
Cardinality versus Ordinality: A Suggested Compromise

By MICHAEL MANDLER*

By taking sets of utility functions as primitive, we define an ordering over assump-
tions on utility functions that gauges their measurement requirements. Cardinal and
ordinal assumptions constitute two levels of measurability, but other assumptions lie
between these extremes. We apply the ordering to explanations of why preferences
should be convex. The assumption that utility is concave qualifies as a compromise
between cardinality and ordinality, while the Arrow-Koopmans explanation, sup-
posedly an ordinal theory, relies on utilities in the cardinal measurement class. In
social choice theory, a concavity compromise between ordinality and cardinality is
also possible and rationalizes the core utilitarian policies. (JEL D01)

Ordinal utility theory permits only those as-
sumptions on utility functions that are preserved
under increasing transformations. The rationale
for this rule is that any assumption P not pre-
served under increasing transformations cannot
be verified with observations of choice behav-
ior: if a utility u satisfies P, there will exist
another utility u� that does not satisfy P but that
represents the same preferences as u. Nonordi-
nal assumptions therefore seem to be needlessly
restrictive: given a nonordinal assumption, one
may always make a weaker assumption with the
same implications for choice behavior. Accord-
ing to this view, the only role for cardinal utility
is the normative one of representing interper-
sonal comparisons of utility.

Ordinalism’s first targets were diminishing
marginal utility (DMU) and concavity, which
had long served as arguments for why consumer
preferences should be convex. Neither DMU nor
concavity is preserved by increasing transforma-
tions and hence neither is an ordinal assumption.
The pioneer ordinalists such as Kenneth Arrow
(1951) claimed that diminishing marginal utility is
tantamount to assuming that utility is cardinal.
Arrow’s position remains predominant: either an
assumption on utility is ordinal or it is cardinal
(see, e.g., Andreu Mas-Colell et al., 1995, chap. 1).

This paper will take sets of utility functions—
which we call psychologies—as primitive; this
will define a finer gradation of properties of
utility that allows for intermediate standards of
measurement. In this framework, ordinal utility
theory takes the psychology consisting of all
increasing transformations of any given utility
function as primitive and lies at one end of the
measurement spectrum.1 Cardinal utility theory
takes the psychology consisting of all increas-
ing affine transformations of a given utility as
primitive; since this is a smaller set of utility
functions, cardinality is a stronger (more restric-
tive) theory than ordinality. Ratio scales which
take still smaller psychologies as primitive (the
functions generated by all increasing linear
transformations) are also common, particularly
outside of economics. But in addition to these
well-known measurement scales, there is an in-
finity of intermediate cases. Diminishing mar-
ginal utility and concavity lie precisely in the
middle ground between cardinality and ordinal-
ity. The psychology consisting of all concave
utility representations of a given preference re-
lation is larger than any cardinal psychology it
intersects, but smaller than any ordinal psychol-
ogy it intersects. Concavity thus presupposes an
intermediate standard of measurement and does
not deserve its strongly nonordinalist reputa-
tion. Compared to a cardinal psychology, a con-
cave psychology is easier to assemble in that an
agent does not have to make as many utility
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1 We follow the convention of letting “the transformation f
of a function u” refer to the composition f � u rather f itself.
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judgments. And concave psychologies are a nat-
ural primitive: they pinpoint the neoclassical
principle that the value agents place on con-
sumption increments progressively diminishes.

In preference theory, the main advantage of
endowing agents with nonordinal properties of
utility is that they can provide rationales for
assumptions on preferences. Concavity and DMU
form the leading examples and offer explanations
of why and when preferences should be convex.
To declare by fiat that preferences are convex
(or that utility is quasiconcave) in contrast pro-
vides no rationale. That DMU lives on in text-
books as a motivation for convexity reflects the
need for justification; but by relying on DMU,
the textbook stories leave the measurement sta-
tus of consumer theory up in the air. Textbooks
in fact often suggest that DMU in one good does
not affect the marginal utility of other goods,
which amounts to an assumption of additive
separability and hence of cardinality. In con-
trast, a concavity explanation of preference con-
vexity incurs relatively small measurement cost.

In normative economics as well, a concavity
compromise is possible. If interpersonal compar-
isons of utility are modeled with a set of concave
utility functions, then one may still derive the
plausible core of utilitarianism. Indeed, the poli-
cies backed by a concave psychology better
approximate commonly held utilitarian intui-
tions than the policies derived from cardinal
versions of utilitarianism. Moreover, due to their
compromise status, concave interpersonal com-
parisons are less demanding than the cardinal
comparisons that underlie traditional utilitarian-
ism: fewer utility comparisons need to be made.
We thus take issue with both prongs of the ordi-
nalism-is-for-positive-theory versus cardinalism-
is-for-normative-theory dichotomy.

We argue that concavity can be tested obser-
vationally, although of course not using choice
data alone. While economists once saw the We-
ber-Fechner law—that the marginal sensitivity
to physical stimuli diminishes with stimulus
intensity—as empirical support for DMU, the
link to Weber-Fechner remained little more
than an analogy. More recently, cognitive neu-
roscience and neuroeconomics have opened a
new window on the physiological correlates of
consumption decisions that suggests we may be
able to compare a consumer’s gains in satisfac-
tion relative to a reference consumption level.
As we will see, such a gauge would make it

possible to test experimentally for DMU in con-
sumption. Here, too, the existence of compro-
mise measurement classes between ordinality
and cardinality is relevant; the neural correlates
of consumption decisions provide nonordinal
information that may be insufficient to test for
cardinality. Perhaps because of the cardinal ver-
sus ordinal gulf, neuroeconomics has not ad-
dressed such traditional economic topics as the
measurement of utility. Compromise measure-
ment categories may be able to reintegrate the
study of consumer demand into a physiology
and psychology of consumption.

The literature on self-reported happiness
levels (e.g., Richard A. Easterlin, 1974; David
G. Blanchflower and Andrew J. Oswald, 2004)
would also gain from scrutiny of its measure-
ment presuppositions. When the current litera-
ture judges a regression’s goodness-of-fit as the
sum of differences between reported and pre-
dicted contentment levels, it equates units of
contentment and thereby treats well-being as
a cardinal scale. One could instead judge fit by a
compromise measurement standard in which all
deviations of a subject’s ranking of satisfaction
increments from a predicted ranking would be
treated as equal goodness-of-fit failures.

By taking sets of utility functions as primi-
tive, we formalize what a nonordinal assumption
on utility entails and judge just how nonordinal it
is. To say simply that some agent’s utility function
satisfies diminishing marginal utility, for example,
leaves open the question of exactly which utility
functions accurately describe the agent’s con-
sumption experience. Cardinal understandings of
diminishing marginal utility prior to the ordinal
revolution would take a utility function satisfying
DMU and all of its increasing affine transforma-
tions as primitive; all functions in this set would
be taken as equivalent in every meaningful re-
spect. But if one wishes to impose DMU and
nothing more, then any utility that both exhibits
DMU and represents the same preferences should
be regarded as equally accurate. We therefore
characterize the assumption of DMU using pre-
cisely this set of utility functions; in the same
sense a cardinalist would, we take all these func-
tions to be equivalent. This characterization allows
us to gauge the extent of DMU’s nonordinality
and conclude that the assumption imposes rela-
tively little measurement cost.

We begin the paper by showing that essentially
any transitive preference relation � can be repre-
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sented by a psychology (even when � is incom-
plete). Then we order psychologies according to
set inclusion. An ordering of assumptions on util-
ity functions by set inclusion of the psychologies
that satisfy those assumptions would not take us
very far; it would apply only to trivial cases where
one assumption implies another. But by requiring
for a pair of assumptions that set inclusion holds
only when a psychology has utilities that satisfy
both assumptions simultaneously, we can avoid
debilitating incompleteness, and measurement
classes of assumptions can be calibrated finely.
Claims that may appear nonsensical—e.g.,
“concavity” is a weaker assumption than “addi-
tive separability”—can be stated rigorously.

We then illustrate the ordering by compar-
ing concavity with another celebrated ratio-
nale for the convexity of preferences, Arrow’s
(1951) argument (following Tjalling Koop-
mans) that an agent’s leeway to determine the
precise timing of consumption implies that
preferences must be convex. Arrow reasoned
that this rationale for convexity, unlike dimin-
ishing marginal utility, was free from any
taint of cardinality. We show, however, that
the utility theory that lies behind the Arrow-
Koopmans position is cardinal. The old neoclas-
sical explanation, diminishing marginal utility or
concavity, thus rests on less demanding measure-
ment assumptions.

Next, we compare cardinality and concavity
as a basis for utilitarianism. If a psychology
consisting of concave interpersonally compara-
ble utility functions is taken as primitive we can
still derive the utilitarian recommendation that
wealth be redistributed from rich to poor. The
“concave utilitarianism” that results allows a
tight derivation of commonly held utilitarian
convictions, a goal that cardinal utilitarianism
has notably failed to achieve. For example, con-
cave utilitarianism characterizes the famous Pi-
gou-Dalton principle, which adds egalitarian
constraints to a sum-of-cardinal-utilities order-
ing. Even Francis Y. Edgeworth (1897), the
founding economic utilitarian, was suspicious
of policy conclusions that relied on the cardinal
details of a utilitarian social welfare function
rather than on its concavity alone. Concave util-
itarianism’s better fit makes sense: it utilizes
only the psychological premises that underlie
neoclassical social welfare intuitions.

The standard cardinal formulation of utilitar-
ianism requires an intimidating array of utility

comparisons: a planner must post an exact rate
at which gains in utility for one agent translate
into gains for other agents. In contrast, for a
concave utilitarian to dispense policy advice, all
the planner must do is answer two questions
affirmatively. First, is j’s gain judged to be
ordinally greater than i’s loss? (The exact ratio
of j’s gain to i’s loss is now irrelevant.) Second,
is i’s welfare level greater than j’s? This recipe
for concave utilitarian policies is similar to
“poverty orderings” of income distributions,
but via the device of least concave utility the
recipe is applicable to agents who consume
multiple goods. Concave utilitarianism’s reli-
ance on a more limited set of utility compar-
isons may be able to dampen the skepticism
that surrounds social welfare judgments. The
cardinal view demands hopelessly many in-
terpersonal comparisons, encouraging the
suspicion that those comparisons are wholly
arbitrary and subjective.

We close by looking at how neural correlates
of consumption can be used to test for concav-
ity, and at how the present paper fits with earlier
work on measurement.

