� Eai and so v.Ci / � exp.Eai / for all feasible
Ci. With the v(Ci) and v already defined, by setting Nv D maxŒexp.Ea1/; : : : ; exp.Ean/�

we conclude that the v(Ci) are admissible.
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