I. Psychologies and Orderings of Psychologies

An agent will be represented by a set of
utility functions U, called a psychology, where
each u � U is defined on the same set X, which
we call the domain of U. A psychology lists the
utility functions that as a set characterize the
agent’s psychological experience of consuming
the bundles in X. Only those properties the
utility functions in U have in common describe
the agent’s consumption experience. For ex-
ample, suppose an agent has a psychology U
containing every continuous function that rep-
resents some nontrivial preference relation on
�n. This agent would then experience happiness
or satisfaction as a continuous sensation, but an
attribute of one of the utilities in U that is not
shared by every other utility in U would not
reflect the agent’s attitudes toward consump-
tion. One function in U might be concave, for
example, but since there would then be noncon-
cave functions in U as well, this agent would not
be characterized by the property of concavity.
Psychologies can be assembled from several
sources: choice behavior, physiological and psy-
chological measurement (see Section V), agents’
testimony (Section V), and introspection.
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Preference relations emerge straightforwardly
from psychologies. We define �U, the preferences
induced by U, by

x �U yN u�x� � u�y� for all u � U.

We will refer interchangeably to �U satisfying an
assumption on preferences and the underlying
psychology U satisfying the same assumption.

Induced preferences can satisfy the assump-
tions usually imposed on preferences in eco-
nomics. For instance, �U is complete if and
only if, for all u, v � U and x, y � A, u(x) �
u(y)N v(x) � v(y). For any psychology U, �U
must be transitive.

Since psychologies consist of sets of utility
functions, they provide a more flexible tool for
representing preferences than solitary utility func-
tions. In fact, psychologies can induce almost any
preference relation: except for transitivity and a
technical requirement, any preference relation can
be induced by some psychology, as Theorem 1
reports. We do not pursue the details, but we could
generalize psychologies to cover even intransitive
preferences by dropping the requirement that all
functions in U have a common domain.

A binary relation � on X is countably order-
dense if there exists a countable Y � X such that
for all x, z � X with x � z (i.e., x � z and not z
� x), there exists a y � Y such that x � y � z.

THEOREM 1: If � is reflexive, transitive, and
countably order-dense, there is a psychology
that induces �.

Proofs can be found in the Appendix. Reflex-
ivity, transitivity, and countable order-density are
standard assumptions that underlie the existence
of a utility representation for preferences. Indeed,
the only difference between Theorem 1 and the
standard representation result is that Theorem 1
does not suppose � is complete. Theorem 1 thus
makes do with weaker conditions than the Efe A.
Ok (2002) result on representing an incomplete
preference relation � with a (possibly infinite) set
of utility functions. Juan Dubra et al. (2001) show
that an expected utility representation of possibly
incomplete preferences on lotteries also requires
no extra assumptions beyond the standard.

We turn to the ordering of the strength of
psychologies. To keep things simple, we hence-
forth require all psychologies to be complete.
So every u � U is a utility representation for �U.

DEFINITION 1: A psychology U is no stronger
than a psychology V if and only if U � V.

Since set inclusion is transitive, the “no stron-
ger than” relation on psychologies is transitive
as well. But when X has more than one element,
the “no stronger than” relation is incomplete
(e.g., if U consists of all utilities that represent
some preference relation � and V consists of all
utilities that represent some �� � �, then U �
V � A). We define a “weaker than” relation on
psychologies as the asymmetric part of the “no
stronger than” relation: U is weaker than V if
and only if U is no stronger than V and it is not
the case that V is no stronger than U.

To illustrate, consider three psychologies: U
consists of every utility representation of some
preference relation �, V consists of some rep-
resentation u of � and all increasing affine
transformations of u, and W contains only the
single function u. Then U is weaker than V, and
V is weaker than W (for the former conclusion
we need to assume that u has at least three
distinct points in its range). As this example
indicates, weaker psychologies make fewer as-
sertions about the utility experiences of agents
and should therefore be easier for agents to
assemble. To put the matter in reverse, as
psychologies become stronger or smaller, the
utility experiences described become more
and more limited. An agent with the psychol-
ogy U makes only ordinal preference judg-
ments, while an agent with the psychology V
makes the same ordinal judgments as the U
agent, but in addition makes cardinal com-
parisons of utility. That is, for any ( x, y, z, w)
with u( z) � u(w), the V agent experiences a
specific ratio of utility differences

u�x� � u�y�

u�z� � u�w�
.

Given (x, y, z, w), all v � V maintain the same
value for this ratio. Finally an agent with psychol-
ogy W not only makes the ordinal judgments of
the U agent and the cardinal comparisons of the V
agent, but can in addition assign an exact utility
number to every consumption experience. Single-
ton psychologies such as W are so implausibly
strong that they have never been employed in
economics or measurement theory. Appropriately,
therefore, our ordering of psychologies places sin-
gleton psychologies at a polar extreme: a singleton

1117VOL. 96 NO. 4 MANDLER: CARDINALITY VERSUS ORDINALITY: A SUGGESTED COMPROMISE

1 LINE LONG

tapraid1/z3y-aer/z3y-aer/z3y00406/z3y1807d06a longd S�31 8/7/06 14:17 Art: 20030804 Input-dld(dld)



psychology can never be weaker than any other
psychology.

II. Properties of Utility and Orderings
of Properties

We now use the ordering over psychologies
to generate orderings over properties of utility
functions. Formally, a property P is simply a set
of functions into the real line, where the do-
mains of the functions can differ, and a utility
function u: A 3 � satisfies property P if and
only if u � P. We mostly consider familiar prop-
erties that are routinely imposed on utility func-
tions. For instance, one can define the property of
continuity as the set of all continuous functions
from arbitrary subsets of �n into the real line.

DEFINITION 2: A psychology U maximally
satisfies property P if and only if for each u �
U, u satisfies P, and there does not exist a
psychology V �

/
U such that each v � V satis-

fies P.

In words, a psychology maximally satisfies P
if it is largest among psychologies whose con-
stituent utility functions all satisfy P. So, for
example, a U with domain ��

n would maxi-
mally satisfy the property of continuity if and
only if U consists of all functions u: ��

n 3 �
that are continuous and that represent the same
preference relation. The domain of a psychol-
ogy may determine whether it maximally satis-
fies a property. For instance, if X � ��

n is finite,
any psychology consisting of all utility func-
tions that represent some � on X maximally
satisfies continuity, but this is certainly not the
case if, say, X � ��

n .
The earlier ordering of psychologies suggests

the following ordering of properties.

DEFINITION 3:

(i) Property P is no stronger than property Q,
or P �NS Q, if and only if for all U that
maximally satisfy P and all V that maxi-
mally satisfy Q, U � V � A implies U � V.

(ii) Property P is weaker than property Q, or
P �W Q, if and only if P �NS Q and not
Q �NS P.

In words, P is no weaker than Q if, whenever
P and Q are comparable (some utility satisfies

both simultaneously), the psychology maxi-
mally satisfying P is no stronger than the psy-
chology maximally satisfying Q. The relations
�NS and �W need not be transitive or complete.
Since our ordering of psychologies itself is not
complete, the incompleteness is to be expected.
Still, the incompleteness of �W can be extensive
since P and Q are unranked by �W if P and Q
are inconsistent, that is, if P � Q � A. For
instance, let P and Q denote, respectively, the
properties of strict concavity and strict convex-
ity on nonsingleton convex subsets of �n.
Then, since whenever a U maximally satisfies P
and a V maximally satisfies Q, it is always the
case that U � V � A, we have both P �NS Q
and Q �NS P and therefore neither P �W Q nor
Q �W P.

The intransitivity of �NS and �W may come
as more of a surprise. We consider this subject
in separate papers (Mandler, 2001, 2003) which
show that there are natural domains on which
�W, and related orderings are transitive or
acyclic.

An alternative “weaker than” ordering will be
useful later. First, we say a property P intersects
property Q when P � Q � A.

DEFINITION 4: Property P is strictly weaker
than property Q, or P �SW Q, if and only if (1)
P intersects Q and (2) whenever U maximally
satisfies P, V maximally satisfies Q, and U �
V � A, then U �

/
V.

In contrast, property P is weaker than Q if it is
merely the case that P is no stronger than Q and
there is some U that maximally satisfies P and
some V that maximally satisfies Q such that U is
weaker (in the ordering of psychologies) than V.

DEFINITION 5 (Ordinality): A psychology U
is ordinal if and only if whenever u � U then (v
� U N there exists an increasing transforma-
tion g such that v � g � u).2

If we say that two functions u and v agree when,
for all x and y in X, u(x) � u(y)N v(x) � v(y),
then a complete psychology U is ordinal if and

2 A function g: E3 �, where E � �, is (a) an increasing
transformation if and only if, when x, y � E and x � y, then
g(x) � g(y); and is (b) an increasing affine transformation
if and only if there exist a � 0 and b such that, for all x � E,
g(x) � ax � b.
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only if u � U implies that when v agrees with u
then v � U.

DEFINITION 6 (Cardinality): A psychology U
is cardinal if and only if whenever u � U then (v
� U N there exists an increasing affine trans-
formation g such that v � g � u).

Keep in mind that utility functions are the
primitive. Consequently, theories that are some-
times called cardinal, such as the von Neumann–
Morgenstern theory of preferences over lotter-
ies, do not necessarily qualify as cardinal in the
current schema. For instance, let the domain be
the set of lotteries over n prizes, X � {p � ��

n :
¥i�1

n pi � 1}. While it is true that an agent with
vNM preferences � over X will have as one of
its utilities a function v of the form v(p) � ¥i�1

n

pivi, the psychology of the agent is a distinct
entity. The agent could have (a) an ordinal
psychology consisting of all increasing transfor-
mations of v, (b) a cardinal psychology consist-
ing of all increasing affine transformations of v,
(c) some other cardinal psychology consisting
of all increasing affine transformation of some
utility that does not take the expected utility
form, or (d) a psychology that is neither ordinal
nor cardinal. It may be plausible that vNM
agents will make cardinal comparisons of utility
that are representable by their vNM utility func-
tions, but the vNM axioms do not entail this
conclusion.

We now define properties of utility as ordinal
or cardinal and consider a couple examples.

DEFINITION 7: A property P is ordinal (resp.
cardinal) if and only if any U that maximally
satisfies P is ordinal (resp. cardinal).

To illustrate how these definitions work, con-
sider the ordinal property of quasiconcavity.
Define a function u: Z3 � to be quasiconcave
if Z is a convex set and, for all x, y � Z and � �
[0, 1], u(�x � (1 � �)y) � min{u(x), u(y)}. To
confirm that quasiconcavity is ordinal, let U
maximally satisfy quasiconcavity and let u be
an arbitrary element of U. Then, if u and v
agree, there is an increasing transformation f:
Range u 3 � such that f � u � v; since f is
increasing, for all x, y � Z and all � � [0, 1],
v(�x � (1 � �)y) � min{v(x), v(y)}. Hence v
satisfies quasiconcavity and so, by Definition 2,
v � U.

Additive separability will serve as a useful
example of a cardinal property.

DEFINITION 8: A function u: A3 � satisfies
additive separability if and only if, for some
integer n � 2, there exist component spaces Ai,
i � 1, ... , n, such that A � A1 	 ... 	 An and
functions ui: Ai3 �, i � 1, ... , n, such that (1)
for each x � A, u(x) � ¥i�1

n ui(xi), (2) for each
component i, Range ui is an interval, and (3) at
least two of these intervals have nonempty in-
terior.

The property of additive separability consists of
the set of all functions that satisfy additive
separability.

THEOREM 2: The property of additive sepa-
rability is cardinal.

For a proof, see David H. Krantz et al. (1971),
or for a more general cardinality result for ad-
ditively separable functions, Mandler (2001).
Theorem 2 provides the basis for Theorem 5,
which establishes the cardinality of the Arrow-
Koopmans theory of convex preferences.

III. Convexity of Preferences

We consider two rationales for convexity and
assess their measurement implications.

A. Concavity as a Primitive

The preferences � defined on the domain
X � �n are convex if and only if, for all y � X,
the set {x � X: x � y} is convex. A function u:
Z3 � satisfies concavity if and only if Z � �n

is a convex set and, for all x, y � Z and all � �
[0, 1], u(�x � (1 � �)y) � �u(x) � (1 �
�)u(y). As is well known, if the preferences �
have a utility representation that satisfies con-
cavity, then � is convex. So, if a psychology U
maximally satisfies concavity, then �U is convex.

Concavity, which means that agents experi-
ence diminishing marginal increments of satis-
faction as they progressively increase their
consumption along any line, has long served as
an informal rationale for why preferences
should be convex. But since assumptions on
utility are usually labeled as either ordinal or
cardinal, concavity has appeared to be cardinal,
thus adding to concavity’s illegitimacy. The
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next theorem shows, however, that concavity is
in fact weaker than cardinality. Recall that prop-
erty P intersects property Q if P � Q � A.

DEFINITION 9: Property P has range � n if
and only if, for each u � P, �Range u� � n.

THEOREM 3:

(i) Any ordinal property is no stronger than
concavity, and concavity is no stronger
than any cardinal property.

(ii) Concavity is strictly weaker than any car-
dinal property with range � 2 that inter-
sects concavity.

(iii) Any ordinal property with range � 1 that
intersects the property of being concave
and continuous is strictly weaker than the
property of being concave and continuous.

Remark. Due to the fact that a concave func-
tion need not be continuous on the boundary of
its domain, there are nontrivial preferences—
even preferences that exhibit strict preference
between arbitrarily many pairs of consumption
bundles—whose only utility representations are
concave. It follows that there are ordinal prop-
erties with arbitrarily large range that are not
weaker than concavity.

Theorem 3 (ii) reports an important fact about
concavity. Along a line, concavity as a psychol-
ogy assumes that an agent experiences each
successive unit of consumption as delivering a
smaller increment of utility or satisfaction. But
concavity does not require that each utility in-
crement is a specific fraction of the previous
increment: agents experience diminishing mar-
ginal utility but no additional extra-ordinal pre-
cision. Cardinality, in contrast, requires that
agents can make cardinal comparisons of utility.
Hence, the ratio of utility increments for some
given pair of consumption changes can assume
only one value: a cardinal agent who satisfies
concavity would be able to say that an addi-
tional unit of consumption delivers additional
utility equal to some specific percentage of the
previous unit of consumption. Cardinality thus
requires an agent to make an implausibly exten-
sive set of psychological judgments.

Concavity can be ranked relative to some
other classical assumptions in utility theory. If X
is a convex nonempty open subset of �n, the
property of continuity on X is weaker than con-

cavity on X, and the property of being continu-
ous and nonconstant on X is strictly weaker than
concavity on X. If Y � �n contains a nonempty
open set, then any ordinal property that is non-
constant on Y is strictly weaker than continuity
on Y. These assertions follow from the fact that
any concave function on an open set is contin-
uous, but not vice versa, and the fact that any
continuous increasing transformation preserves
continuity, but noncontinuous increasing trans-
formations do not preserve continuity. We omit
the details, which vary only slightly from the
proof of Theorem 3.

The properties of continuity and concavity-
with-continuity are each associated with a set of
utility transformations, respectively increasing
continuous and increasing concave functions
from � to �. This feature is by no means shared
by all properties of utility. Moreover, even in
these cases, the properties should not be con-
fused with their associated transformations: the
transformation must be applied to a function
that satisfies the property in question. For in-
stance, an increasing concave transformation of
a nonconcave utility need not be concave.

B. The Arrow-Koopmans Theory

Arrow (1951), following unpublished re-
marks by Koopmans, argued that if an agent
holds a consumption bundle for a period of
time, say the interval [0, T], and can decide on
the timing of how that bundle is consumed,
then the agent’s preferences must be convex.
W. M. Gorman (1957) later proposed a similar
theory. Arrow implicitly supposed that the
agent’s total utility is the integral of the instan-
taneous utility achieved at each moment from 0
to T. An agent holding consumption bundle x �
��

n chooses a function � from [0, T] to ��
n that

maximizes this integral subject to the constraint
that � integrates to no more than x. The infor-
mal argument for convexity is that an agent
holding the bundle �x � (1 � �)y, � � [0, 1],
could consume �x over �T units of time and
(1 � �)y during the remaining (1 � �)T time
units. If the agent’s utility at each instant is
independent of the consumption at other in-
stants, �x consumed over �T time units should
deliver utility equal to � times the utility of x
consumed over T time units, and similarly for
(1 � �)y. So, if x and y are indifferent, con-
suming �x for �T units of time and (1 � �)y for
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(1 � �)T time units will leave the agent exactly
as well off as with x or y. But the agent may find
a better temporal consumption pattern when
endowed with �x � (1 � �)y and thus be better
off than with x or y. Hence indifference curves
are convex. Arrow argued that this account of
convexity, unlike the supposedly cardinalist sto-
ries that rely on diminishing marginal utility, is
a purely ordinal explanation.

We follow Birgit Grodal’s (1974) formaliza-
tion of the Arrow-Koopmans theory. An agent
has a utility function V: ��

n 3 � that takes the
form

V�x� � sup��L �
0

T

u���t�, t� d��t�

s.t. �
0

T

�i�t� d��t� � xi , i � 1, ... , n,

where u: ��
n 	 [0, T] 3 �, � is Lebesgue

measure, t � u(�(t), t) is integrable, x � ��
n ,

and L is the set of Lebesgue measurable func-
tions �: [0, T]3 �n such that �i(t) � 0 for i �
1, ... , n and a.e. t � [0, T]. Let �AK denote the
preference relation on ��

n that V is a utility
representation of.

THEOREM 4 (Grodal, 1974): The utility func-
tion V is concave and therefore �AK is convex.

We turn to the measurement requirements of
the utility 
0

T u(�(t), t) d�(t) in the maximization
problem that defines V but now seen as a func-
tion from L to �.

DEFINITION 10: A function U: L 3 � satis-
fies utility integrability if and only if, for some
positive integer n, (i) there exists a u: ��

n 	 [0,
T] 3 � such that t � u(�(t), t) is integrable
and U(�) � 
0

T u(�(t), t) d�(t) for all � � L; (ii)
�Range U� � 1.

Condition (ii) implies that Range U is a non-
trivial interval (see the proof of Theorem 5).

For a psychology U to maximally satisfy
utility integrability, U must be the largest psy-
chology such that each function U � U satisfies
utility integrability (cf. Definition 2). For the
property of utility integrability to qualify as

cardinal, every psychology U that maximally
satisfies utility integrability must consist of, and
only of, those functions that are the affine trans-
formations of any function in U.

THEOREM 5: Utility integrability is a cardi-
nal property.

Theorems 5 and 3 together imply that the
Arrow-Koopmans theory imposes stricter mea-
surement requirements on agents than does con-
cavity. Utility integrability has range � 2 and
intersects concavity; so Theorem 3 implies that
concavity is strictly weaker than utility integra-
bility. Thus, concavity, despite its preeminent
place in preordinal utility theory, is nearer to
ordinalist standards of measurability. These
conclusions address only the measurement sta-
tus of utility integrability; the Arrow-Koopmans
theory is ingenious and despite its cardinality
offers an intriguing explanation of why prefer-
ences should be convex.

IV. Concave Utilitarianism: Between Cardinal
and Ordinal Interpersonal Comparisons

It is common to think that even if positive
preference theory should be based on purely
ordinal assumptions, utilitarianism is necessar-
ily a cardinal enterprise. But we will see that the
utilitarian recommendations that command the
broadest consensus rely on a measurement scale
that is weaker than cardinality: concave psychol-
ogies reproduce the key utilitarian recommenda-
tion that income be redistributed from high-utility
agents with low marginal utilities of income to
low-utility agents with high marginal utilities of
income. Not every utilitarian conclusion can be
derived from concavity, but the missing results are
the anti-egalitarian policies that harm low-utility
agents. Even many utilitarians have viewed such
recommendations as ethically suspect.

The formal theory of social choice concen-
trates on the standard measurement classes: or-
dinal scales, interval or cardinal scales, and
occasionally ratio scales. Opening up the terrain
between ordinal and cardinal measurement
brings out new possibilities. Any version of
utilitarianism based on a compromise measure-
ment standard, such as the concavity proposal
we lay out, has the advantage that it is easier to
construct (requires fewer interpersonal judg-
ments) than the traditional cardinal doctrine.
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Consider a society of I agents who must
choose from a set of social choices X. To keep
a concrete example in mind, one we discuss
later, X � ��

I might be a set of feasible income
profiles for the I agents.

Interpersonal welfare comparisons will be
represented by social utility functions u, which
are standard utility functions except that they are
defined on � 	 X, where � denotes the set of agents
{1, ... , I}. We interpret u(i, x) � u(j, y) to mean
that agent i with social choice x is at least as well
off as agent j with social choice y. So, in particular,
u(i, � ) gauges agent i’s well-being. When combined
with an aggregation rule, e.g., ¥i�� u(i, x) or mini��

u(i, x), a social utility u generates an ordering of X.
To assess the measurement implications of

different ways of making interpersonal welfare
comparisons, we again consider psychologies of
utility functions. To keep the distinction be-
tween social and individual choice in mind, call
a psychology U of social utility functions a
social psychology. One may think of the inter-
personal judgments represented by a social psy-
chology as arising from the preferences of an
individual contemplating what it would be like
to be various agents under various social out-
comes. A social psychology is then interpreted
in the same way as an individual psychology:
the psychology lists the utility functions that
accurately compare various consumption expe-
riences. It just so happens that for social psy-
chologies the set of possible consumption
experiences is � 	 X rather than an arbitrary set.

As before, we consider only social psycholo-
gies U that are complete: U will contain only,
though not necessarily all, increasing transforma-
tions of some u � U. In the language of social
choice theory, completeness implies that the min-
imum measurement standard that any resulting
social welfare function satisfies is ordinal level
comparability (in the terminology of Kevin Rob-
erts, 1980b). Since we do not require U to contain
all ordinally equivalent social utilities, our social
psychologies can obey a stronger measurement
standard.3

We again compare cardinal, ordinal, and con-
cave psychologies. Definitions 5 and 6 of ordi-
nality and cardinality apply unchanged to social
psychologies; we now use UO and UC to denote,
respectively, generic ordinal and cardinal so-
cial psychologies. But we must redefine con-
cavity, since, due to �, the domain of a social
utility is not a convex set. We call a social
utility function u coordinately concave if and
only if X is convex and, for each i � �, u(i, � )
is concave and continuous. The property of
coordinate concavity is then simply the set of
all coordinately concave functions, and a con-
cave social psychology is therefore a social
psychology that maximally satisfies coordi-
nate concavity. It is thus a largest social psy-
chology that preserves the concavity of each
agent’s utility and where each social utility
represents the same complete ordering on � 	
X. UCC will denote a generic concave social
psychology.

We consider social welfare rankings that or-
der the social choices X according to the sum of
the utilities ¥i�� u(i, x). Given a social psychol-
ogy U, the ordering �U

s over X is defined by

x �U
s yN �

i��

v�i, x� � �
i��

v�i, y� for all v � U.

So x is ranked above y when all the social
utilities in U rank x above y by a sum-of-
utilities test. The superscript s distinguishes
�U

s , an ordering over the social choices, from
�U, the ordering over � 	 X that any u � U
represents. While �U is complete, �U

s need
not be: U might not specify enough social
welfare judgments for utilitarian aggregation
always to be decisive.

Different social psychologies evidently gen-
erate different “utilitarian” rankings. Call �UC

s ,
�UO

s , and �UCC

s cardinal, ordinal, and concave
utilitarianism, respectively. Cardinal utilitarian-
ism is the usual utilitarianism; any u in UC
generates the same sum-of-utilities ordering of
social choices. But cardinal utilitarianism rests
on a demanding measurement standard; speci-
fying a cardinal social psychology requires
making cardinal comparisons of utility across
agents. Ordinal utilitarianism, at the other ex-
treme, relies on a much weaker measurement
standard. Since ordinal utilitarianism requires
any ranking of x over y to pass a larger set of
sum-of-utilities tests, it ranks fewer social

3 Some social choice theories consider utility transfor-
mations that vary as a function of the agent i, e.g., invari-
ance with respects to individual origins of utility, used by
Claude d’Aspremont and Louis Gevers (1977) to axioma-
tize utilitarianism, which admits affine transformations of
the form au(i, � ) � bi. In our framework, these transforma-
tions translate into incomplete social psychologies.
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choices than cardinal utilitarianism. Indeed, we
will see that ordinal utilitarianism incompleteness
can be so extensive that it makes trivially few
rankings. Since a concave social psychology UCC
contains the utilities generated by the affine trans-
formations of any u � UCC, and since the set of all
ordinal representations of u contains any concave
representation, concave utilitarianism produces
more rankings than ordinal utilitarianism, but
fewer rankings than cardinal utilitarianism. We
write this down as a theorem.

THEOREM 6: Let the social psychologies UC
be cardinal, UO be ordinal, and UCC be coor-
dinately concave. If UC � UCC � A, then UC �
UCC and �UC

s � �UCC

s . If UCC � UO � A, then
UCC � UO and �UCC

s � �UO

s .

Concave utilitarianism relaxes the stringent
measurement requirements of cardinal utilitari-
anism, and, as in the case of preference theory,
concavity as a psychology pinpoints the char-
acteristically neoclassical views of economic
psychology. But does concave utilitarianism re-
tain the egalitarianism and enough of cardinal
utilitarianism’s decisiveness? Specifically, does
concave utilitarianism recommend redistribu-
tions from rich to poor and does it rank suffi-
ciently many social choices?

An ordering �U
s and a particular u in U in-

duce an ordering over utility vectors in �I that
will help characterize �U

s . Given a social psy-
chology U and u � U, we define Ru�U, an
ordering over vectors in �I (distinguished sub-
sequently by letters in bold) as follows.

DEFINITION 11: Given a social psychology
U, v Ru�U w N there exist x, y � X with v �
(u(1, x), ... , u(I, x)), w � (u(1, y), ... , u(I, y))
and x �U

s y.

We say that u is feasible for a social utility u
if and only if

u � F�u� � �u � �I: there exists x � X

such that u � �u�1, x�, ... , u�I, x���.

Not surprisingly, v is ranked higher than w
according to any cardinal utilitarian ordering
Ru�UC

if and only if the sum of the coordinates
in v is at least as large as the sum in w. Ordinal
utilitarianism is also easily characterized. For

any vector v, let v* denote the vector formed by
placing the coordinates v1 , ... , vI in increasing
order.

THEOREM 7:

(i) If UC is cardinal, u � UC, and v, w are
feasible for u, then v Ru�UC

wN ¥i�� vi �
¥i�� wi.

(ii) If UO is ordinal, u � UO, and v, w are
feasible for u, then v Ru�UO

wN v* � w*.

Result (ii) says that ordinal utilitarianism
judges x �UO

s y if and only if, according to any
u � UO, the ith best-off agent under x is at least
as well off as the ith best off under y for all i �
�. Thus, modulo utilitarianism’s anonymity re-
quirement (which implies that if u and v merely
rearrange indices without changing the utility
level of the ith best-off agent for any i, then u
and v are tied according to Ru�UO

), ordinal
utilitarianism recommends only Pareto im-
provements. We will say that u is an anonymous
Pareto improvement over v if u* � v* (some-
times this is called a Suppes-Sen improvement).
Ordinal utilitarianism lacks the traditional redis-
tributive conclusions of utilitarianism: it will
never recommend a small transfer of wealth
from a high-utility agent to a low-utility agent.
Cardinal utilitarianism of course recommends
such transfers if the low-utility agent has a
higher marginal utility of wealth (according to
any given u � UC) than the high-utility agent.

To characterize concave utilitarianism, first
recall the definition of a least concave function.
Let V denote an individual psychology consist-
ing of all the continuous and concave utility
functions, defined on some convex domain X �
�n, that represent some fixed preference rela-
tion � on X. The function v� � V is least
concave if and only if for every v � V there
exists an increasing concave transformation g:
Range v� 3 � such that v � g � v�. Gerard
Debreu (1976) proved that a least concave v�
exists. Social psychologies do not have convex
domains, however, and so the definition of least
concavity needs amendment. Let u�(i, X) denote
the range of the function u�(i, � ).

DEFINITION 12: If UCC is a concave social
psychology, then u� � UCC is least coordinately
concave or lcc if and only if for all u � UCC
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there exists an increasing transformation g:
Range u� 3 � such that u � g � u� and, for all
i � �, g is concave when restricted to u�(i, X).

Debreu’s least concavity theorem does not itself
imply that each UCC contains an lcc utility func-
tion, but the proof extends easily. Let con S
denote the convex hull of a set S.

THEOREM 8: If UCC is coordinately concave,
u� � UCC is lcc, and v, w are feasible for u� , then

v � con�u � F�u��: u* � w*�

fv Ru��UCC
w.

So if (u�(1, x), ... , u�(I, x))* is a convex combi-
nation of Pareto improvements of (u�(1, y), ... ,
u�(I, y))* then x �UCC

s y.
The upper contour sets of the three utilitari-

anisms clarify what Theorem 8 says. Suppose
I � 2 and that UC, UO, UCC have a common
element u� that is lcc for UCC. To keep things
simple, suppose F(u�) equals ��

I . Fixing an ar-
bitrary w, the upper contour sets {v: v R w} for
the three utilitarian orderings R � {Ru��UC

,
Ru��UO

, Ru��UCC
} are pictured in Figures 1

through 3. In this two-dimensional case, {v:
v Ru��UCC

w} exactly coincides with the convex
hull given in Theorem 8 (see Theorem 9 below).

Figures 2 and 3 show that concave utilitari-
anism ranks a much richer set of utility vectors
than ordinal utilitarianism. Not only are the

anonymous Pareto improvements weakly supe-
rior to w, but any policy that benefits a utility-
poor agent at the expense of a utility-rich agent
with no net loss of least concave utility is also
superior. On the other hand, in contrast to car-
dinal utilitarianism, concave utilitarianism does
not declare any utility vector that lowers the
welfare of the worse-off agent to be superior to
w. Indeed, for pairs of agents, changes from w
that harm the worse-off agent are the only or-
derings made by Ru��UC

but not by Ru��UCC
. Con-

cave utilitarianism thus stakes out an egalitarian
compromise between standard cardinal utilitar-
ianism and the narrow Paretian judgments made
by ordinal utilitarianism.

w

u
_

1

u
_

2
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FIGURE 3. CONCAVE UTILITARIAN UPPER CONTOUR SET
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Cardinal utilitarianism has long been criti-
cized for ignoring welfare levels and in partic-
ular for recommending that low-utility agents
should undergo arbitrarily large utility losses
whenever those losses lead to greater utility
gains for high-utility agents. Concave utilitari-
anism does not suffer from this defect. More-
over, concave utilitarianism does not arrive at
its prohibition on harming the least well-off by
invoking an equity axiom (as in Hammond,
1976). Rather, the egalitarianism stems directly
from the psychological content of concavity.

We can characterize this egalitarianism by
turning to the second-order stochastic domi-
nance and poverty ordering literatures (see G.
Hanoch and Haim Levy, 1969; Serge-Christophe
Kolm, 1969; Vijay S. Bawa, 1975; Charles Black-
orby and David Donaldson, 1977; Anthony F.
Shorrocks, 1983; James E. Foster and Shorrocks,
1998a, 1988b; and the discussion of Roberts,
1980b, below). In the literature on poverty order-
ings, more equal distributions of income will, ce-
teris paribus, raise the sum of utilities, no matter
what concave function maps individual income to
social welfare. In the current setting, the utility
levels given by the least coordinately concave
social utility functions play the role of incomes,
and thus more equal distributions of least concave
utility with no net loss will be a concave-utilitarian
improvement, no matter how concave individual
utility functions are. Thus, even when X specifies
consumption of many commodities, agents’ wel-
fare can be compared using a single-dimensional
variable—least concave utility—analogous to in-
come. In effect then, we give a measurement
theory and multicommodity rationale for the or-
dering of utility distributions or income distribu-
tions cited above.

Our characterization relies on the historically
important Pigou-Dalton principle (see, e.g.,
Hervé Moulin, 1988).

Given a social utility u, an ordering R over
utility vectors satisfies the Pigou-Dalton princi-
ple if, for any j, k � � and any v, w feasible for
u with vm � wm for m � { j, k}:

vj � vk � wj � wk and min�vj, vk� � min�wj,wk�

(PD) f v R w.

In words, R satisfies Pigou-Dalton if a switch to
a new vector of utilities that affects only a pair

of agents is recommended when the sum of
utilities is unchanged, and the lower-utility
agent after the switch is no worse off than the
lower-utility agent before the switch.

Figure 3 suggests that concave utilitarianism
should satisfy the Pigou-Dalton principle. Sub-
ject to one caveat, the implication in (PD) in
fact goes both ways if we replace the “�” in
(PD) with “�,” as Theorem 9 reports. In this
sense, Pigou-Dalton characterizes concave util-
itarianism. The caveat arises when a social util-
ity function assigns ranges for the individual
utility functions that do not overlap. For exam-
ple, suppose two agents a and b must split a pie
and some concave social utility function gives a
and b sets of achievable utilities that are dis-
joint. One may then multiply either a’s or b’s
utility by any positive constant and thereby ar-
rive at another concave social utility. So a con-
cave social psychology could not judge either
agent’s marginal utility of consumption to be
higher or lower than the other’s, thereby emp-
tying concave utilitarianism of its egalitarian
content. To exclude this wrinkle, it is sufficient
to assume for any u � UCC that �i�� Int u(i, X)
is an interval (where ‘Int’ denotes interior). The
range of each agent’s utility then does directly
or indirectly overlap the range of any other
agent’s utility; arbitrary rescalings of a single
individual’s utility function are therefore
blocked, and nontrivial interpersonal compari-
sons can be made.

THEOREM 9: Let u� be lcc for UCC and sup-
pose �i�� Int u�(i, X) is an interval. If v, w are
feasible for u� and identical in all but two coor-
dinates j and k, then

vj � vk � wj � wk and min�vj, vk� � min�wj, wk�

N v Ru��UCC
w.

Thus we arrive at a “poverty ordering” of utility
distributions despite beginning with preferences
defined over an X that can specify consumption
of an arbitrary number of goods.

A contrasting result of Avinash K. Dixit and
Jesus Seade (1979) pins down the content of
Theorem 9. Dixit and Seade show in effect that
there are preferences � on �n and x � �n, with
� representable by a smooth increasing con-
cave utility function, such that for any such
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representation u there is a y near x with
u( y) � u( x) and Du( y) 	 Du( x). If there
were two agents, each with the preferences �,
but one endowed with x and the other en-
dowed with y, then a planner who assigned u
to both agents and ranked allocations accord-
ing to the sum of utilities would always rec-
ommend at least some transfer of goods from
the agent with the low utility level (the “x
agent”) to the agent with the high utility level
(the “y agent”). Theorem 9 does not contra-
dict this result. Dixit and Seade let y vary as
a function of the concave representation u:
given u, there exists a utility-rich y agent to
whom a transfer from the x-agent would raise
the sum of the u’s. A concave utilitarian in
contrast would require any transfer to raise
the sum of utilities calculated with all con-
cave u’s, and any transfer from some specific
y agent to the x agent would be rejected by a
sufficiently concave u.

To illustrate cardinal and concave utilitarian-
ism’s common ground, and the paucity of ordi-
nal utilitarian rankings, consider the canonical
problem of ranking distributions of a single
good.

Example.—A policymaker must choose a
distribution of the aggregate output 
 � 0, and
so the set of social choices X is {x � ��

I : ¥i��

xi � 
}. We assume that the social psychol-
ogies UC, UO, and UCC have a common u
such that each u(i, � ) is increasing, differen-
tiable, and strictly concave in xi (the ith co-
ordinate of x, i’s income) and constant in the
other coordinates. Let u(i, � ) henceforth de-
note social utility as a function of xi alone.
Suppose u� is lcc for UCC and that �i�� Int
u� (i, X) is an interval.

First, let all individuals be identical: u(i, � ) �
u( j, � ) for any i, j � �. Although the cardinal and
concave utilitarian orderings �UC

s and �UCC

s are
not identical, they both rank e � ((1/I)
, ... ,
(1/I)
) above any other distribution in X. For
�UO

s , in contrast, any x � X that varies by agent
is unranked relative to e, and no pair of points in
X is strictly ranked.

Next, allow u(i, � ) � u( j, � ) and let Du(k, xk)
denote the derivative of u(k, � ), evaluated at xk.
As in the identical-agent case, �UC

s ranks an x
such that Du(i, xi) � Du( j, xj) to be superior to
any other point in X. While �UCC

s no longer has
to make this ranking, Theorem 9 implies, given

some base distribution x, that some transfer of
income from agent j to agent i will be superior
according to �UCC

s if and only if

Du� �i, xi � � Du� � j, xj �

and u��i, xi� � u�� j, xj�.

So, rather than the equal derivative condition,
any x such that

�Du��i, xi� � Du�� j, xj���u��i, xi� � u�� j, xj�� � 0

for all (i, j) is undominated according to
�UCC

s : agents’ utility levels and their marginal
utilities of income (both calculated using u� )
must be comonotonic. Ordinal utilitarianism
again makes very few orderings: given some
x � X, no transfer from a lower utility agent
to a higher utility agent is ranked relative to x,
nor is any small transfer from a higher utility
agent to a lower utility agent. And any point
in X that leads to equal utility levels is always
unranked relative to all other points in X.

Notice how easy it is in this example for a
concave utilitarian to make policy decisions. A
policymaker does not have to posit exact ratios
of different agents’ gains in utility. To judge a
small transfer, the policymaker need only de-
cide if a transfer from i to j leads to a bigger
gain for j than i’s loss and if i’s ex ante welfare
level is higher than j’s.

Although the cardinal and concave utilitarian
orderings are not the same, it is concave rather
than cardinal utilitarianism that provides the
better rationale for the positions endorsed by the
original neoclassical utilitarians. The connec-
tion to the Pigou-Dalton principle is revealing.
Arthur C. Pigou, the architect of neoclassical
welfare economics, considered himself both a
cardinalist and a utilitarian: at least in theory,
each individual in society has a cardinal and
interpersonally comparable utility function,
and policies should be evaluated by summing
the utility numbers that they lead to. But
Pigou (1932) recognized that it is not easy to
come by cardinal utility information, and
therefore argued that, as a practical matter,
welfare economics can validate only policies
that do not rely on that information. Even
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Edgeworth (1897), the arch-utilitarian, did
not approve of policies whose justification
depends on the specific choice of a cardinal
utility function rather than on DMU alone
(Mandler, 1999, chap. 6). In Pigou’s view, a
policy that lowers the income of a low-utility
individual by $1 and raises the income of a
high-utility individual by $x cannot be backed
unambiguously, no matter how large x is,
since the marginal utility of income might be
very small at high utility levels. On the other
hand, if the low-utility agent gains by $y, y �
1, and the high-utility agent loses by $1, then
any sum-of-utilities test will recommend the pol-
icy change if agents share a concave utility of
income. Concave utilitarianism backs the
same recommendations, but it elevates the
theoretical status of not having cardinal infor-
mation about individuals. According to con-
cavity as a social psychology, there is no
unknown but nevertheless real cardinal utility
function lurking out there—the most detailed
information that could in principle be known
about interpersonally comparable utility is
that it is concave. The close match between
the theory of concave utilitarianism and Pi-
gou’s practical position is unsurprising: con-
cave utilitarianism imposes exactly the
psychological content that informed Pigou’s
account of human happiness.

Finally, we can characterize a concave-
utilitarian comparison of utility vectors that
have arbitrarily many coordinate changes by:

v Ru��UCC
wN �

i � 1

n

v*i � �
i � 1

n

w*i for all n � �,

where v, w � F(u� ) and where we again
assume the same range condition that �i�� Int
u� (i, X) is an interval obtains. Kevin Roberts
(1980b) essentially hypothesized this equiva-
lence (in different terminology) and suggested
Hanoch and Levy (1969) and least concave
utilities as the appropriate tools. Roberts did
not recognize that social utilities cannot sat-
isfy the traditional definition of least concav-
ity, an omission that obscured the need for the
range condition. We should point out that
Roberts did not take sets of concave utility
functions as primitive, but argued, like Pigou,
that such a set can be assumed to contain the
one “true” cardinal family of utilities.

V. Observable Tests of Concavity

Cardinal utility theory was rejected not be-
cause it invoked mental relationships above and
beyond choice behavior; psychology routinely
does just this without tarnishing its scientific
standing. Cardinality ran into trouble because,
first, there was no convincing evidence that
satisfaction is a cardinal quantity and, second,
cardinal utility seemingly had no role to play in
consumer theory. Although these criticisms are
telling, they do not apply to all forms of non-
ordinal utility. With regard to the second
charge, we have seen that concave psychologies
do serve an important purpose even in positive
theory—they provide a concise and only mildly
nonordinal rationale for the convexity of
preferences.

As for the first charge, the MRI revolution in
cognitive neuroscience has identified neural
correlates of consumption decisions that can
test whether an agent has a concave psychology.
As we will see, a concavity test requires only
that neural correlates have two properties: they
should map into an agent’s ordinal preference
ranking of alternatives and they should order the
gains or losses in well-being that an agent ex-
periences relative to well-being at the agent’s
reference consumption level. Such evidence
cannot always be used to test for cardinality,
which can require more extensive data.

Neuroscientists have uncovered various indi-
cators of choice decisions. Brian Knutson et al.
(2001), Martin P. Paulus et al. (2001), and Hans
C. Breiter et al. (2001) show the extent of ac-
tivity in several brain areas (the nucleus accum-
bens, the parietal cortex, and the sublenticular
extended amygdala, among others) that corre-
late with the magnitude of monetary rewards
that subjects receive.4 Agents’ money gains
come on top of their base or reference consump-
tion levels: background income and consump-
tion are fixed and the experiments establish
benchmark levels of neural response. Also, the
correlates of economic gains turn out to occur
largely at one set of neural sites, while corre-
lates of losses occur at others (Breiter et al.,
2001). While this fact is consistent with subjects

4 The recent special issue on neuroeconomics in Games
and Economic Behavior (Aldo Rustichini, 2005) gives an
overview of the neuroeconomics literature. See also Paul W.
Glimcher and Rustichini (2004).
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having stable ordinal preferences, it underscores
that neural indicators give evidence of changes
relative to reference consumption. If current
progress continues, this literature may well un-
cover neural indicators that reliably track the
consumption increments that agents prefer and
choose.

We suppose therefore that an agent who first
consumes a base or reference consumption bun-
dle c and then adds an increment y to c displays
an identifiable neural response, which we label
N(c, y). (It may help to think of c and c � y as
flows over a brief period.) Each N(c, y) may
well lie on a unidimensional or multidimen-
sional scale, but the range of N could also
consist of qualitative events with no numerical
structure. We suppose the agent has a strict
preference relation � defined over consumption
vectors that is a weak order (asymmetric and
negatively transitive). The relation � will re-
main the same for all base bundles c: for any c
the agent always chooses y over y� when c �
y � c � y�. As usual, � is confirmable from
choice data. The assumption that N correlates
with preference means that (a) strictly preferred
bundles lead to distinct neural observations and
(b) whenever the same pair of observations
arises, the same direction of preference obtains.
Formally these properties for N mean that for all
reference bundles c, c�, and increments y, y�, z, z�:

(1) c � y � c � y� f N�c, y�  N�c, y��,

and

(2) c � y � c � y�, N�c�, z�� N�c, y�,

and N�c�, z��� N�c, y��

f c� � z � c� � z�.

An agent exhibits a benchmark neural re-
sponse if some null reaction occurs whenever
y � 0, i.e., there is an element 0 of Range N
such that, for all c, N(c, 0) � 0. We do not
have to assume explicitly that a benchmark
exists, but its presence would fit with our
interpretation of N. The plausibility of (1) and
(2) depends on how many increments y may
be added to c; if y is a continuous variable, an
agent may not display the required neurolog-
ical discrimination.

The neural indicators can be ordered by the
agent’s ordinal ranking of consumption bun-
dles: we define the relation P0 on Range N by
� P0 �� if and only if there exist c, y, y� such
that � � N(c, y), �� � N(c, y�), and c � y � c �
y�. Let P be the transitive closure of P0; we
assume that P is a weak order. Given P, equiv-
alence classes of neural indicators in Range N
are defined by � I �� N not � P �� and not ��
P �.5 Notice that the ordering P can be deduced
solely from the observables � and N.

If P can be represented by a “utility” function
, this function orders neural indicators accord-
ing to whether the underlying consumption in-
crements are more or less preferred: (�) �
(��) if and only if � P ��. Call any such 
admissible.

Even if it turned out that N maps into a
single-dimensional variable that monotonically
indicates which consumption increments are more
preferred, it would not follow that the changes in
satisfaction from increments to consumption are
proportional to, or an affine transformation of
N(c, � ). (Indeed it would not matter if N were a
linear function of consumption, as Knutson and
Peterson (2005) claim is the case.) Changes in
satisfaction could well be formed by a different—
and unobservable—psychological process and
could as easily be the cube or exponential of N(c,
� ) as an affine transformation of N(c, � ). So, for the
same reason that traditional ordinal utilities are
arbitrary up to an increasing transformation, if
(N(c, � )) represents an agent’s ordering of con-
sumption increments given c, then any increasing
transformation of (N(c, � )) represents the same
ordering equally well.

But to test for concavity, the arbitrariness of
 is irrelevant; all that matters is the underlying
N. Let us say that observational DMU obtains
if, for any c and y and any admissible ,

�N�c � y, y�� � �N�c, y��.

If we assume that any equivalence class of
neural indicators indicates a comparable subjec-
tive experience of well-being at any reference
consumption bundle, then observational DMU

5 Formally, P is defined by � P �� if and only if � P 0��
or there is finite set {�1, ... , �n} with � P0 �1 P0

... P0 �n P0

��. To derive the conclusion that P is a weak order, it is
sufficient to assume that P0 is acyclic and that if � P �� I ��
or � I �� P �� then � P �� .
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means that a second increment of y leads to a
smaller psychic gain than the first increment of
y. Since every admissible  represents the same
ordering of neural indicators, if the inequality
above holds for one admissible , then it holds
for all admissible .

For an example of what observational DMU
asserts, let there be just one consumption good,
consumed at integer levels, and let the agent’s
preference relation � always agree with �
(more is better). The neural responses are one-
dimensional. Specifically, we assume that for
any c the neural responses are linear in y: for
any c there is a kc � 0 such that N(c, y) � kcy
for all y. Evidently P is the order � (restricted
to the integers). If in addition we assume that
c � c� implies kc � kc�, then observational
DMU obtains. Notice that the linearity of each
N(c, � ) is consistent with observational DMU.
Indeed observational DMU can be consistent
with each N(c, � ) having an increasing first
derivative.

Given our interpretation that N gives compa-
rable information about changes in well-being
or utility at all c bundles, a psychology U for the
agent should contain only those functions that
represent those changes in utility. That is, if
(N(c, y)) � (N(c�, y�)) then a u � U should
satisfy u(c � y) � u(c) � u(c� � y�) � u(c�). So
if observational DMU holds and (c � y, y) and
(c, y) are in the domain of N, a u � U should
satisfy

u�c � 2y� � u�c � y�

u�c � y� � u�c�
� 1,

or, in other words, u is midpoint concave on its
domain. (If u satisfies midpoint concavity on a
convex domain and is continuous, then u is
concave.)

Concavity of a psychology therefore leads to
testable empirical claims. In some limiting
cases, cardinality is testable too. By comparing
N(c, y) to N(c�, y�), we may see if an agent
regards a move from c to c � y as leading to a
bigger or smaller change in satisfaction or util-
ity than a move from c� to c� � y�. Hence, if
every feasible increment y is observable for all
c, we can assemble from N a complete ordering
of how an agent compares changes in satisfac-
tion. If in addition there is some utility u that
represents these changes whose range is an in-

terval (e.g., when the consumption set is con-
nected and u is continuous) then the ordering of
changes in satisfaction is sufficient to pin down
a cardinal family of utilities (see Kaushik Basu,
1982). Determining whether a subject’s neural
responses satisfy the conditions we have placed
on N and whether some u that represents the
resulting ordering of changes in utility has an
interval range would therefore constitute a test
of cardinality. Not surprisingly, such a test is
more demanding than a test for concavity. If
only a discrete set of (c, y) are in the domain of
N (as in our earlier example), then one cannot
confirm or falsify the range condition. And if
the variables c and y can be varied continuously
it may be that the conditions (1) and (2) on N no
longer hold, again preventing a cardinality test.

Although we have so far used neural indica-
tors to rank the satisfaction of consumption
increments, the same theory applies to agents’
verbal assessments of their satisfaction or
happiness: simply interpret N(c, y) as a one-
dimensional variable that reports an agent’s as-
sessment of the value of increment y given the
base c. When N(c, y) � N(c�, y�), the agent says
in effect that the utility gain of increment y at
base c is greater than the utility gain of incre-
ment y� at base c�. The neuroscience literature
in fact finds that self-reported satisfaction and
neural indicators correlate (see, e.g., Knutson et
al., 2001). With regard to tests of cardinality,
notice that the surveys of reported happiness
levels allow agents to report only a few possible
satisfaction responses; thus the interval range
condition could not be even approximately
verified.

When faced with neurological correlates of
satisfaction or surveys of self-reported happi-
ness, economists sometimes view these data as
cardinal scales (e.g., Ng, 1997). I have deviated
from this practice first by letting the set of
neural indicators be arbitrary rather than a uni-
dimensional variable. But even if N is a single
variable that correlates perfectly with happi-
ness, our framework allows an agent’s subjec-
tive sense of satisfaction to vary nonlinearly
with N (even when the interval range condition
is satisfied and cardinality is testable). Regres-
sions on survey data of self-reported happiness
often import cardinality assumptions: if a re-
gression treats equal differences between pre-
dicted and reported happiness as an equal loss
of goodness of fit, the survey responses are
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being interpreted as cardinal scales. The use of
compromise measurement scales would permit
weaker and more plausible interpretations on
survey data. When subjects compare increments
of satisfaction, one could judge any deviation
of a subject’s ranking of satisfaction incre-
ments from a predicted ranking to be an equal
goodness-of-fit failure. By making measure-
ment assumptions explicit, it should be possible
to free both physiological and self-reported sat-
isfaction data from cardinality entanglements.

VI. Related Literature on Measurement

Our ordering of properties of utility draws on
two measurement literatures. The first is mea-
surement theory proper (see, e.g., Krantz et al.,
1971; Roberts, 1979; and, originally, Stanley S.
Stevens, 1946), which identifies measurement
classes with sets of transformations. Ratio
scales are defined by the set of increasing linear
transformations, interval or cardinal scales by
the set of increasing affine transformations, and
ordinal scales by the set of all increasing trans-
formations. Measurement theory implicitly or-
ders measurement classes by set inclusion; in
the cases mentioned the sets of transformations
are nested. A set inclusion ordering of transfor-
mations will sometimes track the ordering of
properties we consider, but it covers only a few
special cases and cannot define a sufficiently
rich array of measurement classes. The second
is the social choice literature that associates sets
of transformations, now applied to multi-agent
profiles of utility functions, with a category of
interpersonal comparability (Amartya Sen,
1970; d’Aspremont and Gevers, 1977; Roberts,
1980b; Walter Bossert and John A. Weymark,
1996). Applying a smaller set of transforma-
tions imposes a tighter interpersonal compara-
bility requirement.

The drawback of both literatures is that they
either work directly with transformations in-
stead of utility functions or, when sets of utili-
ties are primitive, concentrate on those sets of
utilities that are generated by applying a set
(indeed a group) of transformations to an arbi-
trary utility function. At first glance, this prac-
tice may seem to be an advantage: any utility
function can then be a member of any of the
standard measurement classes. But taking arbi-
trary psychologies as primitive admits a greater
variety of measurement standards and proves

more flexible. For instance, the set of continu-
ous utility functions defines a measurement
standard that cannot be characterized by the set
of continuous transformations (since an increas-
ing continuous transformation applied to a non-
continuous utility function will not generate a
continuous utility). Just as importantly, it is
only by taking psychologies as primitive that
we can identify the measurement requirements
of assumptions on utility functions and hence to
compare the measurement requirements of dif-
ferent assumptions.

Basu (1980) has also explored room for com-
promise between ordinal and cardinal utility
theory. In a spirit similar to the present paper,
Basu contends that DMU resides in this middle
ground and remarks on the advantages of taking
nonordinal assumptions as primitive. But Basu
sticks to the method of characterizing measure-
ment classes via utility transformations. Fur-
thermore, as Basu (1982) shows, the middle
ground that Basu (1980) linked to DMU ends up
being equivalent to full-scale cardinality for
continuous utilities defined on classical com-
modity spaces. Basu concludes that utility the-
ory prior to the ordinal revolution used
assumptions that were tantamount to cardinality
(even when, as in Lange’s case, they were at-
tempting to rid themselves of cardinal assump-
tions). We have come to a different conclusion:
by using sets of utility functions to compare
measurement standards, compromises between
cardinality and ordinality will persist even with
standard economic commodities.

In contrast to the present view of measure-
ment (and to the social choice view), the hard-
line ordinalist position has had trouble figuring
out what to do with cardinal utility theories. A
lot of work (e.g., Debreu, 1960; Krantz et al.,
1971) has gone into finding axioms on prefer-
ences that ensure that preferences can be repre-
sented by functions that are unique up to
increasing affine transformations. But from the
ordinal vantage point, the significance of these
representation results remains limited. Since
preferences are the real primitive, the cardinal
utility whose existence is established amounts
only to a convenience. A von Neumann–Mor-
genstern utility function, for instance, simply
allows the ease of a function that is linear in the
probabilities. But other utility representations of
the same preferences—e.g., the cube of a vNM
utility—carry the same information about choice
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behavior. When psychologies are primitive, on the
other hand, the cardinality of an assumption de-
livers the important message that the assumption
entails a sizable departure from ordinality. Other
nonordinal properties, such as concavity or conti-
nuity, imply a smaller departure.

VII. Conclusion

The ordering of properties in this paper
gauges the measurement requirements of as-
sumptions on utility functions. To illustrate how
this gauge can be applied, we argued in section
III that the Arrow-Koopmans explanation of
convexity, despite its billing as an ordinal the-
ory, relies on a demanding cardinal standard of
measurement rather than the weaker standard
that concavity entails. Consider the following
rebuttal, however. Although the Arrow-Koop-
mans theory begins with a class of integral
utility functions, one could object that those
integral utilities have no special significance;
other utility functions that do not have the inte-
gral form represent the same preference relation
as the integral utilities, and we could include
them in the psychology that describes the agent.
Furthermore, one can impose assumptions on
preference relations that imply the existence of
an integral utility representation (Grodal and
Jean-François Mertens, 1968; Vind, 1969)—
just as there are axioms on preferences over
finite numbers of goods that imply that addi-
tively separable utility representations exist
(Debreu, 1960). So perhaps one could claim that
the Arrow-Koopmans theory does give an ordi-
nal explanation of the convexity of preferences.
But this argument hinges on whether such an
ordinal axiomatization stands as a convincing
primitive. The key assumption needed for the
existence of an integral utility representation is
an independence postulate, just as a similar in-
dependence condition underlies the existence of
additively separable utility representations. In
the setting of time-dated goods, independence
asserts that preferences over any subset of the
time-dated goods are not affected by the con-
sumption level of goods with different dates.
Although independence is posed as an ordinal
axiom, it rests on deeper psychological founda-
tions: independence relies on a claim that con-
sumption at one date does not affect the
satisfaction of consumption at other dates. In-
deed, this would appear to be the only rationale

that could make independence plausible. But
then only those functions where the utility ex-
perienced at one date is independent of the
consumption at other dates will represent the
full gamut of psychological claims asserted in
an independence-based theory. As we know, the
utility functions with this property form a car-
dinal psychology of additively separable func-
tions (or in the infinite case, integral functions);
the other ordinally equivalent functions do not
express the psychological presuppositions that
justify independence. This paper takes sets of
utilities as primitive partly in order to give psy-
chological rationales for ordinal axioms. Regard-
ing convexity, it would beg the question to replace
convexity with a different set of ordinal axioms
that lead to the Arrow-Koopmans theory; one
would then have to give rationales for those axi-
oms. And the psychologies that accompany the
rationales for some of those axions would be
cardinal.

Orderings of properties of utility can shed
light on the measurement requirements of ra-
tionales for other assumptions on preferences
besides convexity. Consider, for example, con-
tinuity as an assumption on preferences (i.e., the
assumption that strict upper and lower contour
sets are open). The obvious justification for the
continuity of preferences is to argue that satis-
faction is a continuous psychological quantity.
Although not quite ordinal, continuity of utility
is weaker in the measurement sense than several
other assumptions we have considered (e.g.,
additive separability, concavity on open sets).
Thus, as intuition suggests, the continuity of
preferences can be justified using a measure-
ment standard only slightly stronger than ordi-
nal measurement. Once again, an ordinalist
might object that there is no need to assume that
utility functions are continuous in order to give
a rationale for preference continuity; the conti-
nuity of preferences already stands as an ordinal
axiom. But the psychology that motivates an
assumption that preferences are continuous is
nonordinal; it turns on the claim that satisfaction
is a continuous quantity.

If any doubt lingers that nonordinal content
can motivate an axiom on preferences, consider
the following trivial ordinalization of properties
of utility. For any property P, define the prop-
erty PO to consist of all functions that ordinally
agree with some u that satisfies P. Although PO
evidently must be ordinal, the psychological
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theory that leads one to believe that P obtains
evidently need not be. Since the psychological
theory behind independence or preference con-
tinuity also leads to a nonordinal psychology,
the rebuttals we have been considering involve
just this sort of trivial ordinalization.

APPENDIX

PROOF OF THEOREM 1:
If � is complete in addition to transitive and

order-dense, the proof that there exists a U with
�U � � is the standard existence theorem for
utility functions. So assume that � is not com-
plete. Let X/� denote the indifference classes of
�: X/� is the partition of X such that, for all x �
X and y � X, {x, y} � I � X/� if and only if
x � y and y � x. Define � on X/� by I � J if and
only if I � J and x � y for some x � I and y �
J. For any z � X, let I(z) denote the indifference
class that z belongs to. For any x, y � X such
that neither x � y nor y � x obtains, define two
strict partial orders �x and �y on X/� by � �
{(I(x), I(y))} and � � {(I(y), I(x))}, respec-
tively. Let �x

t and �y
t denote the transitive clo-

sures of �x and �y, respectively.
Given a binary relation P on domain Z, we

say T � Z is countably order-dense for P if T is
countable, and for all I, J � Z � T with I P J,
there is a K � T such that I P K P J. Then, since
� is countably order-dense, there is a W � X/�
that is countably order-dense for �: one takes a
countable Y � X given by the countable order-
density of � and sets I � W if and only if I �
Y � �. Let W� � W � {I(x), I(y)}. To show
that W� is countably order-dense for both �x

t and
�y

t , suppose, to take the case of �x
t , that I, J �

X/��W� satisfy I �x
t J. If I �x J then I � J and

so, since W is countably order-dense for �,
there is a K � W� such that I � K � J. If not I
�x J, then by the definition of a transitive clo-
sure, there exists a finite set of indifference
classes {I1, ... , In} such that I �x I1 �x

... �x In
�x J. If neither I(x) nor I(y) is in {I1, ... , In},
then the transitivity of � implies I � J, contra-
dicting not I �x J. If one of I(x) or I(y) appears
in {I1, ... , In}, then the transitivity of � implies
either I � I(x) � J or I � I(y) � J and both I(x)
and I(y) are in W�. If both I(x) and I(y) are in
{I1, ... , In}, then the transitivity of � implies (1)
I � I (x) � J, (2) I � I (y) � J, (3) I � I(y) �x
I(x) � J, or (4) I � I(x) �x I(y) � J. Cases (1)
and (2) have already been covered, (3) cannot

obtain since not y � x, while in case (4) I � I(x)
�x

t J. We may therefore apply Peter C. Fishburn
(1979, Theorem 3.2) or Marcel K. Richter
(1966) to conclude there is a utility function ux,y
on X/� such that L �x

t M implies u(L) � u(M).
Or, to argue directly, simply let �: W� 3 � be
one-to-one and define ux,y by

ux,y �I� � �
J�W�:I �x

t J

1

2�� J�

for all I � X/� (letting a sum over the empty
set equal 0). Similarly, there exists a uy, x on
X/� such that L �y

t M implies u(L) � u(M).
Define the utility functions vx,y and vy, x on X
by setting vx,y( z) � ux,y(I( z)) and vy, x( z) �
uy, x(I( z)) for all z � X.

Let U be defined by v � U if and only if v �
{vx,y, vy,x} for some x, y � X such that not x �
y and not y � x. Since vx,y(x) � vx,y(y) and
vy,x(y) � vy,x(x), we have not x �U y and not y
�U x. Since in addition it is easy to verify that
w � z if and only if u(w) � u(z) for all u � U,
we have �U � �.

PROOF OF THEOREM 3:
To show that concavity is no stronger than

any cardinal property, let UC be cardinal, let
UCV maximally satisfy concavity, and suppose
there exists u � UC � UCV. Since u � UC, for
any u� � UC there exists an increasing affine
transformation g such that g � u � u�. Since an
increasing affine transformation of a concave
function is concave, u� � UCV, and so UCV �
UC. We omit the equally elementary proof that
any ordinal property is no stronger than concav-
ity (or indeed no stronger than any property).
For result (ii), let the cardinal property now
have range � 2, and suppose v � UC � UCV. If f:
� 3 � is increasing and strictly concave, we
have, since v � UCV, f � v � UCV. Since �Range v�
� 2, there exist v1 , v2 , v3 � Range v and � � (0,
1) with v1 � v2 � v3 and v2 � �v1 � (1 � �)v3.
Since f is strictly concave, f (v2) � �f (v1) � (1 �
�) f (v3). So f �Range v is not affine and therefore f
� v � UC. Hence concavity is strictly weaker than
any cardinal property with range � 2 that inter-
sects concavity.

To establish (iii), let UO maximally satisfy an
ordinal property with range � 1, let UCVC max-
imally satisfy concavity and continuity, and
suppose that UO � UCVC � A. For v � UO �
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UCVC, Range v is a nontrivial interval. So let x1,
x2 � X satisfy v(x1) � v(x2) and define D �
{w � X: w � �x1 � (1 � �) x2 for some � �
[0, 1]}. Since v is concave there is a C � D
that is connected and such that v is monotone
on C. So there are z1, z2, z3 � C that satisfy
z3 � (1/2)z1 � (1/2)z3 and v(z1) � v(z2) �
v(z3). Let g: � 3 � be an increasing transfor-
mation such that g(v(z2)) � (1/2)g(v(z1)) �
(1/2) g(v(z3)). We then have g � v �/ UCVC, but
since g is increasing, g � v � UO.

PROOF OF THEOREM 4:
See Grodal (1974).

PROOF OF THEOREM 5:
Let U with domain L maximally satisfy util-

ity integrability and let U be an arbitrary ele-
ment of U. Since it is plain that if W: L3 � is
such that there exists an increasing affine trans-
formation g that satisfies g � U � W, then W
satisfies utility integrability, we need only show
that for any W � U there exists an increasing
affine transformation g such that W � g � U. It
is sufficient to show that if g is an increasing
transformation and W � g � U satisfies utility
integrability (i.e., W � U), then g is affine.

We establish this via Theorem 2. First, ob-
serve that since �Range U� � 1, there exist �, ��
� L such that U(�) � U(��), and hence there
also exists, for any � � 0, a measurable C1 �
[0, T] such that

0 � �
C1

�u���t�, t� � u����t�, t�� d��t� � �,

where, for U � U, u: ��
n 	 [0, T]3 � is one

of the functions satisfying Definition 10 (i).
(This u is fixed throughout.) By setting �
sufficiently small, we can partition [0, T] into
sets C1 and C2 such that in addition

�
C2

�u���t�, t� � u����t�, t�� d��t� � 0.

For i � 1, 2, let Li be the restriction of L to
Ci—that is, the set of functions from Ci to �n

defined by �i � Li if and only if there exists
� � L such that �i(t) � �(t) for all t � Ci.

Let Ui: Li 3 � be defined by Ui(�i) �

Ci

u(�i(t), t) d�(t). We have L � L1 	 L2.
Using (�1 , �2) to denote the � � L such that
�(t) � �i(t) for t � Ci and i � {1, 2}, we
have U(�1, �2) � U1(�1) � U2(�2) for all
� � L. Since, for i � {1, 2}, Ui(�i) �
Ui(��i), �Range Ui� � 1.

To show that the Ui have ranges equal to
nontrivial intervals, allowing us to apply Theo-
rem 2, we use the following result from the
theory of integration of correspondences, some-
times called Lyapunov’s theorem.

LYAPUNOV’S THEOREM: Given an atom-
less measure space (�, F, �) and correspon-
dence P: � * �, the set 
� P d� � {
� p d�:
p is integrable and p(
) � P(
) for a.e. 
 � �}
is convex.

By Lyapunov’s theorem, Range U, Range
U1, and Range U2 are convex sets and therefore
intervals. For example, for the case of Range
U1, the measure space is Lebesgue measure on
C1 and the correspondence P would be defined
by P(t) � {u(�1(t), t) � �: �1 � L1} for each
t � C1. Since Range U1 � 
C1

P d�, we
conclude that Range U1 is convex and hence an
interval. Note that since �Range U1� � 1 and
�Range U2� � 1, Range U1 and Range U2 have
nonempty interiors.

Since W � U, there exists a w: ��
n 	 [0, T]3

�, where t � w(�(t), t) is integrable and W(�) �
g(U(�)) � 
0

T v(�(t), t) d�(t) for all � � L. Just
as we argued for the case of U, U1, and U2, we
have W(�1, �2) � W1(�1) � W2(�2) for all (�1 ,
�2) � L, where Wi(�i) � 
Ci

w(�i(t), t) d�(t),
i � {1, 2}. Hence g(U1(�1) � U2(�2)) �
W1(�1) � W2(�2) for all (�1 , �2) � L. So apply
Theorem 2 to conclude that g is affine.

PROOF OF THEOREM 6:
In text. See also the proof of Theorem 3.

PROOF OF THEOREM 7:
We omit the details: 7 (i) is obvious and 7

(ii) is a slight variant on common arguments
in the social choice literature (see, e.g., Mou-
lin, 1988).

PROOF OF THEOREM 8:
If v � con{u � F(u�): u* � w*} then there

exist �1, ... , �m � [0, 1] and z1, ... , zm � F(u�)
such that ¥k�1

m �k � 1, v � ¥k�1
m �kzk, and
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zk* � w* for k � 1, ... , m. For any increasing
g: Range u� 3 � such that g�u�(i, X) is concave
for each i � �,

�
i��

g�vi� � �
i��

g� �
k � 1

m

�kzi
k� � �

i��

� �
k � 1

m

�kg(zi
k)�

� �
k�1

m

�k��
i��

g(zi
k)� � �

k � 1

m

�k��
i��

g(zi
k*)�

� �
k � 1

m

�k� �
i��

g(w*i )�
� �

k � 1

m

�k� �
i��

g(wi)�
� �

i��

� �
k � 1

m

�kg(wi)� � �
i��

g�wi�,

where the two inequalities follow respectively
from the concavity and increasingness of each
g�u�(i, X). Since v, w � F(u�), there exist x, y �
X such that v � (u�(1, x), ... , u�(I, x)) and w �
(u�(1, y), ... , u�(I, y)). Since u� is lcc, for each u �
UCC there is a g meeting the above assumptions
such that u � g � u� . Hence ¥i�� u(i, x) � ¥i��

u(i, y) for all u � UCC and therefore x �UCC

s y
and vRu��UCC

w.

PROOF OF THEOREM 9:
For y � �I, let ymax denote max{yj, yk} and

ymin denote min{yj, yk}.
Assume vj � vk � wj � wk and vmin � wmin.

If both vj � vk � wj � wk and vmin � wmin then
v* � w* and the conclusion vRu��UCC

w is im-
mediate. So assume at least one inequality is
strict. Define z1 � �I by zj

1 � wmin, zk
1 � vj �

vk � wmin, and zi
1 � vi for i � { j, k} and let z2

equal z1 with the j and k coordinates inter-
changed. Since vj � vk � wj � wk, we conclude
that zk

1 � wmax and therefore z1* � w* and
z2* � w*. Since either vj � vk � wj � wk or
vmin � wmin, the equality vj � �wmin � (1 � �)
(vj � vk � wmin) defines a � in [0, 1] and this �
also solves vk � �(vj � vk � wmin) � (1 � �)wmin.
Hence v � �z1 � (1 � �)z2.

Let g be increasing and concave on Range u�
and extend g to any r such that r � s for all s �
Range u� by setting g(r) � sup{g(s): s � Range
u�}. Since g remains concave and weakly in-
creasing, the indented equalities and inequali-
ties in the proof of Theorem 8 apply to such a g.
To conclude that vRu��UCC

w, therefore, it is suf-
ficient to show that for any u � UCC there is a
g: Range u� 3 � that is increasing and concave
on Range u� such that u � g � u� . Since u� is lcc
there is an increasing h: Range u� 3 � with u �
h � u� such that, for all i � �, h�u�(i, X) is concave.
Since u(i, X) and u�(i, X) are both intervals and h
is increasing, h�u�(i, X) is continuous. Also ob-
serve that since �i�� Int u�(i, X) is an interval,
Range u� is an interval. Now for any y � Range
u�, there is an i and nontrivial interval E with y �
E and E � Int u�(i, X). Since h is concave and
continuous on E, the left and right derivatives of h
are both nonincreasing on E and the right deriva-
tive at any point in E is less than or equal to the left
derivative. These properties of the left and right
derivatives therefore hold at every point in Range
u� which, together with the fact that Range u� is an
interval, implies that h is concave.

Now assume vRu��UCC
w. The argument in this

direction does not require that �i�� Int u�(i, X)
be an interval. If vj � vk � wj � wk, then ¥i��

vi � ¥i�� wi, contradicting vRu��UCC
w. Hence

vj � vk � wj � wk. Suppose, contrary to the
theorem, that vmin � wmin. Consider transfor-
mations g: con(Range u�) 3 � that are piece-
wise-linear, increasing, concave, and whose
only nondifferentiability occurs at wmin. As
long as Dg(u�) � Dg(u�) � 0 for u� � wmin and
u� � wmin, g will be concave and increasing, but
otherwise these two derivatives are arbitrary. So
fix some Dg(u�) � 0 and choose Dg(u�) � 0
small enough that g(vmax) � g(wmax). (Note that
vmax � wmin since vmin � wmin and vj � vk �
wj � wk.) Hence g(vj) � g(vk) � g(wj) � g(wk)
and so ¥i�� g(vi) � ¥i�� g(wi), again contra-
dicting vRu��UCC

w.
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Moulin, Hervé. Axioms of cooperative decision
making. Cambridge: Cambridge University
Press, 1988.

Ng, Yew-Kwang. “A Case for Happiness, Cardi-
nalism, and Interpersonal Comparability.”
Economic Journal, 1997, 107(445), pp.
1848–58.

Ok, Efe A. “Utility Representation of an In-
complete Preference Relation.” Journal of
Economic Theory, 2002, 104(2), pp. 429 –
49.

Paulus, Martin P.; Hozack, Nikki; Zauscher,
Blanca; McDowell, Jennifer E.; Frank, Law-
rence; Brown, Gregory G. and Braff, David L.

“Prefrontal, Parietal, and Temporal Cortex
Networks Underlie Decision-Making in the
Presence of Uncertainty.” Neuroimage, 2001,
13(1), pp. 91–100.

Pigou, Arthur C. Economics of welfare. 4th ed.
London: Macmillan, 1932.

Richter, Marcel K. “Revealed Preference The-
ory.” Econometrica, 1966, 34(3), pp. 635–45.

Roberts, Fred. Measurement theory with appli-
cations to decision making, utility, and the
social sciences. Reading, MA: Addison-Wes-
ley Publishing Company, 1979.

Roberts, Kevin W. S. “Interpersonal Compara-
bility and Social Choice Theory.” Review of
Economic Studies, 1980a, 47(2), pp. 421–39.

Roberts, Kevin W. S. “Possibility Theorems with
Interpersonally Comparable Welfare Levels.”
Review of Economic Studies, 1980b, 47(2),
pp. 409–20.

Rustichini, Aldo, ed. “Special Issue on Neuro-
economics.” Games and Economic Behavior,
2005, 52(2).

Sen, Amartya. “Interpersonal Aggregation and
Partial Comparability.” Econometrica, 1970,
38(3), pp. 393–409.

Shorrocks, Anthony F. “Ranking Income Distribu-
tions.” Economica, 1983, 50(197), pp. 3–17.

Stevens, Stanley S. “On the Theory of Scales of
Measurement.” Science, 1946, 103(2684),
pp. 677–80.

Vind, Karl. Mean groupoids. Copenhagen: Uni-
versity of Copenhagen, 1969.

1136 THE AMERICAN ECONOMIC REVIEW SEPTEMBER 2006

1 LINE LONG

tapraid1/z3y-aer/z3y-aer/z3y00406/z3y1807d06a longd S�31 8/7/06 14:17 Art: 20030804 Input-dld(dld)


